Singlet Oxygen In Vivo: It Is All about Intensity

. 2022 May 28 ; 12 (6) : . [epub] 20220528

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35743675

The presented work addresses the influence of illumination intensity on the amount and locations of singlet oxygen generation in tumor tissue. We used time-resolved optical detection at the typical emission wavelength around 1270 nm and at 1200 nm where there is no singlet oxygen phosphorescence to determine the phosphorescence kinetics. The discussed data comprise in vivo measurements in tumor-laden HET-CAM and mice. The results show that illumination that is too intense is a major issue, affecting many PDT treatments and all singlet oxygen measurements in vivo so far. In such cases, photosensitization and oxygen consumption exceed oxygen supply, limiting singlet oxygen generation to the blood vessels and walls, while photosensitizers in the surrounding tissue will likely not participate. Being a limitation for the treatment, on one hand, on the other, this finding offers a new method for tumor diagnosis when using photosensitizers exploiting the EPR effect. In contrast to high-intensity PDT, some papers reported successful treatment with nanoparticular drugs using much lower illumination intensity. The question of whether, with such illumination, singlet oxygen is indeed generated in areas apart from vessels and walls, is addressed by numerical analysis. In addition, we discuss how to perform measurements at such low intensities.

Zobrazit více v PubMed

Röder B. Photodynamic Therapy. In: Meyers R.A., editor. Encyclopedia Analytical Chemistry. John Wiley & Sons Ltd.; Chichester, UK: 2000. pp. 302–320.

Van Straten D., Mashayekhi V., de Bruijm H.S., Oliveira S., Robinson D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers. 2017;9:19. doi: 10.3390/cancers9020019. PubMed DOI PMC

Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049. PubMed DOI

Moan J., Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 1991;53:549–553. doi: 10.1111/j.1751-1097.1991.tb03669.x. PubMed DOI

Dysart J.S., Patterson M.S. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys. Med. Biol. 2005;50:2597–2616. doi: 10.1088/0031-9155/50/11/011. PubMed DOI

Schlothauer J.C., Hackbarth S., Jäger L., Drobniewski K., Patel H., Gorun S.M., Röder B. Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: Comparison of ex vivo application of two photosensitizer formulations. J. Biomed. Opt. 2012;17:115005. doi: 10.1117/1.JBO.17.11.115005. PubMed DOI

Hackbarth S., Schlothauer J., Preuß A., Ludwig C., Röder B. Time resolved sub-cellular singlet oxygen detection-ensemble measurements versus single cell experiments. Laser Phys. Lett. 2012;9:474–480. doi: 10.7452/lapl.201110146. DOI

Hackbarth S., Islam W., Fang J., Subr V., Röder B., Etrych T., Maeda H. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem. Photobiol. Sci. 2019;18:1304–1314. doi: 10.1039/C8PP00570B. PubMed DOI

Liu B., Farrell T.J., Patterson M.S. A dynamic model for ALA-PDT of skin: Simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen. Phys. Med. Biol. 2010;55:5913–5932. doi: 10.1088/0031-9155/55/19/019. PubMed DOI

Zhu T.C., Kim M.M., Liang X., Finlay J.C., Busch T.M. In vivo singlet oxygen threshold doses for PDT. Photonics Lasers Med. 2015;4:59–71. doi: 10.1515/plm-2014-0037. PubMed DOI PMC

Dutta A., Popel A.S. A Theoretical Analysis of Intracellular Oxygen Diffusion. J. Theor. Biol. 1995;176:433–445. doi: 10.1006/jtbi.1995.0211. PubMed DOI

Sasaki N., Horinouchi H., Ushiyama A., Minamitani H. A New Method for Measuring the Oxygen Diffusion Constant and Oxygen Consumption Rate of Arteriolar Walls. Keio J. Med. 2012;61:57–65. doi: 10.2302/kjm.61.57. PubMed DOI

Sterenborg H.J.C.M., de Wolf J.W., Koning M., Kruijt B., van den Heuvel A., Robinson D.J. Phosphorescence-Fluorescence ratio imaging for monitoring the oxygen status during photodynamic therapy. Opt. Express. 2004;12:1873–1878. doi: 10.1364/OPEX.12.001873. PubMed DOI

Pfitzner M., Schlothauer J.C., Bastien E., Hackbarth S., Bezdetnaya L., Lassalle H.-P., Röder B. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice. Photodiagn. Photodyn. Ther. 2016;14:204–210. doi: 10.1016/j.pdpdt.2016.03.002. PubMed DOI

Pfitzner M., Preuss A., Röder B. A new level of in vivo singlet molecular oxygen luminescence measurements. Photodiagn. Photodyn. Ther. 2020;29:101613. doi: 10.1016/j.pdpdt.2019.101613. PubMed DOI

Perrier S., Takolpuckdee P., Mars C.A. Reversible Addition−Fragmentation Chain Transfer Polymerization:  End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI

Maeda H., Sawa T., Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control Release. 2001;74:47–61. doi: 10.1016/S0168-3659(01)00309-1. PubMed DOI

Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Delivery Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI

Krasnovski A.A., Jr., Neverov K.V., Egorov S.Y., Roeder B., Levald T. Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence. J. Photochem. Photobiol. B Biol. 1990;5:245–254. doi: 10.1016/1011-1344(90)80009-M. PubMed DOI

Fang J., Šubr V., Islam W., Hackbarth S., lIslam R., Etrych T., Ulbrich K., Maeda H. N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI

Looft A., Pfitzner M., Preuß A., Röder B. In vivo singlet molecular oxygen measurements: Sensitive to changes in oxygen saturation during PDT. Photodiagn. Photodyn. Ther. 2018;23:325–330. doi: 10.1016/j.pdpdt.2018.07.006. PubMed DOI

Fang J., Liao L., Yin H., Nakamura H., Subr V., Ulbrich K., Maeda H. Photodynamic therapy and imaging based on tumor-targeted nanoprobe, polymer-conjugated zinc protoporphyrin. Future Sci. OA. 2015;1:FSO4. doi: 10.4155/fso.15.2. PubMed DOI PMC

Collins J.-A., Rudenski A., Gibson J., Howard L., O’Driscoll R. Relating oxygen partial pressure, saturation and content: The haemoglobin-oxygen dissociation curve. Breathe. 2015;11:194–201. doi: 10.1183/20734735.001415. PubMed DOI PMC

Liu C.Y., Eskin S.G., Hellums J.D. The oxygen permeability of cultured endothelial cell monolayers. Adv. Exp. Med. Biol. 1994;345:723–730. doi: 10.1007/978-1-4615-2468-7_95. PubMed DOI

Bentley T.B., Pittmann R.N. Influence of temperature on oxygen diffusion in hamster retractor muscle. Am. J. Physiol. 1997;272:H1106–H1112. doi: 10.1152/ajpheart.1997.272.3.H1106. PubMed DOI

Vadapalli A., Pittman R.N., Popel A.S. Estimating oxygen transport resistance of the microvascular wall. Am. J. Physiol. Heart Circ. Physiol. 2000;279:657–671. doi: 10.1152/ajpheart.2000.279.2.H657. PubMed DOI

Wagner B.A., Venkataraman S., Buettner G.R. The rate of oxygen utilization by cells. Free Radic. Biol. Med. 2011;51:700–712. doi: 10.1016/j.freeradbiomed.2011.05.024. PubMed DOI PMC

Christmas K.M., Bassingthwaighte J.B. Equations for O2 and CO2 solubilities in saline and plasma: Combining temperature and density dependences. J. Appl. Physiol. 1985;122:1313–1320. doi: 10.1152/japplphysiol.01124.2016. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...