Intestinal Anastomotic Healing: What do We Know About Processes Behind Anastomotic Complications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35747439
PubMed Central
PMC9209641
DOI
10.3389/fsurg.2022.904810
Knihovny.cz E-zdroje
- Klíčová slova
- anastomotic healing, anastomotic leakage, colorectal anastomosis, intestinal healing, wound healing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Colorectal surgery has developed rapidly in the recent decades. Nevertheless, colorectal anastomotic leakage continues to appear postoperatively in unpleasant rates and leads to life-threatening conditions. The development of valid complication-preventing methods is inefficient in many aspects as we are still lacking knowledge about the basics of the process of anastomotic wound healing in the gastrointestinal tract. Without the proper understanding of the crucial mechanisms, research for prevention of anastomotic leakage is predestined to be unsuccessful. This review article discusses known pathophysiological mechanisms together with the most lately found processes to be further studied. The aim of the article is to facilitate the orientation in the topic, support the better understanding of known mechanisms and suggest promising possibilities and directions for further research.
Zobrazit více v PubMed
Rentsch M, Schiergens T, Khandoga A, Werner J. Surgery for colorectal cancer - trends, developments, and future perspectives. Visc Med. (2016) 32(3):184–91. 10.1159/000446490 PubMed DOI PMC
Daher R, Chouillard E, Panis Y. New trends in colorectal surgery: single port and natural orifice techniques. World J Gastroenterol. (2014) 20(48):18104–20. 10.3748/wjg.v20.i48.18104. PubMed DOI PMC
Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, et al. Guidelines for perioperative care in elective colorectal surgery: enhanced recovery after surgery (ERAS®) society recommendations: 2018. World J Surg. (2019) 43(3):659–95. 10.1007/s00268-018-4844-y. PubMed DOI
Lee SW, Gregory D, Cool CL. Clinical and economic burden of colorectal and bariatric anastomotic leaks. Surg Endosc. (2019). 10.1007/s00464-019-07210-1. PubMed DOI
Clifford RE, Fowler H, Manu N, Vimalachandran D. Management of benign anastomotic strictures following rectal resection: a systematic review. Colorectal Dis. (2021) 23(12):3090–100. 10.1111/codi.15865 PubMed DOI
Acar T, Aslan F, Acar N, Kamer E, Ünsal B, Hacıyanlı M. Role of endoscopic interventions and electroincision in benign anastomotic strictures following colorectal surgery. Turk J Gastroenterol. (2019) 30(8):673–9. 10.5152/tjg.2019.18673 PubMed DOI PMC
Rosendorf J, Klicova M, Cervenkova L, Horakova J, Klapstova A, Hosek P, et al. Reinforcement of colonic anastomosis with improved ultrafine nanofibrous patch: experiment on pig. Biomedicines. (2021) 9(2):102. 10.3390/biomedicines9020102 PubMed DOI PMC
Yauw ST, Wever KE, Hoesseini A, Ritskes-Hoitinga M, van Goor H. Systematic review of experimental studies on intestinal anastomosis. Br J Surg. (2015) 102(7):726–34. 10.1002/bjs.9776 PubMed DOI
Thornton FJ, Barbul A. Healing in the gastrointestinal tract. Surg Clin North Am. (1997) 77(3):549–73. 10.1016/s0039-6109(05)70568-5 PubMed DOI
Bosmans JW, Jongen AC, Bouvy ND, Derikx JP. Colorectal anastomotic healing: why the biological processes that lead to anastomotic leakage should be revealed prior to conducting intervention studies. BMC Gastroenterol. (2015) 15:180. 10.1186/s12876-015-0410-3 PubMed DOI PMC
McDermott FD, Heeney A, Kelly ME, Steele RJ, Carlson GL, Winter DC. Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg. (2015) 102(5):462–79. 10.1002/bjs.9697 PubMed DOI
Vasiliu EC, Zarnescu NO, Costea R, Neagu S. Review of risk factors for anastomotic leakage in colorectal surgery. Chirurgia (Bucur). (2015) 110(4):319–26 PubMed
Zarnescu EC, Zarnescu NO, Costea R. Updates of risk factors for anastomotic leakage after colorectal surgery. Diagnostics (Basel). (2021) 11(12):2382. 10.3390/diagnostics1112238 PubMed DOI PMC
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. (2019) 99(1):665–706. 10.1152/physrev.00067.2017 PubMed DOI PMC
Safiejko K, Tarkowski R, Kozlowski TP, Koselak M, Jachimiuk M, Tarasik A, et al. Safety and efficacy of indocyanine green in colorectal cancer surgery: a systematic review and meta-analysis of 11,047 patients. Cancers (Basel). (2022) 14(4):1036. 10.3390/cancers14041036 PubMed DOI PMC
Blanco-Colino R, Espin-Basany E. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol. (2018) 22(1):15–23. 10.1007/s10151-017-1731-8 PubMed DOI
Sparreboom CL, Wu ZQ, Ji JF, Lange JF. Integrated approach to colorectal anastomotic leakage: communication, infection and healing disturbances. World J Gastroenterol. (2016) 22(32):7226–35. 10.3748/wjg.v22.i32.7226 PubMed DOI PMC
Christley S, Shogan B, Levine Z, Koo H, Guyton K, Owens S, et al. Comparative genetics of Enterococcus faecalis intestinal tissue isolates before and after surgery in a rat model of colon anastomosis. PLoS One. (2020) 15(4):e0232165. 10.1371/journal.pone.0232165 PubMed DOI PMC
Shogan BD, Belogortseva N, Luong PM, Zaborin A, Lax S, Bethel C, et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med. (2015) 7(286):286ra68. 10.1126/scitranslmed.3010658 PubMed DOI PMC
Edomskis P, Goudberg MR, Sparreboom CL, Menon AG, Wolthuis AM, D’Hoore A, et al. Matrix metalloproteinase-9 in relation to patients with complications after colorectal surgery: a systematic review. Int J Colorectal Dis. (2021) 36(1):1–10. 10.1007/s00384-020-03724-6 PubMed DOI PMC
Lam A, Fleischer B, Alverdy J. The biology of anastomotic healing-the unknown overwhelms the known. J Gastrointest Surg. (2020) 24(9):2160–6. 10.1007/s11605-020-04680-w PubMed DOI PMC
Wang PH, Huang BS, Hornr HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc. (2018) 81(2):94–101. 10.1016/j.jcma.2017.11.002. PubMed DOI
Cheong YC, Laird SM, Li TC, Shelton JB, Ledger WL, Cooke ID. Peritoneal healing and adhesion formation/reformation. Hum Reprod Update. (2001) 7(6):556–66. 10.1093/humupd/7.6.556 PubMed DOI
Tang J, Xiang Z, Bernards MT, Chen S. Peritoneal adhesions: occurrence, prevention and experimental models. Acta Biomater. (2020) 116:84–104. 10.1016/j.actbio.2020.08.036 PubMed DOI
Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World Journal of Gastroenterology. (2011) 17(41):4545–53. 10.3748/wjg.v17.i41.4545 PubMed DOI PMC
Saed GM, Diamond MP. Molecular characterization of postoperative adhesions: the adhesion phenotype. J Am Assoc Gynecol Laparosc. (2004) 11(3):307–14. 10.1016/S1074-3804(05)60041-2 PubMed DOI
Alpay Z, Saed GM, Diamond MP. Postoperative adhesions: from formation to prevention. Semin Reprod Med. (2008) 26(4):313–21. 10.1055/s-0028-1082389 PubMed DOI
Braun KM, Diamond MP. The biology of adhesion formation in the peritoneal cavity. Semin Pediatr Surg. (2014) 23(6):336–43. 10.1053/j.sempedsurg.2014.06.004 PubMed DOI
Fletcher NM, Jiang ZL, Diamond MP, Abu-Soud HM, Saed GM. Hypoxia-generated superoxide induces the development of the adhesion phenotype. Free Radic Biol Med. (2008) 45(4):530–6. 10.1016/j.freeradbiomed.2008.05.002 PubMed DOI PMC
Brokelman WJA, Lensvelt M, Rinkes IHMB, Klinkenbijl JHG, Reijnen MMPJ. Peritoneal changes due to laparoscopic surgery. Surg Endosc. (2011) 25(1):1–9. 10.1007/s00464-010-1139-2 PubMed DOI PMC
Saed GM, Diamond MP. Modulation of the expression of tissue plasminogen activator and its inhibitor by hypoxia in human peritoneal and adhesion fibroblasts. Fertil Steril. (2003) 79(1):164–8. 10.1016/S0015-0282(02)04557-0 PubMed DOI
Ivarsson ML, Diamond MP, Falk P, Holmdahl L. Plasminogen activator/plasminogen activator inhibitor-1 and cytokine modulation by the PROACTTM System. Fertil Steril. (2003) 79(4):987–92. 10.1016/S0015-0282(02)04851-3 PubMed DOI
Ambler DR, Fletcher NM, Diamond MP, Saed GM. Effects of hypoxia on the expression of inflammatory markers IL-6 and TNF-a in human normal peritoneal and adhesion fibroblasts. Syst Biol Reprod Med. (2012) 58(6):324–9. 10.3109/19396368.2012.713439 PubMed DOI
Chegini N, Zhao Y, Kotseos K, Ma C, Bennett B, Diamond MP, et al. Differential expression of matrix metalloproteinase and tissue inhibitor of MMP in serosal tissue of intraperitoneal organs and adhesions. BJOG An Int J Obstet Gynaecol. (2002) 109(9):1041–9. 10.1111/j.1471-0528.2002.01334.x PubMed DOI
Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. (2003) 92(8):827–39. 10.1161/01.RES.0000070112.80711.3D PubMed DOI
Rout UK, Oommen K, Diamond MP. Altered expressions of VEGF mRNA splice variants during progression of uterine-peritoneal adhesions in the rat. Am J Reprod Immunol. (2000) 43(5):299–304. 10.1111/j.8755-8920.2000.430509.x PubMed DOI
Diamond MP, El-Hammady E, Munkarah A, Bieber EJ, Saed G. Modulation of the expression of vascular endothelial growth factor in human fibroblasts. Fertil Steril. (2005) 83(2):405–9. 10.1016/j.fertnstert.2004.06.073 PubMed DOI
Saed GM, Munkarah AR, Abu-Soud HM, Diamond MP. Hypoxia upregulates cyclooxygenase-2 and prostaglandin E2 levels in human peritoneal fibroblasts. Fertil Steril. (2005) 83(Suppl 1):1216–9. 10.1016/j.fertnstert.2004.11.037 PubMed DOI
Stanzel RD, Lourenssen S, Nair DG, Blennerhassett MG. Mitogenic factors promoting intestinal smooth muscle cell proliferation. Am J Physiol Cell Physiol. (2010) 299(4):C805–17. 10.1152/ajpcell.00086.2010 PubMed DOI
Owens MW, Grisham MB. Inflammation. (1993) 17:481. 10.1007/BF00916587. PubMed DOI
Yu J, Zeng Y, Zhao J, Liao D, Gregersen H. Quantitative analysis of collagen fiber angle in the submucosa of small intestine. Comput Biol Med. (2004) 34(6):539–50. 10.1016/j.compbiomed.2003.06.001 PubMed DOI
Lovisa S, Genovese G, Danese S. Role of epithelial-to-mesenchymal transition in inflammatory bowel disease. J Crohns Colitis. (2019) 13(5):659–68. 10.1093/ecco-jcc/jjy201. PubMed DOI
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. (2014) 15(3):178–96. 10.1038/nrm3758. PubMed DOI PMC
Jiang H, Shen J, Ran Z. Epithelial-mesenchymal transition in Crohn’s disease. Mucosal Immunol. (2018) 11(2):294–303. 10.1038/mi.2017.107 PubMed DOI
Obermüller B, Frisina N, Meischel M, Singer G, Stanzl-Tschegg S, Lichtenegger H, et al. Examination of intestinal ultrastructure, bowel wall apoptosis and tight junctions in the early phase of sepsis. Sci Rep. (2020) 10(1):11507. 10.1038/s41598-020-68109-9 PubMed DOI PMC
Teo I, Toms SM, Marteyn B, Barata TS, Simpson P, Johnston KA, et al. Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers. EMBO Mol Med. (2012) 4(9):866–81. 10.1002/emmm.201201290 PubMed DOI PMC