Hybrid Technique for Cyber-Physical Security in Cloud-Based Smart Industries
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
09/010/RGJ22/0068
Silesian University of Technology
PubMed
35746411
PubMed Central
PMC9228625
DOI
10.3390/s22124630
PII: s22124630
Knihovny.cz E-zdroje
- Klíčová slova
- ABE, AES, Cyber-Physical System (CPS), IBE, confidentiality, decryption, encryption, security, smart industrial environment,
- MeSH
- cloud computing * MeSH
- důvěrnost informací MeSH
- internet věcí * MeSH
- ukládání a vyhledávání informací MeSH
- zabezpečení počítačových systémů MeSH
- Publikační typ
- časopisecké články MeSH
New technologies and trends in industries have opened up ways for distributed establishment of Cyber-Physical Systems (CPSs) for smart industries. CPSs are largely based upon Internet of Things (IoT) because of data storage on cloud servers which poses many constraints due to the heterogeneous nature of devices involved in communication. Among other challenges, security is the most daunting challenge that contributes, at least in part, to the impeded momentum of the CPS realization. Designers assume that CPSs are themselves protected as they cannot be accessed from external networks. However, these days, CPSs have combined parts of the cyber world and also the physical layer. Therefore, cyber security problems are large for commercial CPSs because the systems move with one another and conjointly with physical surroundings, i.e., Complex Industrial Applications (CIA). Therefore, in this paper, a novel data security algorithm Dynamic Hybrid Secured Encryption Technique (DHSE) is proposed based on the hybrid encryption scheme of Advanced Encryption Standard (AES), Identity-Based Encryption (IBE) and Attribute-Based Encryption (ABE). The proposed algorithm divides the data into three categories, i.e., less sensitive, mid-sensitive and high sensitive. The data is distributed by forming the named-data packets (NDPs) via labelling the names. One can choose the number of rounds depending on the actual size of a key; it is necessary to perform a minimum of 10 rounds for 128-bit keys in DHSE. The average encryption time taken by AES (Advanced Encryption Standard), IBE (Identity-based encryption) and ABE (Attribute-Based Encryption) is 3.25 ms, 2.18 ms and 2.39 ms, respectively. Whereas the average time taken by the DHSE encryption algorithm is 2.07 ms which is very much less when compared to other algorithms. Similarly, the average decryption times taken by AES, IBE and ABE are 1.77 ms, 1.09 ms and 1.20 ms and the average times taken by the DHSE decryption algorithms are 1.07 ms, which is very much less when compared to other algorithms. The analysis shows that the framework is well designed and provides confidentiality of data with minimum encryption and decryption time. Therefore, the proposed approach is well suited for CPS-IoT.
Department of Computer Science and Engineering Chandigarh University Mohali 140055 Punjab India
Department of Intelligent Mechatronics Engineering Sejong University Seoul 05006 Korea
Faculty of Applied Mathematics Silesian University of Technology 44 100 Gliwice Poland
Zobrazit více v PubMed
Wang S., Wan J., Li D., Zhang C. Implementing smartfactory of industrie 4.0: An outlook. Int. J. Distrib. Sens. Netw. 2015;2015:10.
Wan J., Zhang D., Zhao S., Yang L.T., Lloret J. Context-aware vehicular cyber-physical systems with cloud support: Architecture, challenges and solutions. IEEE Commun. Mag. 2014;52:106–113. doi: 10.1109/MCOM.2014.6871677. DOI
Sridhar S., Hahn A., Govindarasu M. Cyber-physical system security for the electric power grid. Proc. IEEE. 2012;100:210–224. doi: 10.1109/JPROC.2011.2165269. DOI
Banerjee A., Venkatasubramanian K., Mukherjee T., Gupta S. Ensuring safety, security, and sustainability of mission-critical cyber-physical systems. Proc. IEEE. 2012;100:283–299. doi: 10.1109/JPROC.2011.2165689. DOI
Rajhans A., Bhave A., Ruchkin I., Krogh B.H., Garlan D., Platzer A., Schmerl B. Supporting Heterogeneity in Cyber-Physical Systems Architectures. IEEE Trans. Autom. Control. 2014;59:3178–3193. doi: 10.1109/TAC.2014.2351672. DOI
Derler P., Lee E.A., Alberto S.V. Modeling cyber-physical systems. Proc. IEEE. 2012;100:13–28. doi: 10.1109/JPROC.2011.2160929. DOI
Chen F., Deng P., Wan J., Zhang D., Vasilakos A., Rong X. Data Mining for the Internet of Things: Literature Review and Challenges. Int. J. Distrib. Sens. Netw. 2015;2015:431047. doi: 10.1155/2015/431047. DOI
Caliskan S., Rungger M., Majumdar R. Towards robustness for cyber-physical systems. IEEE Trans. Autom. Control. 2014;59:3151–3163.
Wan J., Zhang D., Sun Y., Lin K., Zou C., Cai H. VCMIA: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mob. Netw. Appl. 2014;19:153–160. doi: 10.1007/s11036-014-0499-6. DOI
Chen M., Zhang Y., Li Y., Mao S., Leung V. EMC: Emotionaware mobile cloud computing in 5G. IEEE Netw. 2015;29:32–38. doi: 10.1109/MNET.2015.7064900. DOI
Sajid A., Abbas H., Saleem K. Cloud-Assisted IoT-Based SCADA Systems Security: A Review of the State of the Art and Future Challenges. IEEE Access. 2016;4:1375–1384. doi: 10.1109/ACCESS.2016.2549047. DOI
Lojka T., Zolotová I. Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World. Springer; Berlin, Germany: 2014. Improvement of human-plant interactivity via industrial cloud-based supervisory control and data acquisition system; pp. 83–90.
Fernandez J.D., Fernandez A.E. SCADA systems: Vulnerabilities and remediation. J. Comput. Sci. Coll. Arch. 2005;20:160–168.
Ulltveit-Moe N., Nergaard H., Erdödi L., Gjøsæter T., Kolstad E., Berg P. Secure information sharing in an industrial Internet of Things. arXiv. 20161601.04301
Shang L., Guo D., Ji Y., Li Q. Discovering unknown advanced persistent threat using shared features mined by neural networks. Comput. Netw. 2021;189:107937. doi: 10.1016/j.comnet.2021.107937. DOI
Ahmed S.H., Kim G., Kim D. Cyber Physical System: Architecture, applications and research challenges; Proceedings of the 2013 IFIP Wireless Days (WD); Valencia, Spain. 13–15 November 2013; pp. 1–5.
Cheng H., Rong C., Tan Z., Zeng Q. Identity based encryption and biometric authentication scheme for secure data access in cloud computing. Chin. J. Electron. 2012;21:254–259.
Rajhans A., Bhave A., Ruchkin I., Krogh B.H., Garlan D., Platzer A., Schmerl B. Identity-based data storage in cloud computing. Future Gener. Comput. Syst. 2013;29:673–681.
Boneh D., Crescenzo G.D., Ostrovsky R., Persiano G. Public Key Encryption with Keyword Search. Volume 3027. Springer; Berlin, Germany: 2004. pp. 506–522.
Liu X., Ma J., Xiong J., Liu G. Ciphertext-policy hierarchical attribute-based encryption for fine-grained access control of encryption data. Int. J. Netw. Secur. 2014;16:437–443.
Balu A., Kuppusamy K. In: Ciphertext-Policy Attribute-Based Encryption with User Revocation Support. Singh K., Awasthi A.K., editors. Volume 115. Springer; Berlin, Germany: 2013. pp. 696–705.
Fan C.I., Huang S.M., Ruan H.M. Arbitrary-state attribute-based encryption with dynamic membership. IEEE Trans. Comput. 2014;63:1951–1961. doi: 10.1109/TC.2013.83. DOI
Wang S., Zhou J., Liu J.K., Yu J., Chen J. An efficient file hierarchy attributebased encryption scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 2016;11:1265–1277. doi: 10.1109/TIFS.2016.2523941. DOI
Hur J., Dong K.N. Attribute-based access control with efficient revocation in data outsourcing systems. IEEE Trans. Parallel Distrib. Syst. 2011;22:1214–1221. doi: 10.1109/TPDS.2010.203. DOI
Li L., Gu T., Chang L., Xu Z., Liu Y., Qian J. A ciphertext-policy attributebased encryption based on an ordered binary decision diagram. IEEE Access. 2017;5:1137–1145. doi: 10.1109/ACCESS.2017.2651904. DOI
Sun W., Wang B., Cao N., Li M., Lou W. Privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. IEEE Trans. Parallel Distrib. Syst. 2014;25:3025–3035. doi: 10.1109/TPDS.2013.282. DOI
Ling C., Newport C. Provably secure ciphertext policy ABE; Proceedings of the 2007 ACM Conference on Computer and Communications Security; Alexandria, VA, USA. 29 October–2 November 2007; pp. 456–465.
Taylan O., Bafail A.O., Abdulaal R.M., Kabli M.R. Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Appl. Soft Comput. 2014;17:105–116. doi: 10.1016/j.asoc.2014.01.003. DOI
Ahmed S.H., Khan M. Secure and Trustworthy Transportation Cyber-Physical Systems. Springer; Berlin, Germany: 2017. Properties, Principles, and Metrics in Transportation CPS; pp. 51–63.
Aouadni S., Rebai A., Turskis Z. The Meaningful Mixed Data TOPSIS (TOPSIS-MMD) Method and its Application in Supplier Selection. Stud. Inform. Control. 2017;26:353–363. doi: 10.24846/v26i3y201711. DOI
Kumar K., Garg H. Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl. Intell. 2018;48:2112–2119. doi: 10.1007/s10489-017-1067-0. DOI
Hatami-Marbini A., Kangi F. An extension of fuzzy TOPSIS for a group decision making with an Application to Tehran stock exchange. Appl. Soft Comput. 2017;52:1084–1097. doi: 10.1016/j.asoc.2016.09.021. DOI
Zelany M. A concept of compromise solutions and the method of the displaced ideal. Comput. Oper. Res. 1974;1:479–496. doi: 10.1016/0305-0548(74)90064-1. DOI
Zavadskas E.K., Turskis Z., Bagočius V. Multi-criteria selection of a deep-water port in the Eastern Baltic Sea. Appl. Soft Comput. 2015;26:180–192. doi: 10.1016/j.asoc.2014.09.019. DOI