Scan Time Reduction of PLCs by Dedicated Parallel-Execution Multiple PID Controllers Using an FPGA
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35746367
PubMed Central
PMC9230057
DOI
10.3390/s22124584
PII: s22124584
Knihovny.cz E-zdroje
- Klíčová slova
- PI control, analog to digital conversion, data acquisition, field programmable gate arrays, programmable logic controller, scan time,
- Publikační typ
- časopisecké články MeSH
A programmable logic controller (PLC) executes a ladder diagram (LD) using input and output modules. An LD also has PID controller function blocks. It contains as many PID function blocks as the number of process parameters to be controlled. Adding more process parameters slows down PLC scan time. Process parameters are measured as analog signals. The analog input module in the PLC converts these analog signals into digital signals and forwards them to the PID controller as inputs. In this research work, a field-programmable gate array (FPGA)-based multiple PID controller is proposed to retain PLC scan time at a lower value. Concurrent execution of multiple PID controllers was assured by assigning separate FPGA hardware resources for every PID controller. Digital input to the PID controller is routed by the novel idea of analog to digital conversion (ADC), performed using a digital to analog converter (DAC), comparator, and FPGA. ADC combined with dedicated PID controller logic in an FPGA for every closed-loop control system confirms concurrent execution of multiple PID controllers. The time required to execute two closed-loop controls was identified as 18.96000004 ms. This design can be used either with or without a PLC.
Zobrazit více v PubMed
De Canete J.F., del Saz-Orozco P., Gonzalez S., Garcia-Moral I. Dual composition control and soft estimation for a pilot distillation column using a neurogenetic design. Comput. Chem. Eng. 2012;40:157–170. doi: 10.1016/j.compchemeng.2012.01.003. DOI
Salem A., Abu-Siada A., Islam S. Improved condition monitoring technique for wind turbine gearbox and shaft stress detection. IET Sci. Meas. Technol. 2017;11:431–437. doi: 10.1049/iet-smt.2016.0338. DOI
Carlos G.G., Juvenal R.R., Georgina M.V., Edgar R.A., Jorge M.S., Ricardo L.R. A PC-based architecture for parameter analysis of vector-controlled induction motor drive. Comput. Electr. Eng. 2011;37:858–868.
Bayindir R., Cetinceviz Y. A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants—An experimental setup. ISA Trans. 2011;50:321–328. doi: 10.1016/j.isatra.2010.10.006. PubMed DOI
Jaiswal S., Ballal M.S. FDST-based PQ event detection and energy metering implementation on FPGA-in-the-loop and NI-LabVIEW. IET Sci. Meas. Technol. 2017;11:453–463. doi: 10.1049/iet-smt.2016.0481. DOI
Chakraborty K., Choudhury M., Das S., Paul S. Development of PLC-SCADA based control strategy for water storage in a tank for a semi-automated plant. J. Instrum. 2020;15:T04007. doi: 10.1088/1748-0221/15/04/T04007. DOI
Ioannides M. Design and Implementation of PLC-Based Monitoring Control System for Induction Motor. IEEE Trans. Energy Convers. 2004;19:469–476. doi: 10.1109/TEC.2003.822303. DOI
Lizarraga-Morales R.A., Rodriguez-Donate C., Cabal-Yepez E., Lopez-Ramirez M., Ledesma-Carrillo L.M., Ferrucho-Alvarez E.R. Novel FPGA-based Methodology for Early Broken Rotor Bar Detection and Classification Through Homogeneity Estimation. IEEE Trans. Instrum. Meas. 2017;66:1760–1769. doi: 10.1109/TIM.2017.2664520. DOI
Youness H., Moness M., Khaled M. MPSoCs and Multicore Microcontrollers for Embedded PID Control: A Detailed Study. IEEE Trans. Ind. Inform. 2014;10:2122–2134. doi: 10.1109/TII.2014.2355036. DOI
Saponara S., Neri B. Radar Sensor Signal Acquisition and Multidimensional FFT Processing for Surveillance Applications in Transport Systems. IEEE Trans. Instrum. Meas. 2017;66:604–615. doi: 10.1109/TIM.2016.2640518. DOI
Dong J., Wang T., Li B., Liu Z., Yu Z. An FPGA-based low-cost VLIW floating-point processor for CNC applications. Microprocess. Microsyst. 2017;50:14–25. doi: 10.1016/j.micpro.2017.02.001. DOI
Senthilnathan A., Palanivel P. A new approach for commutation torque ripple reduction of FPGA based brushless DC motor with outgoing phase current control. Microprocess. Microsyst. 2020;75:103043. doi: 10.1016/j.micpro.2020.103043. DOI
Roy A., Sharma L., Chakraborty I., Panja S., Ojha V.N., De S. An FPGA based all-in-one function generator, lock-in amplifier and auto-relockable PID system. J. Instrum. 2019;14:P05012. doi: 10.1088/1748-0221/14/05/P05012. DOI
Hernandez A., Garcia E., Gualda D., Villadangos J.M., Nombela F., Urena J. FPGA-Based Architecture for Managing Ultrasonic Beacons in a Local Positioning System. IEEE Trans. Instrum. Meas. 2017;66:1954–1964. doi: 10.1109/TIM.2017.2682938. DOI
Tasca L.C., de Freitas E.P., Wagner F.R. Enhanced architecture for programmable logic controllers targeting performance improvements. Microprocess. Microsyst. 2018;61:306–315. doi: 10.1016/j.micpro.2018.06.007. DOI
Aboelaze M., Shehata M.G. Implementation of multiple PID controllers on FPGA; Proceedings of the 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS); Cairo, Egypt. 6–9 December 2015; pp. 446–449. DOI
Grout I.A., Burge S.E., Dorey A.P. Design and testing of a PI controller ASIC. Microprocess. Microsyst. 1995;19:15–22. doi: 10.1016/0141-9331(95)93084-V. DOI
Bhandari A.S., Chaudhuri A., Roy S., Negi S., Sharad M. Single chip self-tunable N-input N-output PID control system with integrated analog front-end for miniature robotics; Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC); Calabria, Italy. 16–18 May 2017; pp. 109–114. DOI
Neelamegam P., Kumaravel S., Raghunathan R. Microcontroller Based Distributed Monitoring System for Fresh Water Fish Aquaculture. Instrum. Sci. Technol. 2008;36:515–524. doi: 10.1080/10739140802234964. DOI
Dhanabalan G., Tamil Selvi S. Design of parallel conversion multichannel analog to digital converter for scan time reduction of programmable logic controller using FPGA. Comput. Stand. Interfaces. 2015;39:12–21. doi: 10.1016/j.csi.2014.12.002. DOI
Milanovic M., Truntic M., Slibar P., Dolinar D. Reconfigurable digital controller for a buck converter based on FPGA. Microelectron. Reliab. 2006;47:150–154. doi: 10.1016/j.microrel.2006.09.019. DOI
Chan Y.F., Moallem M., Wang W. Design and Implementation of Modular FPGA-Based PID Controllers. IEEE Trans. Ind. Electron. 2007;54:1898–1906. doi: 10.1109/TIE.2007.898283. DOI
Astrom K.J., Hagglund T. The future of PID control. Control. Eng. Pract. 2011;9:1163–1175. doi: 10.1016/S0967-0661(01)00062-4. DOI
Chen D.G., Tang F., Law M.-K., Zhong X., Bermak A. A 64 fJ/step 9-bit SAR ADC Array with Forward Error Correction and Mixed-Signal CDS for CMOS Image Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2014;61:3085–3093. doi: 10.1109/TCSI.2014.2334852. DOI
Dhanabalan G., Murugan T. FPGA design of SAR type ADC based analog input module for industrial applications. In: Patel Z., Gupta S., Kumar Y.B.N., editors. Advances in VLSI and Embedded Systems, Lecture Notes in Electrical Engineering. Volume 676 Springer; Singapore: 2020.
Alabdo A., Pérez J., Garcia G.J., Pomares J., Torres F. FPGA-based architecture for direct visual control robotic systems. Mechatronics. 2016;39:204–216. doi: 10.1016/j.mechatronics.2016.05.008. DOI
Sinha S., Kachhap R.V., Mandal N. Design and development of a capacitance-based wireless pressure transmitter. IET Sci. Meas. Technol. 2018;12:858–864. doi: 10.1049/iet-smt.2017.0545. DOI
Datta J., Chowdhuri S., Bera J., Sarkar G. Remote monitoring of different electrical parameters of multi-machine system using PC. Measurement. 2012;45:118–125. doi: 10.1016/j.measurement.2011.09.009. DOI
Ionel R., Vasiu G., Mischie S. GPRS based data acquisition and analysis system with mobile phone control. Measurement. 2012;45:1462–1470. doi: 10.1016/j.measurement.2012.03.003. DOI
Rieger R., Huang Y.-R. A Custom-Design Data Logger Core for Physiological Signal Recording. IEEE Trans. Instrum. Meas. 2010;60:532–538. doi: 10.1109/TIM.2010.2051609. DOI
ControlLogix I/O Specifications. 2019. [(accessed on 1 July 2019)]. Available online: https://literature.rockwellautomation.com/idc/groups/literature/documents/td/1756-td002_-en-e.pdf.
Estimated Execution Time and Memory Use for Logix5000 Controller Instructions. 2019. [(accessed on 1 July 2019)]. Available online: https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/logix-rm002_-en-p.pdf.
Series 90 TM -30/20/Micro PLC CPU Instruction Set. 2002. [(accessed on 1 July 2019)]. Available online: http://www.cimtecautomation.com/documents/techsupport/Series9030/Manuals/gfk-0467lSeries90-30-20-MicroPLCCPUInstructionSetReferenceManual.pdf.