Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
199306
Isfahan University of Medical Sciences
PubMed
35741383
PubMed Central
PMC9219845
DOI
10.3390/biology11060862
PII: biology11060862
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR, TALEN, ZFN, beta-thalassemia, gene therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Cancer Prevention Research Isfahan University of Medical Sciences Isfahan 73461 81746 Iran
Erythron Genetics and Pathobiology Laboratory Department of Immunology Isfahan 76351 81647 Iran
Zobrazit více v PubMed
Mansilla-Soto J., Riviere I., Boulad F., Sadelain M. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Hum. Gene Ther. 2016;27:295–304. doi: 10.1089/hum.2016.037. PubMed DOI PMC
de Dreuzy E., Bhukhai K., Leboulch P., Payen E. Current and future alternative therapies for beta-thalassemia major. Biomed. J. 2016;39:24–38. doi: 10.1016/j.bj.2015.10.001. PubMed DOI PMC
Rachmilewitz E.A., Giardina P.J. How I treat thalassemia. Blood. 2011;118:3479–3488. doi: 10.1182/blood-2010-08-300335. PubMed DOI
Origa R. Beta-Thalassemia. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. GeneReviews((R)) University of Washington; Seattle, WA, USA: 1993–2022. PubMed
Taishikhina I., Lokhmatova M., Shelikhova L. Hematopoietic stem cell transplantation in patients with transfu-sion-dependent β-thalassemia. Review article. Pediatric Hematol. Oncol. Immunopathol. 2020;19:178–183. doi: 10.24287/1726-1708-2020-19-2-178-183. DOI
Khandros E., Kwiatkowski J.L. Beta thalassemia: monitoring and new treatment approaches. Hematol. Oncol. Clin. 2019;33:339–353. doi: 10.1016/j.hoc.2019.01.003. PubMed DOI
Thein S.L. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis. 2018;70:54–65. doi: 10.1016/j.bcmd.2017.06.001. PubMed DOI PMC
Shah F.T., Sayani F., Trompeter S., Drasar E., Piga A. Challenges of blood transfusions in β-thalassemia. Blood Rev. 2019;37:100588. doi: 10.1016/j.blre.2019.100588. PubMed DOI
Sadeghi M.M., Shariati L., Hejazi Z., Shahbazi M., Tabatabaiefar M.A., Khanahmad H. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia. J. Cell. Biochem. 2017;119:2512–2519. doi: 10.1002/jcb.26412. PubMed DOI
Ashrafizadeh M., Delfi M., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Farahani M.V., Sharifzadeh S.O., Hamzehlou S., et al. Biomedical application of chi-tosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr. Polym. 2021;260:117809. doi: 10.1016/j.carbpol.2021.117809. PubMed DOI
Kumar K.S., Girish Y.R., Ashrafizadeh M., Mirzaei S., Rakesh K.P., Gholami M.H., Zabolian A., Hushmandi K., Orive G., Kadumudi F.B., et al. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coord. Chem. Rev. 2021;447:214135. doi: 10.1016/j.ccr.2021.214135. DOI
Mirzaei S., Gholami M.H., Hashemi F., Zabolian A., Farahani M.V., Hushmandi K., Zarrabi A., Goldman A., Ashrafizadeh M., Orive G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov. Today. 2022;27:436–455. doi: 10.1016/j.drudis.2021.09.020. PubMed DOI
Keservani R., Sharma A.K. Nanoconjugate Nanocarriers for Drug Delivery. 1st ed. Apple Academic Press; Oakvil, ON, Canada: 2021.
Liu D., Zhang H., Fontana F., Hirvonen J.T., Santos H.A. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Adv. Drug Deliv. Rev. 2018;128:54–83. doi: 10.1016/j.addr.2017.08.003. PubMed DOI
Zhang N., Wei M.-Y., Ma Q. Nanomedicines: A Potential Treatment for Blood Disorder Diseases. Front. Bioeng. Biotechnol. 2019;7:369. doi: 10.3389/fbioe.2019.00369. PubMed DOI PMC
Uchida S., Perche F., Pichon C., Cabral H. Nanomedicine-Based Approaches for mRNA Delivery. Mol. Pharm. 2020;17 doi: 10.1021/acs.molpharmaceut.0c00618. PubMed DOI
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., del Pilar Rodriguez-Torres M., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
Kunz J.B., Kulozik A.E. Gene Therapy of the Hemoglobinopathies. HemaSphere. 2020;4:e479. doi: 10.1097/HS9.0000000000000479. PubMed DOI PMC
Thein S.L. The molecular basis of β-thalassemia. Cold Spring Harb. Perspect. Med. 2013;3:a011700. doi: 10.1101/cshperspect.a011700. PubMed DOI PMC
Tari K., Valizadeh Ardalan P., Abbaszadehdibavar M., Atashi A., Jalili A., Gheidishahran M. Thalassemia an update: molecular basis, clinical features and treatment. Int. J. Biomed. Public Health. 2018;1:48–58. doi: 10.22631/ijbmph.2018.56102. DOI
Mettananda S., Higgs D.R. Molecular Basis and Genetic Modifiers of Thalassemia. Hematol. Clin. N. Am. 2018;32:177–191. doi: 10.1016/j.hoc.2017.11.003. PubMed DOI
McGann P.T., Nero A.C., Ware R.E. Gene and Cell Therapies for Beta-Globinopathies. Springer; New York, NY, USA: 2017. Clinical features of β-thalassemia and sickle cell disease; pp. 1–26. PubMed
De Sanctis V., Kattamis C., Canatan D., Soliman A.T., Elsedfy H., Karimi M., Daar S., Wali Y., Yassin M., Soliman N. β-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr. J. Hematol. Infect. Dis. 2017;9:e2017018. doi: 10.4084/mjhid.2017.018. PubMed DOI PMC
Farashi S., Harteveld C.L. Molecular basis of α-thalassemia. Blood Cells Mol. Dis. 2018;70:43–53. doi: 10.1016/j.bcmd.2017.09.004. PubMed DOI
Gupta S.K., Shukla P. Gene editing for cell engineering: trends and applications. Crit. Rev. Biotechnol. 2016;37:672–684. doi: 10.1080/07388551.2016.1214557. PubMed DOI
Kazemi B., Hosseini N., Khanahmad H., Esfahani B.N., Bandehpour M., Shariati L., Zahedi N. Targeting of cholera toxin A (ctxA) gene by zinc finger nuclease: pitfalls of using gene editing tools in prokaryotes. Res. Pharm. Sci. 2020;15:182–190. doi: 10.4103/1735-5362.283818. PubMed DOI PMC
Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–782. doi: 10.1534/genetics.111.131433. PubMed DOI PMC
Cai M., Yang Y. Targeted genome editing tools for disease modeling and gene therapy. Curr. Gene Ther. 2014;14:2–9. doi: 10.2174/156652321402140318165450. PubMed DOI
Ousterout D.G., Gersbach C.A. The Development of TALE Nucleases for Biotechnology. TALENs. 2016;1338:27–42. doi: 10.1007/978-1-4939-2932-0_3. PubMed DOI PMC
Sun N., Zhao H. Transcription activator-like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 2013;110:1811–1821. doi: 10.1002/bit.24890. PubMed DOI
Mohammadinejad R., Sassan H., Pardakhty A., Hashemabadi M., Ashrafizadeh M., Dehshahri A., Mandegary A. ZEB1 and ZEB2 gene editing mediated by CRISPR/Cas9 in A549 cell line. Bratisl. Med. J. 2020;121:31–36. doi: 10.4149/BLL_2020_005. PubMed DOI
Mohammadinejad R., Dehshahri A., Sassan H., Behnam B., Ashrafizadeh M., Gholami A.S., Pardakhty A., Mandegary A. Preparation of carbon dot as a potential CRISPR/Cas9 plasmid delivery system for lung cancer cells. Minerva Biotecnol. 2020;32:106–113. doi: 10.23736/S1120-4826.20.02618-X. DOI
Barrangou R., Horvath P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2017;2:17092. doi: 10.1038/nmicrobiol.2017.92. PubMed DOI
Knott G.J., Doudna J.A. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–869. doi: 10.1126/science.aat5011. PubMed DOI PMC
Gupta R.M., Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Investig. 2014;124:4154–4161. doi: 10.1172/JCI72992. PubMed DOI PMC
Ali G., Tariq M.A., Shahid K., Ahmad F., Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther. 2020;28:6–15. doi: 10.1038/s41434-020-0153-9. PubMed DOI
Sripichai O., Fucharoen S. Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic ap-proaches. Expert Rev. Hematol. 2016;9:1129–1137. doi: 10.1080/17474086.2016.1255142. PubMed DOI
Musallam K.M., Sankaran V.G., Cappellini M.D., Duca L., Nathan D.G., Taher A.T. Fetal hemoglobin levels and morbidity in untransfused patients with β-thalassemia intermedia. Blood. 2012;119:364–367. doi: 10.1182/blood-2011-09-382408. PubMed DOI
Steinberg M.H. Targeting fetal hemoglobin expression to treat β hemoglobinopathies. Expert Opin. Ther. Targets. 2022;26:347–359. doi: 10.1080/14728222.2022.2066519. PubMed DOI
Demirci S., Leonard A., Tisdale J.F. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies. Hum. Mol. Genet. 2020;29:R100–R106. doi: 10.1093/hmg/ddaa088. PubMed DOI PMC
Cui S., Engle J.D. Reactivation of fetal hemoglobin for treating β-thalassemia and sickle cell disease. In: Malik P.T.J., editor. Gene and Cell Therapies for Beta-Globinopathies. Volume 1013. Springer; New York, NY, USA: 2017. pp. 177–202. PubMed
Rivers A., Molokie R., Lavelle D. A new target for fetal hemoglobin reactivation. Haematologica. 2019;104:2325–2327. doi: 10.3324/haematol.2019.230904. PubMed DOI PMC
Topfer S.K., Feng R., Huang P., Ly L.C., Martyn G.E., Blobel G.A., Weiss M.J., Quinlan K.G.R., Crossley M. Dis-rupting the adult globin promoter alleviates promoter competition and reactivates fetal globin gene expression. Blood J. Am. Soc. Hematol. 2022;139:2107–2118. PubMed PMC
Ravi N.S., Wienert B., Wyman S.K., Bell H.W., George A., Mahalingam G., Vu J.T., Prasad K., Bandlamudi B.P., Devaraju N. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal he-moglobin. Elife. 2022;11:e65421. doi: 10.7554/eLife.65421. PubMed DOI PMC
Weber L., Frati G., Felix T., Hardouin G., Casini A., Wollenschlaeger C., Meneghini V., Masson C., De Cian A., Chalumeau A., et al. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci. Adv. 2020;6:eaay9392. doi: 10.1126/sciadv.aay9392. PubMed DOI PMC
Cavazzana M., Mavilio F. Gene Therapy for Hemoglobinopathies. Hum. Gene Ther. 2018;29:1106–1113. doi: 10.1089/hum.2018.122. PubMed DOI PMC
Uda M., Galanello R., Sanna S., Lettre G., Sankaran V.G., Chen W., Usala G., Busonero F., Maschio A., Albai G. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phe-notype of β-thalassemia. Proc. Natl. Acad. Sci. USA. 2008;105:1620–1625. doi: 10.1073/pnas.0711566105. PubMed DOI PMC
Xu J., Peng C., Sankaran V.G., Shao Z., Esrick E.B., Chong B.G., Ippolito G.C., Fujiwara Y., Ebert B.L., Tucker P.W., et al. Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing. Science. 2011;334:993–996. doi: 10.1126/science.1211053. PubMed DOI PMC
Basak A., Hancarova M., Ulirsch J.C., Balci T.B., Trkova M., Pelisek M., Vlckova M., Muzikova K., Cermak J., Trka J., et al. BCL11A deletions result in fetal hemoglobin persis-tence and neurodevelopmental alterations. J. Clin. Investig. 2015;125:2363–2368. doi: 10.1172/JCI81163. PubMed DOI PMC
Liu P., Keller J.R., Ortiz M., Tessarollo L., Rachel R.A., Nakamura T., Jenkins N.A., Copeland N.G. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 2003;4:525–532. doi: 10.1038/ni925. PubMed DOI
Sankaran V.G., Xu J., Ragoczy T., Ippolito G.C., Walkley C., Maika S.D., Fujiwara Y., Ito M., Groudine M., Bender M.A., et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460:1093–1097. doi: 10.1038/nature08243. PubMed DOI PMC
Tsang J.C.H., Yu Y., Burke S., Buettner F., Wang C., Kolodziejczyk A.A., Teichmann S.A., Lu L., Liu P. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 2015;16:1–16. doi: 10.1186/s13059-015-0739-5. PubMed DOI PMC
Luc S., Huang J., McEldoon J.L., Somuncular E., Li D., Rhodes C., Mamoor S., Hou S., Xu J., Orkin S.H. Bcl11a De-ficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype. Cell Rep. 2016;16:3181–3194. doi: 10.1016/j.celrep.2016.08.064. PubMed DOI PMC
Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N.E., Shalem O., Chen D.D., Schupp P.G., Vinjamur D.S., Garcia S.P., et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192–197. doi: 10.1038/nature15521. PubMed DOI PMC
Vierstra J., Reik A., Chang K.-H., Stehling-Sun S., Zhou Y.-Y., Hinkley S.J., Paschon D.E., Zhang L., Psatha N., Bendana Y.R., et al. Functional footprinting of regulatory DNA. Nat. Methods. 2015;12:927–930. doi: 10.1038/nmeth.3554. PubMed DOI PMC
Bauer D.E., Kamran S.C., Lessard S., Xu J., Fujiwara Y., Lin C., Shao Z., Canver M.C., Smith E.C., Pinello L., et al. An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level. Science. 2013;342:253–257. doi: 10.1126/science.1242088. PubMed DOI PMC
Chang K.-H., Smith S.E., Sullivan T., Chen K., Zhou Q., West J.A., Liu M., Liu Y., Vieira B.F., Sun C., et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells. Mol. Ther. Methods Clin. Dev. 2017;4:137–148. doi: 10.1016/j.omtm.2016.12.009. PubMed DOI PMC
Khosravi M.A., Abbasalipour M., Concordet J.-P., Berg J.V., Zeinali S., Arashkia A., Azadmanesh K., Buch T., Karimipoor M. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur. J. Pharmacol. 2019;854:398–405. doi: 10.1016/j.ejphar.2019.04.042. PubMed DOI
Psatha N., Reik A., Phelps S., Zhou Y., Dalas D., Yannaki E., Levasseur D.N., Urnov F.D., Holmes M.C., Papayannopoulou T. Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major. Mol. Ther. Methods Clin. Dev. 2018;10:313–326. doi: 10.1016/j.omtm.2018.08.003. PubMed DOI PMC
Frangoul H., Altshuler D., Cappellini M.D., Chen Y.S., Domm J., Eustace B.K., Foell J., de la Fuente J., Grupp S., Handgretinger R., et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and beta-Thalassemia. N. Engl. J. Med. 2021;384:252–260. doi: 10.1056/NEJMoa2031054. PubMed DOI
Ma S.-P., Gao X.-X., Zhou G.-Q., Zhang H.-K., Yang J.-M., Wang W.-J., Song X.-M., Chen H.-Y., Lu D.-R. Reactivation of γ-globin expression using a minicircle DNA system to treat β-thalassemia. Gene. 2022;820:146289. doi: 10.1016/j.gene.2022.146289. PubMed DOI
Xu J., Sankaran V.G., Ni M., Menne T.F., Puram R.V., Kim W., Orkin S.H. Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev. 2010;24:783–798. doi: 10.1101/gad.1897310. PubMed DOI PMC
Yi Z., Cohen-Barak O., Hagiwara N., Kingsley P.D., Fuchs D.A., Erickson D.T., Epner E.M., Palis J., Brilliant M.H. Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet. 2006;2:e14. doi: 10.1371/journal.pgen.0020014. PubMed DOI PMC
Shariati L., Rohani F., Heidari Hafshejani N., Kouhpayeh S., Boshtam M., Mirian M., Rahimmanesh I., Hejazi Z., Mo-darres M., Pieper I.L. Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An ap-proach towards gene therapy of β-thalassemia. J. Cell. Biochem. 2018;119:9357–9363. doi: 10.1002/jcb.27253. PubMed DOI
Maeda T., Ito K., Merghoub T., Poliseno L., Hobbs R.M., Wang G., Dong L., Maeda M., Dore L.C., Zelent A., et al. LRF Is an Essential Downstream Target of GATA1 in Erythroid Development and Regulates BIM-Dependent Apoptosis. Dev. Cell. 2009;17:527–540. doi: 10.1016/j.devcel.2009.09.005. PubMed DOI PMC
Lunardi A., Guarnerio J., Wang G., Maeda T., Pandolfi P.P. Role of LRF/Pokemon in lineage fate decisions. Blood. 2013;121:2845–2853. doi: 10.1182/blood-2012-11-292037. PubMed DOI PMC
Masuda T., Wang X., Maeda M., Canver M.C., Sher F., Funnell A.P.W., Fisher C., Suciu M., Martyn G.E., Norton L.J., et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016;351:285–289. doi: 10.1126/science.aad3312. PubMed DOI PMC
Zhou D., Liu K., Sun C.-W., Pawlik K.M., Townes T.M. KLF1 regulates BCL11A expression and γ-to β-globin gene switching. Nat. Genet. 2010;42:742–744. doi: 10.1038/ng.637. PubMed DOI
Shariati L., Khanahmad H., Salehi M., Hejazi Z., Rahimmanesh I., Tabatabaiefar M.A., Modarressi M.H. Genetic dis-ruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system. J. Gene Med. 2016;18:294–301. doi: 10.1002/jgm.2928. PubMed DOI
Lamsfus-Calle A., Daniel-Moreno A., Antony J.S., Epting T., Heumos L., Baskaran P., Admard J., Casadei N., Latifi N., Siegmund D.M. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34+ HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin. Sci. Rep. 2020;10:10133. doi: 10.1038/s41598-020-66309-x. PubMed DOI PMC
Siatecka M., Bieker J.J. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. 2011;118:2044–2054. doi: 10.1182/blood-2011-03-331371. PubMed DOI PMC
Arnaud L., Saison C., Helias V., Lucien N., Steschenko D., Giarratana M.-C., Prehu C., Foliguet B., Montout L., de Brevern A.G., et al. A Dominant Mutation in the Gene Encoding the Erythroid Transcription Factor KLF1 Causes a Congenital Dyserythropoietic Anemia. Am. J. Hum. Genet. 2010;87:721–727. doi: 10.1016/j.ajhg.2010.10.010. PubMed DOI PMC
Wienert B., Martyn G.E., Funnell A.P.W., Quinlan K.G.R., Crossley M. Wake-up Sleepy Gene: Reactivating Fetal Globin for beta-Hemoglobinopathies. Trends Genet. TIG. 2018;34:927–940. doi: 10.1016/j.tig.2018.09.004. PubMed DOI
Forget B.G. Molecular Basis of Hereditary Persistence of Fetal Hemoglobin. Ann. N. Y. Acad. Sci. 1998;850:38–44. doi: 10.1111/j.1749-6632.1998.tb10460.x. PubMed DOI
Wienert B., Martyn G., Kurita R., Nakamura Y., Quinlan K.G.R., Crossley M. KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. 2017;130:803–807. doi: 10.1182/blood-2017-02-767400. PubMed DOI
Wienert B., Funnell A.P.W., Norton L., Pearson R.C.M., Wilkinson-White L.E., Lester K., Vadolas J., Porteus M.H., Matthews J., Quinlan K., et al. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat. Commun. 2015;6:7085. doi: 10.1038/ncomms8085. PubMed DOI
El-Beshlawy A., Mostafa A., Youssry I., Gabr H., Mansour I.M., El-Tablawy M., Aziz M., Hussein I.R. Correction of aberrant pre-mRNA splicing by antisense oligonucleotides in beta-thalassemia Egyptian patients with IVSI-110 mutation. J. Pediatr. Hematol. Oncol. 2008;30:281–284. doi: 10.1097/MPH.0b013e3181639afe. PubMed DOI
Gabr H., El Ghamrawy M.K., Almaeen A.H., Abdelhafiz A.S., Hassan A.O.S., El Sissy M.H. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation. Stem Cell Res. Ther. 2020;11:390. doi: 10.1186/s13287-020-01876-4. PubMed DOI PMC
Martyn G., Wienert B., Yang L., Shah M., Norton L.J., Burdach J., Kurita R., Nakamura Y., Pearson R.C.M., Funnell A.P.W., et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat. Genet. 2018;50:498–503. doi: 10.1038/s41588-018-0085-0. PubMed DOI
Giardine B., van Baal S., Kaimakis P., Riemer C., Miller W., Samara M., Kollia P., Anagnou N.P., Chui D.H., Wajcman H., et al. HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum. Mutat. 2007;28:206. doi: 10.1002/humu.9479. PubMed DOI
Voit R.A., Hendel A., Pruett-Miller S.M., Porteus M.H. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res. 2013;42:1365–1378. doi: 10.1093/nar/gkt947. PubMed DOI PMC
Broeders M., Herrero-Hernandez P., Ernst M.P., van der Ploeg A.T., Pijnappel W.P. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience. 2019;23:100789. doi: 10.1016/j.isci.2019.100789. PubMed DOI PMC
Tang X.-D., Gao F., Liu M.-J., Fan Q.-L., Chen D.-K., Ma W.-T. Methods for Enhancing Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Homology-Directed Repair Efficiency. Front. Genet. 2019;10:551. doi: 10.3389/fgene.2019.00551. PubMed DOI PMC
Schiroli G., Conti A., Ferrari S., DELLA Volpe L., Jacob A., Albano L., Beretta S., Calabria A., Vavassori V., Gasparini P., et al. Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell. 2019;24:551–565.e8. doi: 10.1016/j.stem.2019.02.019. PubMed DOI PMC
Wang J., Exline C.M., Declercq J.J., Llewellyn G.N., Hayward S.B., Li P.W.-L., Shivak D.A., Surosky R.T., Gregory P., Holmes M.C., et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 2015;33:1256–1263. doi: 10.1038/nbt.3408. PubMed DOI PMC
Pattabhi S., Lotti S.N., Berger M.P., Singh S., Lux C., Jacoby K., Lee C., Negre O., Scharenberg A.M., Rawlings D.J. In Vivo Outcome of Homology-Directed Repair at the HBB Gene in HSC Using Alternative Donor Template Delivery Methods. Mol. Ther. Nucleic Acids. 2019;17:277–288. doi: 10.1016/j.omtn.2019.05.025. PubMed DOI PMC
Romero Z., Lomova A., Said S., Miggelbrink A., Kuo C.Y., Campo-Fernandez B., Hoban M.D., Masiuk K.E., Clark D.N., Long J., et al. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates. Mol. Ther. 2019;27:1389–1406. doi: 10.1016/j.ymthe.2019.05.014. PubMed DOI PMC
Martin R.M., Ikeda K., Cromer M.K., Uchida N., Nishimura T., Romano R., Tong A.J., Lemgart V.T., Camarena J., Pavel-Dinu M., et al. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination. Cell Stem Cell. 2019;24:821–828.e5. doi: 10.1016/j.stem.2019.04.001. PubMed DOI
Park S., Gianotti-Sommer A., Molina-Estevez F.J., Vanuytsel K., Skvir N., Leung A., Rozelle S.S., Shaikho E., Weir I., Jiang Z., et al. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells. Stem Cell Rep. 2017;8:1076–1085. doi: 10.1016/j.stemcr.2016.12.017. PubMed DOI PMC
Hoban M.D., Cost G.J., Mendel M.C., Romero Z., Kaufman M.L., Joglekar A.V., Ho M., Lumaquin D., Gray D., Lill G.R., et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125:2597–2604. doi: 10.1182/blood-2014-12-615948. PubMed DOI PMC
DeWitt M.A., Magis W., Bray N.L., Wang T., Berman J.R., Urbinati F., Heo S.-J., Mitros T., Muñoz D.P., Boffelli D., et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 2016;8:360ra134. doi: 10.1126/scitranslmed.aaf9336. PubMed DOI PMC
Vakulskas C.A., Dever D.P., Rettig G.R., Turk R., Jacobi A.M., Collingwood M.A., Bode N.M., McNeill M.S., Yan S., Camarena J., et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 2018;24:1216–1224. doi: 10.1038/s41591-018-0137-0. PubMed DOI PMC
Park S.H., Lee C., Dever D.P., Davis T.H., Camarena J., Srifa W., Zhang Y., Paikari A., Chang A.K., Porteus M.H., et al. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. 2019;47:7955–7972. doi: 10.1093/nar/gkz475. PubMed DOI PMC
Magis W., DeWitt M.A., Wyman S.K., Vu J.T., Heo S.-J., Shao S.J., Hennig F., Romero Z.G., Campo-Fernandez B., Said S., et al. High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation. iScience. 2022;25 doi: 10.1016/j.isci.2022.104374. PubMed DOI PMC
Xie F., Ye L., Chang J.C., Beyer A.I., Wang J., Muench M.O., Kan Y.W. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–1533. doi: 10.1101/gr.173427.114. PubMed DOI PMC
Song B., Fan Y., He W., Zhu D., Niu X., Wang D., Ou Z., Luo M., Sun X. Improved hematopoietic differentiation effi-ciency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24:1053–1065. doi: 10.1089/scd.2014.0347. PubMed DOI
Xu P., Tong Y., Liu X.-Z., Wang T.-T., Cheng L., Wang B.-Y., Lv X., Huang Y., Liu D.-P. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs. Sci. Rep. 2015;5:srep12065. doi: 10.1038/srep12065. PubMed DOI PMC
Niu X., He W., Song B., Ou Z., Fan D., Chen Y., Fan Y., Sun X. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells. J. Biol. Chem. 2016;291:16576–16585. doi: 10.1074/jbc.M116.719237. PubMed DOI PMC
Liu Y., Yang Y., Kang X., Lin B., Yu Q., Song B., Gao G., Chen Y., Sun X., Li X., et al. One-Step Biallelic and Scarless Correction of a beta-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection. Mol. Ther. Nucleic Acids. 2017;6:57–67. doi: 10.1016/j.omtn.2016.11.010. PubMed DOI PMC
Wattanapanitch M., Damkham N., Potirat P., Trakarnsanga K., Janan M., Kheolamai P., Klincumhom N., Is-saragrisil S. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 sys-tem. Stem Cell Res. Ther. 2018;9:46. doi: 10.1186/s13287-018-0779-3. PubMed DOI PMC
Cai L., Bai H., Mahairaki V., Gao Y., He C., Wen Y., Jin Y.-C., Wang Y., Pan R.L., Qasba A., et al. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Stem Cells Transl. Med. 2017;7:87–97. doi: 10.1002/sctm.17-0066. PubMed DOI PMC
Xu S., Luk K., Yao Q., Shen A.H., Zeng J., Wu Y., Luo H.-Y., Brendel C., Pinello L., Chui D.H.K., et al. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood. 2019;133:2255–2262. doi: 10.1182/blood-2019-01-895094. PubMed DOI PMC
Patsali P., Turchiano G., Papasavva P., Romito M., Loucari C.C., Stephanou C., Christou S., Sitarou M., Mussolino C., Cornu T.I., et al. Correction of IVS I-110(G>A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica. 2019;104:e497–e501. doi: 10.3324/haematol.2018.215178. PubMed DOI PMC
Ma N., Liao B., Zhang H., Wang L., Shan Y., Xue Y., Huang K., Chen S., Zhou X., Chen Y., et al. Tran-scription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced plu-ripotent stem cells. J. Biol. Chem. 2013;288:34671–34679. doi: 10.1074/jbc.M113.496174. PubMed DOI PMC
Cosenza L.C., Gasparello J., Romanini N., Zurlo M., Zuccato C., Gambari R., Finotti A. Efficient CRISPR-Cas9-based genome editing of β-globin gene on erythroid cells from homozygous β039-thalassemia patients. Mol. Ther. Methods Clin. Dev. 2021;21:507–523. doi: 10.1016/j.omtm.2021.03.025. PubMed DOI PMC