Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment

. 2022 Jun 04 ; 11 (6) : . [epub] 20220604

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35741383

Grantová podpora
199306 Isfahan University of Medical Sciences

Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.

Zobrazit více v PubMed

Mansilla-Soto J., Riviere I., Boulad F., Sadelain M. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Hum. Gene Ther. 2016;27:295–304. doi: 10.1089/hum.2016.037. PubMed DOI PMC

de Dreuzy E., Bhukhai K., Leboulch P., Payen E. Current and future alternative therapies for beta-thalassemia major. Biomed. J. 2016;39:24–38. doi: 10.1016/j.bj.2015.10.001. PubMed DOI PMC

Rachmilewitz E.A., Giardina P.J. How I treat thalassemia. Blood. 2011;118:3479–3488. doi: 10.1182/blood-2010-08-300335. PubMed DOI

Origa R. Beta-Thalassemia. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews((R)) University of Washington; Seattle, WA, USA: 1993–2022. PubMed

Taishikhina I., Lokhmatova M., Shelikhova L. Hematopoietic stem cell transplantation in patients with transfu-sion-dependent β-thalassemia. Review article. Pediatric Hematol. Oncol. Immunopathol. 2020;19:178–183. doi: 10.24287/1726-1708-2020-19-2-178-183. DOI

Khandros E., Kwiatkowski J.L. Beta thalassemia: monitoring and new treatment approaches. Hematol. Oncol. Clin. 2019;33:339–353. doi: 10.1016/j.hoc.2019.01.003. PubMed DOI

Thein S.L. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis. 2018;70:54–65. doi: 10.1016/j.bcmd.2017.06.001. PubMed DOI PMC

Shah F.T., Sayani F., Trompeter S., Drasar E., Piga A. Challenges of blood transfusions in β-thalassemia. Blood Rev. 2019;37:100588. doi: 10.1016/j.blre.2019.100588. PubMed DOI

Sadeghi M.M., Shariati L., Hejazi Z., Shahbazi M., Tabatabaiefar M.A., Khanahmad H. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia. J. Cell. Biochem. 2017;119:2512–2519. doi: 10.1002/jcb.26412. PubMed DOI

Ashrafizadeh M., Delfi M., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Farahani M.V., Sharifzadeh S.O., Hamzehlou S., et al. Biomedical application of chi-tosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr. Polym. 2021;260:117809. doi: 10.1016/j.carbpol.2021.117809. PubMed DOI

Kumar K.S., Girish Y.R., Ashrafizadeh M., Mirzaei S., Rakesh K.P., Gholami M.H., Zabolian A., Hushmandi K., Orive G., Kadumudi F.B., et al. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coord. Chem. Rev. 2021;447:214135. doi: 10.1016/j.ccr.2021.214135. DOI

Mirzaei S., Gholami M.H., Hashemi F., Zabolian A., Farahani M.V., Hushmandi K., Zarrabi A., Goldman A., Ashrafizadeh M., Orive G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov. Today. 2022;27:436–455. doi: 10.1016/j.drudis.2021.09.020. PubMed DOI

Keservani R., Sharma A.K. Nanoconjugate Nanocarriers for Drug Delivery. 1st ed. Apple Academic Press; Oakvil, ON, Canada: 2021.

Liu D., Zhang H., Fontana F., Hirvonen J.T., Santos H.A. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv. Drug Deliv. Rev. 2018;128:54–83. doi: 10.1016/j.addr.2017.08.003. PubMed DOI

Zhang N., Wei M.-Y., Ma Q. Nanomedicines: A Potential Treatment for Blood Disorder Diseases. Front. Bioeng. Biotechnol. 2019;7:369. doi: 10.3389/fbioe.2019.00369. PubMed DOI PMC

Uchida S., Perche F., Pichon C., Cabral H. Nanomedicine-Based Approaches for mRNA Delivery. Mol. Pharm. 2020;17 doi: 10.1021/acs.molpharmaceut.0c00618. PubMed DOI

Patra J.K., Das G., Fraceto L.F., Campos E.V.R., del Pilar Rodriguez-Torres M., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC

Kunz J.B., Kulozik A.E. Gene Therapy of the Hemoglobinopathies. HemaSphere. 2020;4:e479. doi: 10.1097/HS9.0000000000000479. PubMed DOI PMC

Thein S.L. The molecular basis of β-thalassemia. Cold Spring Harb. Perspect. Med. 2013;3:a011700. doi: 10.1101/cshperspect.a011700. PubMed DOI PMC

Tari K., Valizadeh Ardalan P., Abbaszadehdibavar M., Atashi A., Jalili A., Gheidishahran M. Thalassemia an update: molecular basis, clinical features and treatment. Int. J. Biomed. Public Health. 2018;1:48–58. doi: 10.22631/ijbmph.2018.56102. DOI

Mettananda S., Higgs D.R. Molecular Basis and Genetic Modifiers of Thalassemia. Hematol. Clin. N. Am. 2018;32:177–191. doi: 10.1016/j.hoc.2017.11.003. PubMed DOI

McGann P.T., Nero A.C., Ware R.E. Gene and Cell Therapies for Beta-Globinopathies. Springer; New York, NY, USA: 2017. Clinical features of β-thalassemia and sickle cell disease; pp. 1–26. PubMed

De Sanctis V., Kattamis C., Canatan D., Soliman A.T., Elsedfy H., Karimi M., Daar S., Wali Y., Yassin M., Soliman N. β-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr. J. Hematol. Infect. Dis. 2017;9:e2017018. doi: 10.4084/mjhid.2017.018. PubMed DOI PMC

Farashi S., Harteveld C.L. Molecular basis of α-thalassemia. Blood Cells Mol. Dis. 2018;70:43–53. doi: 10.1016/j.bcmd.2017.09.004. PubMed DOI

Gupta S.K., Shukla P. Gene editing for cell engineering: trends and applications. Crit. Rev. Biotechnol. 2016;37:672–684. doi: 10.1080/07388551.2016.1214557. PubMed DOI

Kazemi B., Hosseini N., Khanahmad H., Esfahani B.N., Bandehpour M., Shariati L., Zahedi N. Targeting of cholera toxin A (ctxA) gene by zinc finger nuclease: pitfalls of using gene editing tools in prokaryotes. Res. Pharm. Sci. 2020;15:182–190. doi: 10.4103/1735-5362.283818. PubMed DOI PMC

Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–782. doi: 10.1534/genetics.111.131433. PubMed DOI PMC

Cai M., Yang Y. Targeted genome editing tools for disease modeling and gene therapy. Curr. Gene Ther. 2014;14:2–9. doi: 10.2174/156652321402140318165450. PubMed DOI

Ousterout D.G., Gersbach C.A. The Development of TALE Nucleases for Biotechnology. TALENs. 2016;1338:27–42. doi: 10.1007/978-1-4939-2932-0_3. PubMed DOI PMC

Sun N., Zhao H. Transcription activator-like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 2013;110:1811–1821. doi: 10.1002/bit.24890. PubMed DOI

Mohammadinejad R., Sassan H., Pardakhty A., Hashemabadi M., Ashrafizadeh M., Dehshahri A., Mandegary A. ZEB1 and ZEB2 gene editing mediated by CRISPR/Cas9 in A549 cell line. Bratisl. Med. J. 2020;121:31–36. doi: 10.4149/BLL_2020_005. PubMed DOI

Mohammadinejad R., Dehshahri A., Sassan H., Behnam B., Ashrafizadeh M., Gholami A.S., Pardakhty A., Mandegary A. Preparation of carbon dot as a potential CRISPR/Cas9 plasmid delivery system for lung cancer cells. Minerva Biotecnol. 2020;32:106–113. doi: 10.23736/S1120-4826.20.02618-X. DOI

Barrangou R., Horvath P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2017;2:17092. doi: 10.1038/nmicrobiol.2017.92. PubMed DOI

Knott G.J., Doudna J.A. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–869. doi: 10.1126/science.aat5011. PubMed DOI PMC

Gupta R.M., Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Investig. 2014;124:4154–4161. doi: 10.1172/JCI72992. PubMed DOI PMC

Ali G., Tariq M.A., Shahid K., Ahmad F., Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther. 2020;28:6–15. doi: 10.1038/s41434-020-0153-9. PubMed DOI

Sripichai O., Fucharoen S. Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic ap-proaches. Expert Rev. Hematol. 2016;9:1129–1137. doi: 10.1080/17474086.2016.1255142. PubMed DOI

Musallam K.M., Sankaran V.G., Cappellini M.D., Duca L., Nathan D.G., Taher A.T. Fetal hemoglobin levels and morbidity in untransfused patients with β-thalassemia intermedia. Blood. 2012;119:364–367. doi: 10.1182/blood-2011-09-382408. PubMed DOI

Steinberg M.H. Targeting fetal hemoglobin expression to treat β hemoglobinopathies. Expert Opin. Ther. Targets. 2022;26:347–359. doi: 10.1080/14728222.2022.2066519. PubMed DOI

Demirci S., Leonard A., Tisdale J.F. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies. Hum. Mol. Genet. 2020;29:R100–R106. doi: 10.1093/hmg/ddaa088. PubMed DOI PMC

Cui S., Engle J.D. Reactivation of fetal hemoglobin for treating β-thalassemia and sickle cell disease. In: Malik P.T.J., editor. Gene and Cell Therapies for Beta-Globinopathies. Volume 1013. Springer; New York, NY, USA: 2017. pp. 177–202. PubMed

Rivers A., Molokie R., Lavelle D. A new target for fetal hemoglobin reactivation. Haematologica. 2019;104:2325–2327. doi: 10.3324/haematol.2019.230904. PubMed DOI PMC

Topfer S.K., Feng R., Huang P., Ly L.C., Martyn G.E., Blobel G.A., Weiss M.J., Quinlan K.G.R., Crossley M. Dis-rupting the adult globin promoter alleviates promoter competition and reactivates fetal globin gene expression. Blood J. Am. Soc. Hematol. 2022;139:2107–2118. PubMed PMC

Ravi N.S., Wienert B., Wyman S.K., Bell H.W., George A., Mahalingam G., Vu J.T., Prasad K., Bandlamudi B.P., Devaraju N. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal he-moglobin. Elife. 2022;11:e65421. doi: 10.7554/eLife.65421. PubMed DOI PMC

Weber L., Frati G., Felix T., Hardouin G., Casini A., Wollenschlaeger C., Meneghini V., Masson C., De Cian A., Chalumeau A., et al. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci. Adv. 2020;6:eaay9392. doi: 10.1126/sciadv.aay9392. PubMed DOI PMC

Cavazzana M., Mavilio F. Gene Therapy for Hemoglobinopathies. Hum. Gene Ther. 2018;29:1106–1113. doi: 10.1089/hum.2018.122. PubMed DOI PMC

Uda M., Galanello R., Sanna S., Lettre G., Sankaran V.G., Chen W., Usala G., Busonero F., Maschio A., Albai G. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phe-notype of β-thalassemia. Proc. Natl. Acad. Sci. USA. 2008;105:1620–1625. doi: 10.1073/pnas.0711566105. PubMed DOI PMC

Xu J., Peng C., Sankaran V.G., Shao Z., Esrick E.B., Chong B.G., Ippolito G.C., Fujiwara Y., Ebert B.L., Tucker P.W., et al. Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing. Science. 2011;334:993–996. doi: 10.1126/science.1211053. PubMed DOI PMC

Basak A., Hancarova M., Ulirsch J.C., Balci T.B., Trkova M., Pelisek M., Vlckova M., Muzikova K., Cermak J., Trka J., et al. BCL11A deletions result in fetal hemoglobin persis-tence and neurodevelopmental alterations. J. Clin. Investig. 2015;125:2363–2368. doi: 10.1172/JCI81163. PubMed DOI PMC

Liu P., Keller J.R., Ortiz M., Tessarollo L., Rachel R.A., Nakamura T., Jenkins N.A., Copeland N.G. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 2003;4:525–532. doi: 10.1038/ni925. PubMed DOI

Sankaran V.G., Xu J., Ragoczy T., Ippolito G.C., Walkley C., Maika S.D., Fujiwara Y., Ito M., Groudine M., Bender M.A., et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460:1093–1097. doi: 10.1038/nature08243. PubMed DOI PMC

Tsang J.C.H., Yu Y., Burke S., Buettner F., Wang C., Kolodziejczyk A.A., Teichmann S.A., Lu L., Liu P. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 2015;16:1–16. doi: 10.1186/s13059-015-0739-5. PubMed DOI PMC

Luc S., Huang J., McEldoon J.L., Somuncular E., Li D., Rhodes C., Mamoor S., Hou S., Xu J., Orkin S.H. Bcl11a De-ficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype. Cell Rep. 2016;16:3181–3194. doi: 10.1016/j.celrep.2016.08.064. PubMed DOI PMC

Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N.E., Shalem O., Chen D.D., Schupp P.G., Vinjamur D.S., Garcia S.P., et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192–197. doi: 10.1038/nature15521. PubMed DOI PMC

Vierstra J., Reik A., Chang K.-H., Stehling-Sun S., Zhou Y.-Y., Hinkley S.J., Paschon D.E., Zhang L., Psatha N., Bendana Y.R., et al. Functional footprinting of regulatory DNA. Nat. Methods. 2015;12:927–930. doi: 10.1038/nmeth.3554. PubMed DOI PMC

Bauer D.E., Kamran S.C., Lessard S., Xu J., Fujiwara Y., Lin C., Shao Z., Canver M.C., Smith E.C., Pinello L., et al. An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level. Science. 2013;342:253–257. doi: 10.1126/science.1242088. PubMed DOI PMC

Chang K.-H., Smith S.E., Sullivan T., Chen K., Zhou Q., West J.A., Liu M., Liu Y., Vieira B.F., Sun C., et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells. Mol. Ther. Methods Clin. Dev. 2017;4:137–148. doi: 10.1016/j.omtm.2016.12.009. PubMed DOI PMC

Khosravi M.A., Abbasalipour M., Concordet J.-P., Berg J.V., Zeinali S., Arashkia A., Azadmanesh K., Buch T., Karimipoor M. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur. J. Pharmacol. 2019;854:398–405. doi: 10.1016/j.ejphar.2019.04.042. PubMed DOI

Psatha N., Reik A., Phelps S., Zhou Y., Dalas D., Yannaki E., Levasseur D.N., Urnov F.D., Holmes M.C., Papayannopoulou T. Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major. Mol. Ther. Methods Clin. Dev. 2018;10:313–326. doi: 10.1016/j.omtm.2018.08.003. PubMed DOI PMC

Frangoul H., Altshuler D., Cappellini M.D., Chen Y.S., Domm J., Eustace B.K., Foell J., de la Fuente J., Grupp S., Handgretinger R., et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and beta-Thalassemia. N. Engl. J. Med. 2021;384:252–260. doi: 10.1056/NEJMoa2031054. PubMed DOI

Ma S.-P., Gao X.-X., Zhou G.-Q., Zhang H.-K., Yang J.-M., Wang W.-J., Song X.-M., Chen H.-Y., Lu D.-R. Reactivation of γ-globin expression using a minicircle DNA system to treat β-thalassemia. Gene. 2022;820:146289. doi: 10.1016/j.gene.2022.146289. PubMed DOI

Xu J., Sankaran V.G., Ni M., Menne T.F., Puram R.V., Kim W., Orkin S.H. Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev. 2010;24:783–798. doi: 10.1101/gad.1897310. PubMed DOI PMC

Yi Z., Cohen-Barak O., Hagiwara N., Kingsley P.D., Fuchs D.A., Erickson D.T., Epner E.M., Palis J., Brilliant M.H. Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet. 2006;2:e14. doi: 10.1371/journal.pgen.0020014. PubMed DOI PMC

Shariati L., Rohani F., Heidari Hafshejani N., Kouhpayeh S., Boshtam M., Mirian M., Rahimmanesh I., Hejazi Z., Mo-darres M., Pieper I.L. Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An ap-proach towards gene therapy of β-thalassemia. J. Cell. Biochem. 2018;119:9357–9363. doi: 10.1002/jcb.27253. PubMed DOI

Maeda T., Ito K., Merghoub T., Poliseno L., Hobbs R.M., Wang G., Dong L., Maeda M., Dore L.C., Zelent A., et al. LRF Is an Essential Downstream Target of GATA1 in Erythroid Development and Regulates BIM-Dependent Apoptosis. Dev. Cell. 2009;17:527–540. doi: 10.1016/j.devcel.2009.09.005. PubMed DOI PMC

Lunardi A., Guarnerio J., Wang G., Maeda T., Pandolfi P.P. Role of LRF/Pokemon in lineage fate decisions. Blood. 2013;121:2845–2853. doi: 10.1182/blood-2012-11-292037. PubMed DOI PMC

Masuda T., Wang X., Maeda M., Canver M.C., Sher F., Funnell A.P.W., Fisher C., Suciu M., Martyn G.E., Norton L.J., et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351:285–289. doi: 10.1126/science.aad3312. PubMed DOI PMC

Zhou D., Liu K., Sun C.-W., Pawlik K.M., Townes T.M. KLF1 regulates BCL11A expression and γ-to β-globin gene switching. Nat. Genet. 2010;42:742–744. doi: 10.1038/ng.637. PubMed DOI

Shariati L., Khanahmad H., Salehi M., Hejazi Z., Rahimmanesh I., Tabatabaiefar M.A., Modarressi M.H. Genetic dis-ruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system. J. Gene Med. 2016;18:294–301. doi: 10.1002/jgm.2928. PubMed DOI

Lamsfus-Calle A., Daniel-Moreno A., Antony J.S., Epting T., Heumos L., Baskaran P., Admard J., Casadei N., Latifi N., Siegmund D.M. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34+ HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin. Sci. Rep. 2020;10:10133. doi: 10.1038/s41598-020-66309-x. PubMed DOI PMC

Siatecka M., Bieker J.J. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. 2011;118:2044–2054. doi: 10.1182/blood-2011-03-331371. PubMed DOI PMC

Arnaud L., Saison C., Helias V., Lucien N., Steschenko D., Giarratana M.-C., Prehu C., Foliguet B., Montout L., de Brevern A.G., et al. A Dominant Mutation in the Gene Encoding the Erythroid Transcription Factor KLF1 Causes a Congenital Dyserythropoietic Anemia. Am. J. Hum. Genet. 2010;87:721–727. doi: 10.1016/j.ajhg.2010.10.010. PubMed DOI PMC

Wienert B., Martyn G.E., Funnell A.P.W., Quinlan K.G.R., Crossley M. Wake-up Sleepy Gene: Reactivating Fetal Globin for beta-Hemoglobinopathies. Trends Genet. TIG. 2018;34:927–940. doi: 10.1016/j.tig.2018.09.004. PubMed DOI

Forget B.G. Molecular Basis of Hereditary Persistence of Fetal Hemoglobin. Ann. N. Y. Acad. Sci. 1998;850:38–44. doi: 10.1111/j.1749-6632.1998.tb10460.x. PubMed DOI

Wienert B., Martyn G., Kurita R., Nakamura Y., Quinlan K.G.R., Crossley M. KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. 2017;130:803–807. doi: 10.1182/blood-2017-02-767400. PubMed DOI

Wienert B., Funnell A.P.W., Norton L., Pearson R.C.M., Wilkinson-White L.E., Lester K., Vadolas J., Porteus M.H., Matthews J., Quinlan K., et al. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat. Commun. 2015;6:7085. doi: 10.1038/ncomms8085. PubMed DOI

El-Beshlawy A., Mostafa A., Youssry I., Gabr H., Mansour I.M., El-Tablawy M., Aziz M., Hussein I.R. Correction of aberrant pre-mRNA splicing by antisense oligonucleotides in beta-thalassemia Egyptian patients with IVSI-110 mutation. J. Pediatr. Hematol. Oncol. 2008;30:281–284. doi: 10.1097/MPH.0b013e3181639afe. PubMed DOI

Gabr H., El Ghamrawy M.K., Almaeen A.H., Abdelhafiz A.S., Hassan A.O.S., El Sissy M.H. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Stem Cell Res. Ther. 2020;11:390. doi: 10.1186/s13287-020-01876-4. PubMed DOI PMC

Martyn G., Wienert B., Yang L., Shah M., Norton L.J., Burdach J., Kurita R., Nakamura Y., Pearson R.C.M., Funnell A.P.W., et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat. Genet. 2018;50:498–503. doi: 10.1038/s41588-018-0085-0. PubMed DOI

Giardine B., van Baal S., Kaimakis P., Riemer C., Miller W., Samara M., Kollia P., Anagnou N.P., Chui D.H., Wajcman H., et al. HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum. Mutat. 2007;28:206. doi: 10.1002/humu.9479. PubMed DOI

Voit R.A., Hendel A., Pruett-Miller S.M., Porteus M.H. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res. 2013;42:1365–1378. doi: 10.1093/nar/gkt947. PubMed DOI PMC

Broeders M., Herrero-Hernandez P., Ernst M.P., van der Ploeg A.T., Pijnappel W.P. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience. 2019;23:100789. doi: 10.1016/j.isci.2019.100789. PubMed DOI PMC

Tang X.-D., Gao F., Liu M.-J., Fan Q.-L., Chen D.-K., Ma W.-T. Methods for Enhancing Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Homology-Directed Repair Efficiency. Front. Genet. 2019;10:551. doi: 10.3389/fgene.2019.00551. PubMed DOI PMC

Schiroli G., Conti A., Ferrari S., DELLA Volpe L., Jacob A., Albano L., Beretta S., Calabria A., Vavassori V., Gasparini P., et al. Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell. 2019;24:551–565.e8. doi: 10.1016/j.stem.2019.02.019. PubMed DOI PMC

Wang J., Exline C.M., Declercq J.J., Llewellyn G.N., Hayward S.B., Li P.W.-L., Shivak D.A., Surosky R.T., Gregory P., Holmes M.C., et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 2015;33:1256–1263. doi: 10.1038/nbt.3408. PubMed DOI PMC

Pattabhi S., Lotti S.N., Berger M.P., Singh S., Lux C., Jacoby K., Lee C., Negre O., Scharenberg A.M., Rawlings D.J. In Vivo Outcome of Homology-Directed Repair at the HBB Gene in HSC Using Alternative Donor Template Delivery Methods. Mol. Ther. Nucleic Acids. 2019;17:277–288. doi: 10.1016/j.omtn.2019.05.025. PubMed DOI PMC

Romero Z., Lomova A., Said S., Miggelbrink A., Kuo C.Y., Campo-Fernandez B., Hoban M.D., Masiuk K.E., Clark D.N., Long J., et al. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates. Mol. Ther. 2019;27:1389–1406. doi: 10.1016/j.ymthe.2019.05.014. PubMed DOI PMC

Martin R.M., Ikeda K., Cromer M.K., Uchida N., Nishimura T., Romano R., Tong A.J., Lemgart V.T., Camarena J., Pavel-Dinu M., et al. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination. Cell Stem Cell. 2019;24:821–828.e5. doi: 10.1016/j.stem.2019.04.001. PubMed DOI

Park S., Gianotti-Sommer A., Molina-Estevez F.J., Vanuytsel K., Skvir N., Leung A., Rozelle S.S., Shaikho E., Weir I., Jiang Z., et al. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells. Stem Cell Rep. 2017;8:1076–1085. doi: 10.1016/j.stemcr.2016.12.017. PubMed DOI PMC

Hoban M.D., Cost G.J., Mendel M.C., Romero Z., Kaufman M.L., Joglekar A.V., Ho M., Lumaquin D., Gray D., Lill G.R., et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125:2597–2604. doi: 10.1182/blood-2014-12-615948. PubMed DOI PMC

DeWitt M.A., Magis W., Bray N.L., Wang T., Berman J.R., Urbinati F., Heo S.-J., Mitros T., Muñoz D.P., Boffelli D., et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 2016;8:360ra134. doi: 10.1126/scitranslmed.aaf9336. PubMed DOI PMC

Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M., McNeill M.S., Yan S., Camarena J., et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 2018;24:1216–1224. doi: 10.1038/s41591-018-0137-0. PubMed DOI PMC

Park S.H., Lee C., Dever D.P., Davis T.H., Camarena J., Srifa W., Zhang Y., Paikari A., Chang A.K., Porteus M.H., et al. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019;47:7955–7972. doi: 10.1093/nar/gkz475. PubMed DOI PMC

Magis W., DeWitt M.A., Wyman S.K., Vu J.T., Heo S.-J., Shao S.J., Hennig F., Romero Z.G., Campo-Fernandez B., Said S., et al. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience. 2022;25 doi: 10.1016/j.isci.2022.104374. PubMed DOI PMC

Xie F., Ye L., Chang J.C., Beyer A.I., Wang J., Muench M.O., Kan Y.W. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–1533. doi: 10.1101/gr.173427.114. PubMed DOI PMC

Song B., Fan Y., He W., Zhu D., Niu X., Wang D., Ou Z., Luo M., Sun X. Improved hematopoietic differentiation effi-ciency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24:1053–1065. doi: 10.1089/scd.2014.0347. PubMed DOI

Xu P., Tong Y., Liu X.-Z., Wang T.-T., Cheng L., Wang B.-Y., Lv X., Huang Y., Liu D.-P. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs. Sci. Rep. 2015;5:srep12065. doi: 10.1038/srep12065. PubMed DOI PMC

Niu X., He W., Song B., Ou Z., Fan D., Chen Y., Fan Y., Sun X. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells. J. Biol. Chem. 2016;291:16576–16585. doi: 10.1074/jbc.M116.719237. PubMed DOI PMC

Liu Y., Yang Y., Kang X., Lin B., Yu Q., Song B., Gao G., Chen Y., Sun X., Li X., et al. One-Step Biallelic and Scarless Correction of a beta-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection. Mol. Ther. Nucleic Acids. 2017;6:57–67. doi: 10.1016/j.omtn.2016.11.010. PubMed DOI PMC

Wattanapanitch M., Damkham N., Potirat P., Trakarnsanga K., Janan M., Kheolamai P., Klincumhom N., Is-saragrisil S. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 sys-tem. Stem Cell Res. Ther. 2018;9:46. doi: 10.1186/s13287-018-0779-3. PubMed DOI PMC

Cai L., Bai H., Mahairaki V., Gao Y., He C., Wen Y., Jin Y.-C., Wang Y., Pan R.L., Qasba A., et al. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Stem Cells Transl. Med. 2017;7:87–97. doi: 10.1002/sctm.17-0066. PubMed DOI PMC

Xu S., Luk K., Yao Q., Shen A.H., Zeng J., Wu Y., Luo H.-Y., Brendel C., Pinello L., Chui D.H.K., et al. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood. 2019;133:2255–2262. doi: 10.1182/blood-2019-01-895094. PubMed DOI PMC

Patsali P., Turchiano G., Papasavva P., Romito M., Loucari C.C., Stephanou C., Christou S., Sitarou M., Mussolino C., Cornu T.I., et al. Correction of IVS I-110(G>A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica. 2019;104:e497–e501. doi: 10.3324/haematol.2018.215178. PubMed DOI PMC

Ma N., Liao B., Zhang H., Wang L., Shan Y., Xue Y., Huang K., Chen S., Zhou X., Chen Y., et al. Tran-scription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced plu-ripotent stem cells. J. Biol. Chem. 2013;288:34671–34679. doi: 10.1074/jbc.M113.496174. PubMed DOI PMC

Cosenza L.C., Gasparello J., Romanini N., Zurlo M., Zuccato C., Gambari R., Finotti A. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Mol. Ther. Methods Clin. Dev. 2021;21:507–523. doi: 10.1016/j.omtm.2021.03.025. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...