Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't
PubMed
25688078
DOI
10.1093/brain/awv017
PII: awv017
Knihovny.cz E-resources
- Keywords
- biomarker, clinically isolated syndrome, disability progression, multiple sclerosis,
- MeSH
- Adipokines biosynthesis cerebrospinal fluid MeSH
- Biomarkers cerebrospinal fluid MeSH
- Demyelinating Diseases cerebrospinal fluid diagnosis MeSH
- Adult MeSH
- Lectins biosynthesis cerebrospinal fluid MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Brain metabolism pathology MeSH
- Follow-Up Studies MeSH
- Prognosis MeSH
- Chitinase-3-Like Protein 1 MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adipokines MeSH
- Biomarkers MeSH
- CHI3L1 protein, human MeSH Browser
- Lectins MeSH
- Chitinase-3-Like Protein 1 MeSH
Chitinase 3-like 1 (CHI3L1) has been proposed as a biomarker associated with the conversion to clinically definite multiple sclerosis in patients with clinically isolated syndromes, based on the finding of increased cerebrospinal fluid CHI3L1 levels in clinically isolated syndrome patients who later converted to multiple sclerosis compared to those who remained as clinically isolated syndrome. Here, we aimed to validate CHI3L1 as a prognostic biomarker in a large cohort of patients with clinically isolated syndrome. This is a longitudinal cohort study of clinically isolated syndrome patients with clinical, magnetic resonance imaging, and cerebrospinal fluid data prospectively acquired. A total of 813 cerebrospinal fluid samples from patients with clinically isolated syndrome were recruited from 15 European multiple sclerosis centres. Cerebrospinal fluid CHI3L1 levels were measured by enzyme-linked immunosorbent assay. Multivariable Cox regression models were used to investigate the association between cerebrospinal fluid CHI3L1 levels and time to conversion to multiple sclerosis and time to reach Expanded Disability Status Scale 3.0. CHI3L1 levels were higher in patients who converted to clinically definite multiple sclerosis compared to patients who continued as clinically isolated syndrome (P = 8.1 × 10(-11)). In the Cox regression analysis, CHI3L1 levels were a risk factor for conversion to multiple sclerosis (hazard ratio = 1.7; P = 1.1 × 10(-5) using Poser criteria; hazard ratio = 1.6; P = 3.7 × 10(-6) for McDonald criteria) independent of other covariates such as brain magnetic resonance imaging abnormalities and presence of cerebrospinal fluid oligoclonal bands, and were the only significant independent risk factor associated with the development of disability (hazard ratio = 3.8; P = 2.5 × 10(-8)). High CHI3L1 levels were associated with shorter time to multiple sclerosis (P = 3.2 × 10(-9) using Poser criteria; P = 5.6 × 10(-11) for McDonald criteria) and more rapid development of disability (P = 1.8 × 10(-10)). These findings validate cerebrospinal fluid CHI3L1 as a biomarker associated with the conversion to multiple sclerosis and development of disability and reinforce the prognostic role of CHI3L1 in patients with clinically isolated syndrome. We propose that determining cerebrospinal fluid chitinase 3-like 1 levels at the time of a clinically isolated syndrome event will help identify those patients with worse disease prognosis.
Departament d'Estadística Facultat de Biologia Universitat de Barcelona Barcelona
Department of Clinical Neurology Innsbruck Medical University Innsbruck Austria
Department of Neurology CSF Laboratory and MS Outpatient Unit University of Ulm Germany
Department of Neurology Erasmus University Medical Centre Rotterdam The Netherlands
Department of Neurology Hospital General Universitario Gregorio Marañón Madrid Spain
Department of Neurology Medical University of Graz Graz Austria
Department of Neurology Medical University of Lublin Lublin Poland
Department of Radiology Innsbruck Medical University Innsbruck Austria
Neuroimmunology Unit and Neurology Service Hospital Universitario Puerta de Hierro Madrid Spain
Neurology and Clinical Neuroimmunology University Hospital University of Basel Basel Switzerland
Pole des Neurosciences and UMR 1043 Hôpital Purpan Université de Toulouse 3 Toulouse France
References provided by Crossref.org