Singlet Oxygen In Vivo: It Is All about Intensity-Part 2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
#40 - 2018
Brigitte und Dr. Konstanze Wegener Foundation
19K09806
Japan Society for the Promotion of Science
19K07743
Japan Society for the Promotion of Science
NU21-08-00280
Ministry of Health Czech Republic
LX22NPO5102
National Institute for Cancer Research
PubMed
37240951
PubMed Central
PMC10222680
DOI
10.3390/jpm13050781
PII: jpm13050781
Knihovny.cz E-zdroje
- Klíčová slova
- illumination intensity, photodynamic therapy, singlet oxygen, time-resolved phosphorescence,
- Publikační typ
- časopisecké články MeSH
Recently, we reported induced anoxia as a limiting factor for photodynamic tumor therapy (PDT). This effect occurs in vivo if the amount of generated singlet oxygen that undergoes chemical reactions with cellular components exceeds the local oxygen supply. The amount of generated singlet oxygen depends mainly on photosensitizer (PS) accumulation, efficiency, and illumination intensity. With illumination intensities above a certain threshold, singlet oxygen is limited to the blood vessel and the nearest vicinity; lower intensities allow singlet oxygen generation also in tissue which is a few cell layers away from the vessels. While all experiments so far were limited to light intensities above this threshold, we report experimental results for intensities at both sides of the threshold for the first time, giving proof for the described model. Using time-resolved optical detection in NIR, we demonstrate characteristic, illumination intensity-dependent changes in signal kinetics of singlet oxygen and photosensitizer phosphorescence in vivo. The described analysis allows for better optimization and coordination of PDT drugs and treatment, as well as new diagnostic methods based on gated PS phosphorescence, for which we report a first in vivo feasibility test.
Institute of Physics Photobiophysics Humboldt University of Berlin Newtonstr 15 12489 Berlin Germany
Zobrazit více v PubMed
Nonell S., Flors C., editors. Singlet Oxygen: Applications in Biosciences and Nanosciences. Royal Society of Chemistry; Cambridge, UK: 2016.
Hamblin M.R., Huang Y., editors. Imaging in Photodynamic Therapy. Taylor & Francis Books; Abingdon, UK: 2016.
Kautsky H. Quenching of luminescence by oxygen. Trans. Faraday Soc. 1939;35:216–219. doi: 10.1039/tf9393500216. DOI
Snelling D.R. Production of singlet oxygen in the benzene oxygen photochemical system. Chem. Phys. Lett. 1968;2:346–348. doi: 10.1016/0009-2614(68)80093-4. DOI
Lin L., Lin H., Shen Y., Chen D., Gu Y., Wilson B.C., Li B. Singlet Oxygen Luminescence Image in Blood Vessels during Vascular-Targeted Photodynamic Therapy. Photochem. Photobiol. 2020;96:646–651. doi: 10.1111/php.13264. PubMed DOI
Ogilby P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI
Kim I.-W., Park J.M., Roh Y.J., Kim J.H., Choi M.-G., Hasan T. Direct measurement of singlet oxygen by using a photomultiplier tube-based detection system. J. Photochem. Photobiol. B Biol. 2016;159:14–23. doi: 10.1016/j.jphotobiol.2016.03.012. PubMed DOI
Röder B. Photodynamic therapy. In: Meyers R.A., editor. Encyclopedia Analytical Chemistry. John Wiley & Sons Ltd; Chichester, UK: 2000. pp. 302–320.
Oelckers S., Ziegler T., Michler I., Röder B. Time-resolved detection of singlet oxygen luminescence in red-cell ghost suspensions. Concerning a signal component that can be attributed to 1O2 luminescence from the inside of a native membrane. J. Photochem. Photobiol. B. 1999;53:121–127. doi: 10.1016/S1011-1344(99)00137-2. PubMed DOI
Jiménez-Banzo A., Ragas X., Kapusta P., Nonell S. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection. Photochem. Photobiol. Sci. 2008;7:1003–1010. doi: 10.1039/b804333g. PubMed DOI
Hackbarth S., Pfitzner M., Pohl J., Röder B. Singlet Oxygen Detection and Imaging. Morgan & Claypool; San Rafael, CA, USA: 2021. pp. 25–43.
Gal D. Hunt for singlet oxygen under in vivo conditions. Biochem. Biophys. Res. Commun. 1994;202:10–16. doi: 10.1006/bbrc.1994.1886. PubMed DOI
Jarvi M.T., Niedre M.J., Patterson M.S., Wilson B.C. Singlet Oxygen Luminescence Dosimetry (SOLD) for Photodynamic Therapy: Current Status, Challenges and Future Prospects. Photochem. Photobiol. 2006;82:1198–1210. doi: 10.1562/2006-05-03-IR-891. PubMed DOI
Pfitzner M., Preuss A., Röder B. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice. Photodiagn. Photodyn. Ther. 2020;14:204–210. doi: 10.1016/j.pdpdt.2016.03.002. PubMed DOI
Schlothauer J.C., Falckenhayn J., Perna T., Hackbarth S., Roder B. Luminescence investigation of photosensitizer distribution in skin: Correlation of singlet oxygen kinetics with the microarchitecture of the epidermis. J. Biomed. Opt. 2013;18:115001. doi: 10.1117/1.JBO.18.11.115001. PubMed DOI
Li B., Lin L., Lin H., Wilson B.C. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. J. Biophotonics. 2016;9:1314–1325. doi: 10.1002/jbio.201600055. PubMed DOI
Scholz M., Cao X., Gunn J.R., Brůža P., Pogue B. pO2-weighted imaging in vivo by delayed fluorescence of intracellular Protoporphyrin IX. Opt. Lett. 2020;45:284–287. doi: 10.1364/OL.45.000284. PubMed DOI
Wilson B.C., Patterson M.S., Li B., Jarvi M.T. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy. J. Innov. Opt. Health Sci. 2015;8:1540006. doi: 10.1142/S1793545815400064. DOI
Hackbarth S., Islam W., Fang J., Subr V., Röder B., Etrych T., Maeda H. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem. Photobiol. Sci. 2019;18:1304–1314. doi: 10.1039/c8pp00570b. PubMed DOI
Hackbarth S., Islam R., Šubr V., Etrych T., Fang J. Singlet Oxygen In Vivo: It Is All about Intensity. J. Pers. Med. 2022;12:891. doi: 10.3390/jpm12060891. PubMed DOI PMC
Schlothauer J., Hackbarth S., Röder B. A new benchmark for time-resolved detection of singlet oxygen luminescence—Revealing the evolution of lifetime in living cells with low dose illumination. Laser Phys. Lett. 2009;6:216–221. doi: 10.1002/lapl.200810116. DOI
Hackbarth S., Schlothauer J., Preuss A., Roder B. New insights to primary photodynamic effects—Singlet oxygen kinetics in living cells. J. Photochem. Photobiol. B. 2010;98:173–179. doi: 10.1016/j.jphotobiol.2009.11.013. PubMed DOI
Hackbarth S., Bornhütter T., Röder B. Chapter 26. Singlet Oxygen in Heterogeneous Systems. In: Nonell S., Flors C., editors. Singlet Oxygen Applications in Biosciences and Nanosciences. Volume 2. Royal Society of Chemistry; Cambridge, UK: 2016. pp. 27–42.
Sasaki N., Horinouchi H., Ushiyama A., Minamitani H. A New Method for Measuring the Oxygen Diffusion Constant and Oxygen Consumption Rate of Arteriolar. Walls. Keio J. Med. 2012;61:57–65. doi: 10.2302/kjm.61.57. PubMed DOI
Harada H., Xie X., Itasaka S., Zeng L., Zhu Y., Morinibu A., Shinomiya K., Hiraoka M. Diameter of tumor blood vessels is a good parameter to estimate HIF-1-active regions in solid tumors. Biochem. Biophys. Res. Commun. 2008;373:533–538. doi: 10.1016/j.bbrc.2008.06.062. PubMed DOI
Wagner B.A., Venkataraman S., Buettner G.R. The rate of oxygen utilization by cells. Free. Radic. Biol. Med. 2011;51:700–712. doi: 10.1016/j.freeradbiomed.2011.05.024. PubMed DOI PMC
Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI
Vogel A.W. Intratumoral Vascular Changes With Increased Size of a Mammary Adenocarcinoma: New Method and Results. J. Natl. Cancer Inst. 1965;34:571–578. PubMed
Looft A., Pfitzner M., Preuß A., Röder B. In vivo singlet molecular oxygen measurements: Sensitive to changes in oxygen saturation during PDT. Photodiagn. Photodyn. Ther. 2018;23:325–330. doi: 10.1016/j.pdpdt.2018.07.006. PubMed DOI
Bentley T.B., Pittmann R.N. Influence of temperature on oxygen diffusion in hamster retractor muscle. Am. J. Physio. 1997;272:H1106–H1112. doi: 10.1152/ajpheart.1997.272.3.H1106. PubMed DOI
Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl) methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour-targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI
Ishitake K., Satoh K., Kamigaito M., Okamoto Y. Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angew. Chem. Int. Ed. 2009;48:1991–1994. doi: 10.1002/anie.200805168. PubMed DOI
Convertine A.J., Benoit D.S., Duvall C.L., Hoffman A.S., Stayton P.S. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Control. Release. 2009;133:221–229. doi: 10.1016/j.jconrel.2008.10.004. PubMed DOI PMC
Šubr V., Sivák L., Koziolová E., Braunová A., Pechar M., Strohalm J., Kabešová M., Říhová B., Ulbrich K., Kovář M. Synthesis of poly[N-(2-hydroxypropyl)methacrylamide] conjugates of inhibitors of the ABC transporter that overcome multidrug resistance in doxorubicin-resistant P388 cells in vitro. Biomacromolecules. 2014;15:3030–3043. doi: 10.1021/bm500649q. PubMed DOI
Perrier S., Takolpuckdee P., Mars C.A. Reversible addition-fragmentation chain transfer polymerization: End group modification for functionalized polymers and chain transfer agent recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI
Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. HPMA-based linear, diblock and star-like polymer drug carriers: Advanced process for their simple production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI
Fang J., Šubr V., Islam W., Hackbarth S., Islam R., Etrych T., Ulbrich K., Maeda H. N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI
Tavares M.R., Islam R., Šubr V., Hackbarth S., Gaob S., Yang K., Fang J., Etrych T. Polymer Nanomedicines Serving as Theranostics with multiple Stimuli-Based Activation of Photodynamic Effect and Tumor Imaging. J. Contr. Rel. p. 2023. submitted . PubMed PMC
Hackbarth S., Ermilov E.A., Röder B. Interaction of Pheophorbide-a molecules covalently linked to DAB dendrimers. Opt. Commun. 2005;248:295–306. doi: 10.1016/j.optcom.2004.11.088. DOI
Bensasson R.V., Land E.J., Truscott T.G. Excited States and Free Radicals in Biology and Medicine: Contributions from Flash Photolysis and Pulse Radiolysis. Oxford University Press; Oxford, UK: 1993.
Mahling P. Bachelor’s Thesis. Humboldt Universität zu Berlin; Berlin, Germany: 2017. Singulett Sauerstoff Kinetik unter Physiologischen Bedingungen.
Krasnovsky A.A., Jr., Neverov K.V., Egorov S.Y., Roeder B., Levald T. Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence. J. Photochem. Photobiol. B. 1990;5:245–254. doi: 10.1016/1011-1344(90)80009-M. PubMed DOI
Hackbarth S., Roder B. Singlet oxygen luminescence kinetics in a heterogeneous environment—Identification of the photosensitizer localization in small unilamellar vesicles. Photochem. Photobiol. Sci. 2015;14:329–334. doi: 10.1039/c4pp00229f. PubMed DOI
Han P., Bartels D.M. Temperature Dependence of Oxygen Diffusion in H2O and D2O. J. Phys. Chem. 1996;100:5597–5602. doi: 10.1021/jp952903y. DOI