Singlet Oxygen In Vivo: It Is All about Intensity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35743675
PubMed Central
PMC9224567
DOI
10.3390/jpm12060891
PII: jpm12060891
Knihovny.cz E-zdroje
- Klíčová slova
- illumination intensity, photodynamic therapy, singlet oxygen, time-resolved phosphorescence,
- Publikační typ
- časopisecké články MeSH
The presented work addresses the influence of illumination intensity on the amount and locations of singlet oxygen generation in tumor tissue. We used time-resolved optical detection at the typical emission wavelength around 1270 nm and at 1200 nm where there is no singlet oxygen phosphorescence to determine the phosphorescence kinetics. The discussed data comprise in vivo measurements in tumor-laden HET-CAM and mice. The results show that illumination that is too intense is a major issue, affecting many PDT treatments and all singlet oxygen measurements in vivo so far. In such cases, photosensitization and oxygen consumption exceed oxygen supply, limiting singlet oxygen generation to the blood vessels and walls, while photosensitizers in the surrounding tissue will likely not participate. Being a limitation for the treatment, on one hand, on the other, this finding offers a new method for tumor diagnosis when using photosensitizers exploiting the EPR effect. In contrast to high-intensity PDT, some papers reported successful treatment with nanoparticular drugs using much lower illumination intensity. The question of whether, with such illumination, singlet oxygen is indeed generated in areas apart from vessels and walls, is addressed by numerical analysis. In addition, we discuss how to perform measurements at such low intensities.
Photobiophysics Institute of Physics Humboldt University of Berlin Newtonstr 15 12489 Berlin Germany
School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL UK
Zobrazit více v PubMed
Röder B. Photodynamic Therapy. In: Meyers R.A., editor. Encyclopedia Analytical Chemistry. John Wiley & Sons Ltd.; Chichester, UK: 2000. pp. 302–320.
Van Straten D., Mashayekhi V., de Bruijm H.S., Oliveira S., Robinson D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers. 2017;9:19. doi: 10.3390/cancers9020019. PubMed DOI PMC
Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049. PubMed DOI
Moan J., Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 1991;53:549–553. doi: 10.1111/j.1751-1097.1991.tb03669.x. PubMed DOI
Dysart J.S., Patterson M.S. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys. Med. Biol. 2005;50:2597–2616. doi: 10.1088/0031-9155/50/11/011. PubMed DOI
Schlothauer J.C., Hackbarth S., Jäger L., Drobniewski K., Patel H., Gorun S.M., Röder B. Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: Comparison of ex vivo application of two photosensitizer formulations. J. Biomed. Opt. 2012;17:115005. doi: 10.1117/1.JBO.17.11.115005. PubMed DOI
Hackbarth S., Schlothauer J., Preuß A., Ludwig C., Röder B. Time resolved sub-cellular singlet oxygen detection-ensemble measurements versus single cell experiments. Laser Phys. Lett. 2012;9:474–480. doi: 10.7452/lapl.201110146. DOI
Hackbarth S., Islam W., Fang J., Subr V., Röder B., Etrych T., Maeda H. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem. Photobiol. Sci. 2019;18:1304–1314. doi: 10.1039/C8PP00570B. PubMed DOI
Liu B., Farrell T.J., Patterson M.S. A dynamic model for ALA-PDT of skin: Simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen. Phys. Med. Biol. 2010;55:5913–5932. doi: 10.1088/0031-9155/55/19/019. PubMed DOI
Zhu T.C., Kim M.M., Liang X., Finlay J.C., Busch T.M. In vivo singlet oxygen threshold doses for PDT. Photonics Lasers Med. 2015;4:59–71. doi: 10.1515/plm-2014-0037. PubMed DOI PMC
Dutta A., Popel A.S. A Theoretical Analysis of Intracellular Oxygen Diffusion. J. Theor. Biol. 1995;176:433–445. doi: 10.1006/jtbi.1995.0211. PubMed DOI
Sasaki N., Horinouchi H., Ushiyama A., Minamitani H. A New Method for Measuring the Oxygen Diffusion Constant and Oxygen Consumption Rate of Arteriolar Walls. Keio J. Med. 2012;61:57–65. doi: 10.2302/kjm.61.57. PubMed DOI
Sterenborg H.J.C.M., de Wolf J.W., Koning M., Kruijt B., van den Heuvel A., Robinson D.J. Phosphorescence-Fluorescence ratio imaging for monitoring the oxygen status during photodynamic therapy. Opt. Express. 2004;12:1873–1878. doi: 10.1364/OPEX.12.001873. PubMed DOI
Pfitzner M., Schlothauer J.C., Bastien E., Hackbarth S., Bezdetnaya L., Lassalle H.-P., Röder B. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice. Photodiagn. Photodyn. Ther. 2016;14:204–210. doi: 10.1016/j.pdpdt.2016.03.002. PubMed DOI
Pfitzner M., Preuss A., Röder B. A new level of in vivo singlet molecular oxygen luminescence measurements. Photodiagn. Photodyn. Ther. 2020;29:101613. doi: 10.1016/j.pdpdt.2019.101613. PubMed DOI
Perrier S., Takolpuckdee P., Mars C.A. Reversible Addition−Fragmentation Chain Transfer Polymerization: End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI
Maeda H., Sawa T., Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control Release. 2001;74:47–61. doi: 10.1016/S0168-3659(01)00309-1. PubMed DOI
Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Delivery Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI
Krasnovski A.A., Jr., Neverov K.V., Egorov S.Y., Roeder B., Levald T. Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence. J. Photochem. Photobiol. B Biol. 1990;5:245–254. doi: 10.1016/1011-1344(90)80009-M. PubMed DOI
Fang J., Šubr V., Islam W., Hackbarth S., lIslam R., Etrych T., Ulbrich K., Maeda H. N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI
Looft A., Pfitzner M., Preuß A., Röder B. In vivo singlet molecular oxygen measurements: Sensitive to changes in oxygen saturation during PDT. Photodiagn. Photodyn. Ther. 2018;23:325–330. doi: 10.1016/j.pdpdt.2018.07.006. PubMed DOI
Fang J., Liao L., Yin H., Nakamura H., Subr V., Ulbrich K., Maeda H. Photodynamic therapy and imaging based on tumor-targeted nanoprobe, polymer-conjugated zinc protoporphyrin. Future Sci. OA. 2015;1:FSO4. doi: 10.4155/fso.15.2. PubMed DOI PMC
Collins J.-A., Rudenski A., Gibson J., Howard L., O’Driscoll R. Relating oxygen partial pressure, saturation and content: The haemoglobin-oxygen dissociation curve. Breathe. 2015;11:194–201. doi: 10.1183/20734735.001415. PubMed DOI PMC
Liu C.Y., Eskin S.G., Hellums J.D. The oxygen permeability of cultured endothelial cell monolayers. Adv. Exp. Med. Biol. 1994;345:723–730. doi: 10.1007/978-1-4615-2468-7_95. PubMed DOI
Bentley T.B., Pittmann R.N. Influence of temperature on oxygen diffusion in hamster retractor muscle. Am. J. Physiol. 1997;272:H1106–H1112. doi: 10.1152/ajpheart.1997.272.3.H1106. PubMed DOI
Vadapalli A., Pittman R.N., Popel A.S. Estimating oxygen transport resistance of the microvascular wall. Am. J. Physiol. Heart Circ. Physiol. 2000;279:657–671. doi: 10.1152/ajpheart.2000.279.2.H657. PubMed DOI
Wagner B.A., Venkataraman S., Buettner G.R. The rate of oxygen utilization by cells. Free Radic. Biol. Med. 2011;51:700–712. doi: 10.1016/j.freeradbiomed.2011.05.024. PubMed DOI PMC
Christmas K.M., Bassingthwaighte J.B. Equations for O2 and CO2 solubilities in saline and plasma: Combining temperature and density dependences. J. Appl. Physiol. 1985;122:1313–1320. doi: 10.1152/japplphysiol.01124.2016. PubMed DOI PMC
Singlet Oxygen In Vivo: It Is All about Intensity-Part 2