Proximate Chemical Composition, Amino Acids Profile and Minerals Content of Meat Depending on Carcass Part, Sire Genotype and Sex of Meat Rabbits
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA, project No. 202/2019/FVHE
University of Veterinary Sciences Brno
PubMed
35739873
PubMed Central
PMC9219482
DOI
10.3390/ani12121537
PII: ani12121537
Knihovny.cz E-zdroje
- Klíčová slova
- amino acid, gender, meat quality, meat-type rabbit, mineral content, sire genotype,
- Publikační typ
- časopisecké články MeSH
The aim of the study was to assess the effects of the sire genotype, sex and carcass part on the composition of the meat of rabbits, which were fattened under conditions where no synthetic drugs were used. As for carcass parts, the higher content of both total amino acids (AA) and all essential AA (EAA) monitored was found in the Longissimus thoracis et lumborum (LTL) muscle as compared to hind leg meat (p ˂ 0.001). Significant effects of the rabbit sire genotype and the genotype x sex interaction on proportions of some AA in meat were found (p ˂ 0.001). Crossbreeding of the Mecklenburger Schecke (MS) sires with a commercial dam line of HYLA rabbits resulted in a lower proportion of the total AA and all EAA monitored in meats of MS sired males as compared to MS sired females and HYLA rabbits (p ˂ 0.05). The sex-related effect on AA profile was not so noticeable in final commercial crossbreds of HYLA rabbits when compared to MS sired progeny. These findings point to a possible risk of alterations in the nutritional quality of meat proteins when using different rabbit sire genotypes than those originally intended for the specific commercial crossbreeding scheme. However, on the contrary, higher contents of magnesium (p ˂ 0.05), manganese (p ˂ 0.001) and zinc (p ˂ 0.05) were found in meats of MS sired progeny as compared to HYLA rabbits.
Zobrazit více v PubMed
Dalle Zotte A., Cullere M., Gleeson E., Cossu M.E. Animal fat and vitamin E in rabbit diets: Total tract apparent digestibility, growth performance, carcass and meat quality traits. Czech J. Anim. Sci. 2020;65:380–388. doi: 10.17221/203/2020-CJAS. DOI
Elazab M.A., Khalifah A.M., Elokil A.A., Elkomy A.E., Rabie M.M., Mansour A.T., Morshedy S.A. Effect of dietary rosemary and ginger essential oils on the growth performance, feed utilization, meat nutritive value, blood biochemicals, and redox status of growing NZW rabbits. Animals. 2022;12:375. doi: 10.3390/ani12030375. PubMed DOI PMC
Hernández P. Carne de conejo, ideal para dietas bajas en ácido úrico. Revista Científica de Nutrición. N° 8 Septiembre. Boletín Cunicult. 2007;154:33–36.
Dalle Zotte A., Szendrö Z. The role of rabbit meat as functional food. Meat Sci. 2011;88:319–331. doi: 10.1016/j.meatsci.2011.02.017. PubMed DOI
Hermida M., Gonzalez M., Miranda M., Rodríguez-Otero J.L. Mineral analysis in rabbit meat from Galicia (NW Spain) Meat Sci. 2006;73:635–639. doi: 10.1016/j.meatsci.2006.03.004. PubMed DOI
Cullere M., Zotte A.D., Tasoniero G., Giaccone V., Szendrő Z., Szín M., Odermatt D., Gerencser Z., Dal Bosco A., Matics Z. Effect of diet and packaging system on the microbial status, pH, color and sensory traits of rabbit meat evaluated during chilled storage. Meat Sci. 2018;141:36–43. doi: 10.1016/j.meatsci.2018.03.014. PubMed DOI
Pereira P.M.D.C., Vicente A.F.D.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013;93:586–592. doi: 10.1016/j.meatsci.2012.09.018. PubMed DOI
Li S., He Z., Hu Y., Li H. Shotgun proteomic analysis of protein profile changes in female rabbit meat: The effect of breed and age. Ital. J. Anim. Sci. 2019;18:1335–1344. doi: 10.1080/1828051X.2019.1659107. DOI
Jiménez-Colmenero F., Herrero A.M., Cofrades S., Ruiz-Capillas C. Meat: Eating quality and preservation. In: Caballero B., Finglas P., Toldrá F., editors. The Encyclopedia of Food and Health. Oxford Academic Press; Kidlington, UK: 2016. pp. 685–692.
Triki M., Herrero A.M., Jiménez-Colmenero F., Ruiz-Capillas C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods. 2018;7:132. doi: 10.3390/foods7090132. PubMed DOI PMC
Nasr M.A.F., Abd-Elhamid T., Hussein M.A. Growth performance, carcass characteristics, meat quality and muscle amino-acid profile of different rabbits breeds and their crosses. Meat Sci. 2017;134:150–157. doi: 10.1016/j.meatsci.2017.07.027. PubMed DOI
Migdal L., Barabasz B., Niedbała P., Łapiński S., Pustkowiak H., Živković B., Migdał W. A comparison of selected biochemical characteristics of meat from nutrias (Myocastor coypus Mol.) and rabbits (Oryctolagus cuniculus) Ann. Anim. Sci. 2013;13:387–400. doi: 10.2478/aoas-2013-0018. DOI
Pla M. A comparison of the carcass traits and meat quality of conventionally and organically produced rabbits. Livest. Sci. 2008;115:1–12. doi: 10.1016/j.livsci.2007.06.001. DOI
Daszkiewicz T., Gugołek A., Kubiak D., Kerbaum K., Burczyk E. The fatty acid profile of meat from New Zealand white rabbits raised under intensive and extensive production systems. Animals. 2021;11:3126. doi: 10.3390/ani11113126. PubMed DOI PMC
Zapletal D., Jakešová P., Žáková E., Šimek V., Straková E. Growth performance, mortality and body and carcass characteristics of rabbit fatteners related to crossbreeding of Mecklenburger Schecke sires with dam line of HYLA rabbits. Czech J. Anim. Sci. 2020;65:337–345. doi: 10.17221/192/2020-CJAS. DOI
Szendrő Z., Matics Z., Gerencsér Z., Nagy I., Lengyel M., Horn P., Dalle Zotte A. Effect of dam and sire genotypes on productive and carcass traits of rabbits. J. Anim. Sci. 2010;88:533–543. doi: 10.2527/jas.2009-2045. PubMed DOI
Dalle Zotte A., Paci G. Rabbit growth performance, carcass traits and hind leg bone characteristics as affected by the sire breed, season, parity order and sex in an organic production system. Anim. Sci. Pap. Rep. 2014;32:143–159.
Tůmová E., Bízková Z., Skřivanová V., Chodová D., Martinec M., Volek Z. Comparisons of carcass and meat quality among rabbit breeds of different sizes, and hydrid rabbits. Livest. Sci. 2014;165:8–14. doi: 10.1016/j.livsci.2014.04.019. DOI
Szendrő Z., Szendrő K., Dalle Zotte A. Management of reproduction on small, medium and large rabbit farms. Asian Austral. J. Anim. 2012;25:738–748. doi: 10.5713/ajas.2012.12015. PubMed DOI PMC
Chodová D., Tůmová E., Martinec M., Bízková Z., Skřivanová V., Volek Z., Zita L. Effect of housing system and genotype on rabbit meat quality. Czech J. Anim. Sci. 2014;59:190–199. doi: 10.17221/7343-CJAS. DOI
Volek Z., Marounek M. Effect of feeding growing–fattening rabbits a diet supplemented with whole white lupin (Lupinus albus cv. Amiga) seeds on fatty acid composition and indexes related to human health in hind leg meat and perirenal fat. Meat Sci. 2011;87:40–45. doi: 10.1016/j.meatsci.2010.08.015. PubMed DOI
Blasco A., Ouhayoun J. Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci. 1996;4:93–99. doi: 10.4995/wrs.1996.278. DOI
Straková E., Suchý P., Navrátil P., Karel T., Herzig I. Comparison of the content of crude protein and amino acids in the whole bodies of cocks and hens of Ross 308 and Cobb 500 hybrids at the end of fattening. Czech J. Anim. Sci. 2015;60:67–74. doi: 10.17221/7976-CJAS. DOI
AOAC . Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists; Gaithersburg, MD, USA: 2006.
Tůmová E., Chodová D., Volek Z., Ketta M. The effect of feed restriction, sex and age on the carcass composition and meat quality of nutrias (Myocastor coypus) Meat Sci. 2021;182:108625. doi: 10.1016/j.meatsci.2021.108625. PubMed DOI
Perna A., Simonetti A., Grassi G., Gambacorta E. Effect of a cauliflower (Brassica oleraceae var. Botrytis) leaf powder-enriched diet on performance, carcass and meat characteristics of growing rabbit. Meat Sci. 2019;149:134–140. doi: 10.1016/j.meatsci.2018.11.013. PubMed DOI
Šťastník O., Mrkvicová E., Pavlata L., Anzenbacherová E., Prokop J., Roztočilová A., Umlasková B., Novotný J., Metnarová E., Vyhnánek T., et al. Purple wheat as a source of anthocyanins and its effect on the metabolism of rabbits. Vet. Med. Czech. 2019;64:539–546.
Migdal L., Palka S., Kmiecik M., Derewicka O. Association of polymorphisms in the GH and GHR genes with growth and carcass traits in rabbits (Oryctolagus cuniculus) Czech J. Anim. Sci. 2019;64:255–264. doi: 10.17221/27/2019-CJAS. DOI
Metzger S., Odermatt M., Szabó A., Radnai I., Biró-Németh E., Nagy I., Szendrő Z. Effect of age and body weight on carcass traits and meat composition of rabbits. Arch. Tierzucht. 2011;54:406–418. doi: 10.5194/aab-54-406-2011. DOI
Matics Z.S., Nagy I., Gerencsér Z.S., Radnai I., Gyovai P., Donkó T., Zotte A.D., Curik I., Szendrő Z.S. Pannon breeding program at Kaposvár University. World Rabbit Sci. 2014;22:287–300. doi: 10.4995/wrs.2014.1511. DOI
Blasco A., Nagy I., Hernández P. Genetics of growth, carcass and meat quality in rabbits. Meat Sci. 2018;145:178–185. doi: 10.1016/j.meatsci.2018.06.030. PubMed DOI
Szendrő Z., Metzger S., Nagy I., Szabó A., Petrási Z., Donkó T., Horn P. Effect of divergent selection for the Computer Tomography measured thigh muscle volume on productive and carcass traits of growing rabbits. Livest. Sci. 2012;149:167–172. doi: 10.1016/j.livsci.2012.07.011. DOI
Daszkiewicz T., Gugolek A. A comparison of the quality of meat from female and male californian and flemish giant gray rabbits. Animals. 2020;10:2216. doi: 10.3390/ani10122216. PubMed DOI PMC
Króliczewska B., Miśta D., Korzeniowska M., Pecka-Kiełb E., Zachwieja A. Comparative evaluation of the quality and fatty acid profile of meat from brown hares and domestic rabbits offered the same diet. Meat Sci. 2018;145:292–299. doi: 10.1016/j.meatsci.2018.07.002. PubMed DOI
Pla M., Pascual M., Ariño B. Protein, fat and moisture content of retail cuts of rabbit meat evaluated with the NIRS methodology. World Rabbit Sci. 2004;12:149–158. doi: 10.4995/wrs.2004.574. DOI
Hernández P. Enhancement of nutritional quality and safety in rabbit meat; Proceedings of the 9th World Rabbit Congress; Verona, Italy. 10–13 June 2008; pp. 1287–1299.
Ortiz Hernández J.A., Rubio Lozano M.S. Effect of breed and sex carcass yield and meat quality. World Rabbit Sci. 2001;9:51–56. doi: 10.4995/wrs.2001.445. DOI
North M.K., Dalle Zotte A., Hoffman L.C. Growth, carcass and meat quality traits of two South African meat rabbit breeds. S. Afr. J. Anim. Sci. 2019;49:815–823. doi: 10.4314/sajas.v49i5.4. DOI
Bohrer B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017;65:103–112. doi: 10.1016/j.tifs.2017.04.016. DOI
Bivolarski B., Vachkova E., Ribarski S., Uzunova K., Pavlov D. Amino acid content and biological value of rabbit meat proteins, depending on weaning age. Bulg. J. Vet. Med. 2011;14:94–102.
Ye X., Zhou L., Zhang Y., Xue S., Gan F.Q., Fang S. Effect of host breeds on gut microbiome and serum metabolome in meat rabbits. BMC Vet. Res. 2021;17:24. doi: 10.1186/s12917-020-02732-6. PubMed DOI PMC
Guo Z.Q., Wang B., Lu J.Z., Li C.Y., Kuang L.D., Tang X.X., Mei X.L., Xie X.H. Analysis of the relationship between caecal flora difference and production performance of two rabbit species by high-throughput sequencing. Czech J. Anim. Sci. 2021;66:271–280. doi: 10.17221/225/2020-CJAS. DOI
Thomas R., Banik S., Barman K., Mohan N.H., Sarma D.K. Profiles of colour, minerals, amino acids and fatty acids in Asha, the triple cross (Ghungroo x Hampshire x Duroc) fattener pig variety. Indian J. Anim. Res. 2019;53:435–440. doi: 10.18805/ijar.B-3527. DOI
Li L., Zhu Y., Wang X., He Y., Cao B. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle. J. Anim. Sci. Biotechno. 2014;5:21. doi: 10.1186/2049-1891-5-21. PubMed DOI PMC
Lorenzo J.M., Sarriés M.V., Franco D. Sex effect on meat quality and carcass traits of foals slaughtered at 15 months of age. Animal. 2013;7:1199–1207. doi: 10.1017/S1751731113000189. PubMed DOI
Vinauskiene R., Leskauskaite D., Akromaite E. Nutritional composition of farm chinchilla (Chinchilla lanigera) meat. J. Food Compos. Anal. 2019;84:103303. doi: 10.1016/j.jfca.2019.103303. DOI
Kęska P., Stadnik J. Taste-active peptides and amino acids of pork meat as components of dry-cured meat products: An in-silico study. J. Sens. Stud. 2017;32:12301. doi: 10.1111/joss.12301. DOI
Kirimura J., Shimizu A., Kimizuka A., Ninomiya T., Katsuya N. Contribution of peptides and amino acids to the taste of foods. J. Agr. Food Chem. 1969;17:689–695. doi: 10.1021/jf60164a031. DOI
Zhao C.J., Schieber A., Gänzle M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016;89:39–47. doi: 10.1016/j.foodres.2016.08.042. PubMed DOI
Dashdorj D., Amna T., Hwang I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur. Food Res. Technol. 2015;241:157–171. doi: 10.1007/s00217-015-2449-3. DOI
Song S.Q., Tang Q., Fan L., Xu X.D., Song Z., Hayat K., Feng T., Wang Y.F. Identification of pork flavour precursors from enzyme-treated lard using Maillard model system assessed by GC–MS and partial least squares regression. Meat Sci. 2017;124:15–24. doi: 10.1016/j.meatsci.2016.10.009. PubMed DOI
Navarro M., Dunshea F.R., Lisle A., Roura E. Feeding a high oleic acid (C18:1) diet improves pleasing flavor attributes in pork. Food Chem. 2021;357:129770. doi: 10.1016/j.foodchem.2021.129770. PubMed DOI
McCarron D.A., Reusser M.E. Are low intakes of calcium and potassium important causes of cardiovascular disease? Am. J. Hypertens. 2001;14:206S–212S. doi: 10.1016/S0895-7061(01)02090-8. PubMed DOI
Mattioli S., Dal Bosco A., Duarte J.M.M., D’Amato R., Castellini C., Beone G.M., Fontanella M.C., Beghelli D., Regni L., Businelli D., et al. Use of Selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profle and Selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. 2019;51:98–105. doi: 10.1016/j.jtemb.2018.10.004. PubMed DOI
D´Arco G., Blasi F., Cossignani L., Di Giacomo F., Ciavardelli D., Ventura F., Scipioni S., Simonetti M.S., Damiani P. Composition of meat and offal from weaned and fattened rabbits and results of stereospecific analysis of triacylglycerols and phosphatidylcholines. J. Sci. Food Agric. 2012;92:952–959. doi: 10.1002/jsfa.4676. PubMed DOI
Simonová M.P., Chrastinová L., Chrenková M., Formelová Z., Kandričáková A., Bino E., Lauková A. Benefits of enterocin M and sage combination on the physico-chemical traits, fatty acid, amino acid, and mineral content of rabbit meat. Probiotics Antimicro. 2020;12:1235–1245. doi: 10.1007/s12602-019-09627-5. PubMed DOI
Parigi-Bini R., Xiccato G., Cinetto M., Dalle Zotte A., Converso R. Effetto dell’età, del peso di macellazione e del sesso sulla qualità della carcassa e della carne cunicola. 1. Rilievi di macellazione e qualità della carcassa. Zootec. Nutr. Anim. 1992;18:157–172.
Bovera F., Di Meo C., Piccolo G., Colatruglio P., Nizza A. Il coniglio di fosso dell’isola d’Ischia: Indagine preliminare sulle caratteristiche delle carcasse e delle carni. Rivista Coniglicoltura. 2005;42:42–45.
Lombardi-Boccia G., Martinez-Dominguez B., Aguzzi A. Total heme and nonheme iron in raw and cooked meats. J. Food Sci. 2002;67:1738–1741. doi: 10.1111/j.1365-2621.2002.tb08715.x. DOI
Cabrera M.C., Ramos A., Saadoun A., Brito G. Selenium, copper, zinc, iron and manganese content of seven meat cuts from Hereford and Braford steers fed pasture in Uruguay. Meat Sci. 2010;84:518–528. doi: 10.1016/j.meatsci.2009.10.007. PubMed DOI
Hassan A., Sada K.K., Ketheeswaran S., Dubey A.K., Bhat M.S. Role of zinc in mucosal health and disease: A review of physiological, biochemical, and molecular processes. Cureus. 2020;12:e8197. doi: 10.7759/cureus.8197. PubMed DOI PMC
Sachse B., Kolbaum A.E., Ziegenhagen R., Andres S., Berg K., Dusemund B., Hirsch-Ernst K.I., Kappenstein O., Mueller F., Roehl C., et al. Dietary manganese exposure in the adult population in Germany—What does it mean in relation to health risks? Mol. Nutr. Food Res. 2019;63:1900065. doi: 10.1002/mnfr.201900065. PubMed DOI
Freeland-Graves J.H., Mousa T.Y., Sanjeevi N. Nutritional requirements for manganese. In: Costa L.G., Aschner M., editors. Manganese in Health and Disease. Royal Society of Chemistry; London, UK: 2015. pp. 34–75.
Hernández P., Gondret F. Rabbit meat quality. In: Maertens L., Coudert P., editors. Recent Advances in Rabbit Science. ILVO; Melle, Belgium: 2006. pp. 269–290.
López-Alonso M., Benedito J.L., Miranda M., Castillo C., Hernández J., Shore R.F. Toxic and trace elements in liver, kidney and meat from cattle slaughtered in Galicia (NW Spain) Food Addit. Contam. 2000;17:447–457. doi: 10.1080/02652030050034028. PubMed DOI