IL-2, IL-6 and chitinase 3-like 2 might predict early relapse activity in multiple sclerosis

. 2022 ; 17 (6) : e0270607. [epub] 20220627

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35759479

BACKGROUND: The possibility to better predict the severity of the disease in a patient newly diagnosed with multiple sclerosis would allow the treatment strategy to be personalized and lead to better clinical outcomes. Prognostic biomarkers are highly needed. OBJECTIVE: To assess the prognostic value of intrathecal IgM synthesis, cerebrospinal fluid and serum IL-2, IL-6, IL-10, chitinase 3-like 2 and neurofilament heavy chains obtained early after the onset of the disease. METHODS: 58 patients after the first manifestation of multiple sclerosis were included. After the initial diagnostic assessment including serum and cerebrospinal fluid biomarkers, all patients initiated therapy with either glatiramer acetate, teriflunomide, or interferon beta. To assess the evolution of the disease, we followed the patients clinically and with MRI for two years. RESULTS: The IL-2:IL-6 ratio (both in cerebrospinal fluid) <0.48 (p = 0.0028), IL-2 in cerebrospinal fluid ≥1.23pg/ml (p = 0.026), and chitinase 3-like 2 in cerebrospinal fluid ≥7900pg/ml (p = 0.033), as well as baseline EDSS ≥1.5 (p = 0.0481) and age <22 (p = 0.0312), proved to be independent markers associated with shorter relapse free intervals. CONCLUSION: The IL-2:IL-6 ratio, IL-2, and chitinase 3-like 2 (all in cerebrospinal fluid) might be of value as prognostic biomarkers in early phases of multiple sclerosis.

Zobrazit více v PubMed

Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al.. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73. doi: 10.1016/S1474-4422(17)30470-2 PubMed DOI

Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013;84(8):909–14. doi: 10.1136/jnnp-2012-304695 PubMed DOI

Avasarala JR, Cross AH, Trotter JL. Oligoclonal Band Number as a Marker for Prognosis in Multiple Sclerosis. Arch Neurol. 2001;58(12):2044–5. doi: 10.1001/archneur.58.12.2044 PubMed DOI

Dalla Costa G, Passerini G, Messina MJ, Moiola L, Rodegher M, Colombo B, et al.. Clinical significance of the number of oligoclonal bands in patients with clinically isolated syndromes. J Neuroimmunol. 2015;289:62–7. doi: 10.1016/j.jneuroim.2015.10.009 PubMed DOI

Frau J, Villar LM, Sardu C, Secci MA, Schirru L, Ferraro D, et al.. Intrathecal oligoclonal bands synthesis in multiple sclerosis: is it always a prognostic factor? J Neurol. 2018;265(2):424–30. doi: 10.1007/s00415-017-8716-4 PubMed DOI

Perini P, Ranzato F, Calabrese M, Battistin L, Gallo P. Intrathecal IgM production at clinical onset correlates with a more severe disease course in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2006;77(8):953. doi: 10.1136/jnnp.2005.086116 PubMed DOI PMC

Villar LM, Masjuan J, González–Porqué P, Plaza J, Sádaba MC, Roldán E, et al.. Intrathecal IgM synthesis in neurologic diseases: Relationship with disability in MS. Neurology. 2002;58(5):824. doi: 10.1212/wnl.58.5.824 PubMed DOI

Mandrioli J, Sola P, Bedin R, Gambini M, Merelli E. A multifactorial prognostic index in multiple sclerosis. J Neurol. 2008;255(7):1023. doi: 10.1007/s00415-008-0827-5 PubMed DOI

Villar LM, Masjuan J, González-Porqué P, Plaza J, Sádaba MC, Roldán E, et al.. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol. 2003;53(2):222–6. doi: 10.1002/ana.10441 PubMed DOI

Villar LM, Masjuan J, González-Porqué P, Plaza J, Sádaba MC, Roldán E, et al.. Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology. 2002;59(4):555. doi: 10.1212/wnl.59.4.555 PubMed DOI

Schneider R, Euler B, Rauer S. Intrathecal IgM-synthesis does not correlate with the risk of relapse in patients with a primary demyelinating event. Eur J Neurol. 2007;14(8):907–11. doi: 10.1111/j.1468-1331.2007.01871.x PubMed DOI

Peakman M, Vergani D. Appendix 2: Major cytokines, cells releasing them, targets and functions. In: Peakman M, Vergani D, editors. Basic and Clinical Immunology. London: Elsevier Health Sciences; 2009. p. 342–4.

Schroeter M, Jander S. T-cell cytokines in injury-induced neural damage and repair. Neuromolecular Med. 2005;7(3):183–95. doi: 10.1385/NMM:7:3:183 PubMed DOI

Volpe E, Battistini L, Borsellino G. Advances in T Helper 17 Cell Biology: Pathogenic Role and Potential Therapy in Multiple Sclerosis. Mediators Inflamm. 2015;2015:475158–. doi: 10.1155/2015/475158 PubMed DOI PMC

Capone A, Bianco M, Ruocco G, De Bardi M, Battistini L, Ruggieri S, et al.. Distinct Expression of Inflammatory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells. 2019;8(6):533. PubMed PMC

Duan H, Luo Y, Hao H, Feng L, Zhang Y, Lu D, et al.. Soluble CD146 in cerebrospinal fluid of active multiple sclerosis. Neuroscience. 2013;235:16–26. doi: 10.1016/j.neuroscience.2013.01.020 PubMed DOI

Sharief MK, Thompson EJ. Correlation of interleukin-2 and soluble interleukin-2 receptor with clinical activity of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1993;56(2):169–74. doi: 10.1136/jnnp.56.2.169 PubMed DOI PMC

Barton BE. IL-6: Insights into Novel Biological Activities. Clin Immunol Immunopathol. 1997;85(1):16–20. doi: 10.1006/clin.1997.4420 PubMed DOI

Eugster H-P, Frei K, Kopf M, Lassmann H, Fontana A. IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol. 1998;28(7):2178–87. doi: 10.1002/(SICI)1521-4141(199807)28:07&lt;2178::AID-IMMU2178&gt;3.0.CO;2-D PubMed DOI

Maimone D, Guazzi GC, Annunziata P. IL-6 detection in multiple sclerosis brain. J Neurol Sci. 1997;146(1):59–65. doi: 10.1016/s0022-510x(96)00283-3 PubMed DOI

Stampanoni Bassi M, Iezzi E, Drulovic J, Pekmezovic T, Gilio L, Furlan R, et al.. IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis. Front Cell Neurosci. 2020;14:120. doi: 10.3389/fncel.2020.00120 PubMed DOI PMC

Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D, et al.. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS One. 2013;8(4):e61835. doi: 10.1371/journal.pone.0061835 PubMed DOI PMC

Stelmasiak Z, Kozioł-Montewka M, Dobosz B, Rejdak K, Bartosik-Psujek H, Mitosek-Szewczyk K, et al.. Interleukin-6 concentration in serum and cerebrospinal fluid in multiple sclerosis patients. Med Sci Monit. 2000;6(6):1104–8. PubMed

Romme Christensen J, Börnsen L, Hesse D, Krakauer M, Sørensen PS, Søndergaard HB, et al.. Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis. J Neuroinflammation. 2012;9:215. doi: 10.1186/1742-2094-9-215 PubMed DOI PMC

Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol. 2021;354:577520. doi: 10.1016/j.jneuroim.2021.577520 PubMed DOI

Matsushita T, Yanaba K, Bouaziz J-D, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest. 2008;118(10):3420–30. doi: 10.1172/JCI36030 PubMed DOI PMC

Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944–50. doi: 10.1038/ni833 PubMed DOI

Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler. 2017;23(11):1442–52. doi: 10.1177/1352458517709362 PubMed DOI

Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang M-J, et al.. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501. doi: 10.1146/annurev-physiol-012110-142250 PubMed DOI PMC

Starossom SC, Campo Garcia J, Woelfle T, Romero-Suarez S, Olah M, Watanabe F, et al.. Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation. Nat Commun. 2019;10(1):217. doi: 10.1038/s41467-018-08140-7 PubMed DOI PMC

Hinsinger G, Galéotti N, Nabholz N, Urbach S, Rigau V, Demattei C, et al.. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult Scler. 2015;21(10):1251–61. doi: 10.1177/1352458514561906 PubMed DOI

Floro S, Carandini T, Pietroboni AM, De Riz MA, Scarpini E, Galimberti D. Role of Chitinase 3–like 1 as a Biomarker in Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022;9(4):e1164. doi: 10.1212/NXI.0000000000001164 PubMed DOI PMC

Cubas-Núñez L, Gil-Perotín S, Castillo-Villalba J, López V, Solís Tarazona L, Gasqué-Rubio R, et al.. Potential Role of CHI3L1+ Astrocytes in Progression in MS. Neurol Neuroimmunol Neuroinflamm. 2021;8(3):e972. doi: 10.1212/NXI.0000000000000972 PubMed DOI PMC

Modvig S, Degn M, Roed H, Sørensen TL, Larsson HBW, Langkilde AR, et al.. Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Mult Scler. 2015;21(14):1761–70. doi: 10.1177/1352458515574148 PubMed DOI

Cantó E, Tintoré M, Villar LM, Costa C, Nurtdinov R, Álvarez-Cermeño JC, et al.. Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain. 2015;138(4):918–31. doi: 10.1093/brain/awv017 PubMed DOI

Møllgaard M, Degn M, Sellebjerg F, Frederiksen JL, Modvig S. Cerebrospinal fluid chitinase-3-like 2 and chitotriosidase are potential prognostic biomarkers in early multiple sclerosis. Eur J Neurol. 2016;23(5):898–905. doi: 10.1111/ene.12960 PubMed DOI

Comabella M, Sastre-Garriga J, Borras E, Villar LM, Saiz A, Martínez-Yélamos S, et al.. CSF Chitinase 3-Like 2 Is Associated With Long-term Disability Progression in Patients With Progressive Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2021;8(6):e1082. doi: 10.1212/NXI.0000000000001082 PubMed DOI PMC

van Munster CEP, Uitdehaag BMJ. Outcome Measures in Clinical Trials for Multiple Sclerosis. CNS Drugs. 2017;31(3):217–36. doi: 10.1007/s40263-017-0412-5 PubMed DOI PMC

Ferreira-Atuesta C, Reyes S, Giovanonni G, Gnanapavan S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci. 2021;15:642384. doi: 10.3389/fnins.2021.642384 PubMed DOI PMC

Petzold A, Eikelenboom MJ, Keir G, Grant D, Lazeron RHC, Polman CH, et al.. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J Neurol Neurosurg Psychiatry. 2005;76(2):206–11. doi: 10.1136/jnnp.2004.043315 PubMed DOI PMC

Kuhle J, Leppert D, Petzold A, Regeniter A, Schindler C, Mehling M, et al.. Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology. 2011;76(14):1206. doi: 10.1212/WNL.0b013e31821432ff PubMed DOI

Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJA, et al.. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology. 2009;72(15):1322. doi: 10.1212/WNL.0b013e3181a0fe3f PubMed DOI

Petzold A. The prognostic value of CSF neurofilaments in multiple sclerosis at 15-year follow-up. J Neurol Neurosurg Psychiatry. 2015;86(12):1388. doi: 10.1136/jnnp-2014-309827 PubMed DOI

Petzold A, Steenwijk MD, Eikelenboom JM, Wattjes MP, Uitdehaag BMJ. Elevated CSF neurofilament proteins predict brain atrophy: A 15-year follow-up study. Mult Scler. 2016;22(9):1154–62. doi: 10.1177/1352458516645206 PubMed DOI

Eikelenboom MJ, Uitdehaag BMJ, Petzold A. Blood and CSF Biomarker Dynamics in Multiple Sclerosis: Implications for Data Interpretation. Mult Scler Int. 2011;2011:823176. doi: 10.1155/2011/823176 PubMed DOI PMC

Petržalka M. CSF Biomarkers in early MS; 2022 [cited 2022 March 25]. Database: G-Node [Internet]. Available from: 10.12751/g-node.74jj3f. DOI

Reiber H, Otto M, Trendelenburg C, Wormek A. Reporting Cerebrospinal Fluid Data: Knowledge Base and Interpretation Software. Clin Chem Lab Med. 2001;39(4):324–32. doi: 10.1515/CCLM.2001.051 PubMed DOI

Zeman D, Kušnierová P. Detection of oligoclonal IgM in cerebrospinal fluid. Klin Biochem Metab. 2016;24(3):141–6.

Villar LM, González-Porqué P, Masjuán J, Alvarez-Cermeño JC, Bootello A, Keir G. A sensitive and reproducible method for the detection of oligoclonal IgM bands. J Immunol Methods. 2001;258(1):151–5. doi: 10.1016/s0022-1759(01)00492-6 PubMed DOI

Freedman MS, Thompson EJ, Deisenhammer F, Giovannoni G, Grimsley G, Keir G, et al.. Recommended Standard of Cerebrospinal Fluid Analysis in the Diagnosis of Multiple Sclerosis: A Consensus Statement. Arch Neurol. 2005;62(6):865–70. doi: 10.1001/archneur.62.6.865 PubMed DOI

The MathWorks I, Natick, Massachusetts, United States. MATLAB and SPM12 Toolbox. Release 2020a [Software]. 2020 [cited 2022 March 25].

Schmidt P. Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. Dissertation, LMU München. 2017. Available from: https://edoc.ub.uni-muenchen.de/20373/1/Schmidt_Paul.pdf.

De Stefano N, Sprenger T, Sormani MP, Havrdova E, Radue E-W, Bergvall N, et al.. Impact of fingolimod on achieving no evidence of disease activity and worsening (NEDA)-4 in previously treated patients with high disease activity (P3.246). Neurology. 2015;84(14 Supplement):P3.246.

Kappos L, De Stefano N, Freedman MS, Cree BA, Radue E-W, Sprenger T, et al.. Inclusion of brain volume loss in a revised measure of ’no evidence of disease activity’ (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016;22(10):1297–305. doi: 10.1177/1352458515616701 PubMed DOI PMC

Liao W, Lin J-X, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38(1):13–25. doi: 10.1016/j.immuni.2013.01.004 PubMed DOI PMC

Höfer T, Krichevsky O, Altan-Bonnet G. Competition for IL-2 between Regulatory and Effector T Cells to Chisel Immune Responses. Front Immunol. 2012;3:268. doi: 10.3389/fimmu.2012.00268 PubMed DOI PMC

Harbour SN, DiToro DF, Witte SJ, Zindl CL, Gao M, Schoeb TR, et al.. T(H)17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 2020;5(49):eaaw2262. doi: 10.1126/sciimmunol.aaw2262 PubMed DOI PMC

Stampanoni Bassi M, Iezzi E, Landi D, Monteleone F, Gilio L, Simonelli I, et al.. Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. J Neurol. 2018;265(11):2540–7. doi: 10.1007/s00415-018-8994-5 PubMed DOI

Walsh MJ, Tourtellotte WW. Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med. 1986;163(1):41–53. doi: 10.1084/jem.163.1.41 PubMed DOI PMC

Haghighi S, Andersen O, Rosengren L, Bergström T, Wahlström J, Nilsson S. Incidence of CSF abnormalities in siblings of multiple sclerosis patients and unrelated controls. J Neurol. 2000;247(8):616–22. doi: 10.1007/s004150070130 PubMed DOI

Thangarajh M, Gomez-Rial J, Hedström AK, Hillert J, Alvarez-Cermeño JC, Masterman T, et al.. Lipid-specific immunoglobulin M in CSF predicts adverse long-term outcome in multiple sclerosis. Mult Scler. 2008;14(9):1208–13. doi: 10.1177/1352458508095729 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...