The supercontinent cycle and Earth's long-term climate

. 2022 Sep ; 1515 (1) : 33-49. [epub] 20220628

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35762733

Earth's long-term climate has been profoundly influenced by the episodic assembly and breakup of supercontinents at intervals of ca. 500 m.y. This reflects the cycle's impact on global sea level and atmospheric CO2 (and other greenhouse gases), the levels of which have fluctuated in response to variations in input from volcanism and removal (as carbonate) by the chemical weathering of silicate minerals. Supercontinent amalgamation tends to coincide with climatic cooling due to drawdown of atmospheric CO2 through enhanced weathering of the orogens of supercontinent assembly and a thermally uplifted supercontinent. Conversely, breakup tends to coincide with increased atmospheric CO2 and global warming as the dispersing continental fragments cool and subside, and weathering decreases as sea level rises. Supercontinents may also influence global climate through their causal connection to mantle plumes and large igneous provinces (LIPs) linked to their breakup. LIPs may amplify the warming trend of breakup by releasing greenhouse gases or may cause cooling and glaciation through sulfate aerosol release and drawdown of CO2 through the chemical weathering of LIP basalts. Hence, Earth's long-term climatic trends likely reflect the cycle's influence on sea level, as evidenced by Pangea, whereas its influence on LIP volcanism may have orchestrated between Earth's various climatic states.

Zobrazit více v PubMed

Nance, R. D. , Murphy, J. B. , & Santosh, M. (2014). The supercontinent cycle: A retrospective essay. Gondwana Research, 25, 4–29.

Wegener, A. (1915). Die Entstehung der Kontinente und Ozeane . Sammlung Vieweg (Vol. 23). Braunschweig: Druck and von Freidrich Vieweg.

Wegener, A. (1920). Die Entstehung der Kontinente und Ozeane . Die Wissenschaft Band 66. (2nd ed.). Braunschweig: Druck and von Freidrich Vieweg.

Worsley, T. R. , Moody, J. B. , & Nance, R. D. (1985). Proterozoic to recent tectonic tuning of biogeochemical cycles. In Sundquist, E. T. , & Broecker, W. S. (Eds.), The carbon cycle and atmospheric CO2: Natural variations, Archean to present (pp. 561–572). American Geophysical Union.

Worsley, T. R. , Nance, R. D. , & Moody, J. B. (1986). Tectonic cycles and the history of the earth's biogeochemical and paleoceanographic record. Paleoceanography, 1, 233–263.

Dalziel, I. W. D. (1997). Neoproterozoic–Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin, 108, 16–42.

Rogers, J. J. W. , & Santosh, M. (2003). Supercontinents in Earth history. Gondwana Research, 6, 357–368.

Evans, D. A. D. (2013). Reconstructing pre‐Pangean supercontinents. Geological Society of America Bulletin, 125, 1735–1751.

Stump, E. (1987). Construction of the Pacific margin of Gondwanaland during the Pannotios cycle. In Mckenzie, G. D. (Ed.), Gondwana six: Structure, tectonics and geophysics (pp. 77–87). American Geophysical Union.

Stump, E. (1992). The Ross orogen of the Transantarctic Mountains in the light of the Laurentian–Gondwana split. GSA Today, 2, 25–27.

Powell, C. M. C. A. (1995). Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents? [Comment]. Geology, 23, 1053–1054.

Dalziel, I. W. D. (2013). Antarctica and supercontinental evolution: Clues and puzzles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104, 3–16.

Nance, R. D. , & Murphy, J. B. (2019). Supercontinents and the case for Pannotia, In Wilson, R. W. , Houseman, G. A. , McCaffrey, K. J. W. , Doré, A. G. , & Buiter, S. J. H. (Eds.), Fifty Years of the Wilson Cycle Concept in Plate Tectonics (pp. 65–85), Geological Society of London, Special Publications.

Evans, D. A. D. (2021). Pannotia under prosection. In Murphy, J. B., Strachan, R. A., & Quesada, C. (Eds.), Pannotia to Pangaea: Neoproterozoic and Paleozoic orogenic cycles in the Circum‐Atlantic Region (pp. 63–81). Geological Society, London, Special Publications.

Nance, R. D. , Evans, D. A. D. , & Murphy, J. B. (2023). Pannotia: To be or not to be. In Scotese, C. , Muller, D. , & van Hinsbergen, D. J. J. (Eds.), Plate tectonics, the last 2 billion years: Foundations of the earth system. Earth‐Science Reviews. In press.

McMenamin, M. A. S. , & McMenamin, D. L. S. (1990). The emergence of animals: The Cambrian breakthrough. New York: Columbia University Press.

PubMed

Li, Z. X. , Bogdanova, S. V. , Collins, A. S. , Davidson, A. , De Waele, B. , Ernst, R. E. , Fitzsimons, I. C. W. , Fuck, R. A. , Gladkochub, D. P. , Jacobs, J. , Karlstrom, K. E. , Lu, S. , Natapov, L. M. , Pease, V. , Pisarevsky, S. A. , Thrane, K. , & Vernikovsky, V. (2008). Assembly, configuration, and break‐up history of Rodinia: A synthesis. Precambrian Research, 160, 179–210.

Hoffman, P. F. (1997). Tectonic genealogy of North America. In Van der Pluijm, B. A. , & Marshak, S. (Eds.), Earth structure: An introduction to structural geology and tectonics (pp. 459–464). New York: McGraw‐Hill.

Rogers, J. J. W. , & Santosh, M. (2002). Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5, 5–22.

Zhao, G. , Cawood, P. A. , Wilde, S. A. , & Sun, M. (2002). Review of global 2.1–1.8 Ga collisional orogens and accreted cratons: A pre‐Rodinia supercontinent? Earth‐Science Reviews, 59, 125–162.

Zhao, G. , Sun, M. , Wilde, S. A. , & Li, S. (2004). A Paleo‐Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth‐Science Reviews, 67, 91–123.

Zhang, S. , Li, Z.‐X. , Evans, D. A. D. , Wu, H. , Li, H. , & Dong, J. (2012). Pre‐Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353‐354, 145–155.

Meert, J. G. , & Santosh, M. (2017). The Columbia supercontinent revisited. Gondwana Research, 50, 67–83.

Williams, H. , Hoffman, P. F. , Lewry, J. F. , Monger, J. W. H. , & Rivers, T. (1991). Anatomy of North America: Thematic portrayals of the continent. Tectonophysics, 187, 117–134.

Aspler, L. B. , & Chiarenzelli, J. R. (1998). Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sedimentary Geology, 120, 75–104.

Lubnina, N. V. , & Slabunov, A. I. (2011). Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data. Moscow University Geology Bulletin, 66, 242.

Mints, M. V. , & Eriksson, P. G. (2016). Secular changes in relationships between plate‐tectonic and mantle‐plume engendered processes during Precambrian time. Geodynamics and Tectonophysics, 7, 173–232.

Rogers, J. J. W. (1996). A history of continents in the past three billion years. Journal of Geology, 104, 91–107.

Eriksson, P. G. , Banerjee, S. , Nelson, D. R. , Rigby, M. J. , Catuneanu, O. , Sarkar, S. , Roberts, R. J. , Ruban, D. , Mtimkulu, M. N. , & Sunder Raju, P. V. (2009). A Kaapval craton debate: Nucleus of an early small supercontinent or affected by an enhanced accretion event? Gondwana Research, 15, 354–372.

Nance, R. D. , & Murphy, J. B. (1994). Orogenic style and configuration of supercontinents. In Embry, A. F. , Beauchamp, B. , & Glass, D. J. (Eds.), Pangea: Global environments and resources (pp. 49–65). Canadian Society of Petroleum Geologists.

Brown, M. (2007). Metamorphism, plate tectonics, and the supercontinent cycle. Earth Science Frontiers, 14, 1–18.

Cawood, P. A. , Strachan, R. A. , Pisarevsky, S. A. , Gladkochub, D. P. , & Murphy, J. B. (2016). Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449, 118–126.

Condie, K. C. , Belousova, E. , Griffin, W. L. , & Sircombe, K. N. (2009). Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Research, 15, 228–242.

Condie, K. C. , & Aster, R. C. (2013). Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes. Geoscience Frontiers, 4, 667–680.

Hawkesworth, C. J. , Cawood, P. A. , & Dhuime, B. (2016). Tectonics and crustal evolution. GSA Today, 26, 4–11.

PubMed PMC

Roberts, N. M. W. (1998). Episodic continental growth and supercontinents: A mantle avalanche connection? Earth and Planetary Science Letters, 21, 994–1000.

Condie, K. C. , & Aster, R. C. (2010). Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research, 180, 227–236.

Hawkesworth, C. , Cawood, P. , & Dhuime, B. (2013). Continental growth and the crustal record. Tectonophysics, 609, 651–660.

Van Kranendonk, M. J. , & Kirkland, C. L. (2016). Conditioned duality of the Earth system: Geochemical tracing of the supercontinent cycle through Earth history. Earth‐Science Reviews, 160, 171–187.

Barley, M. E. , & Groves, D. I. (1992). Supercontinent cycles and the distribution of metal deposits through time. Geology, 20, 291–294.

Groves, D. I. (2005). Secular changes in global tectonic processes and their influence on the temporal distribution of gold‐bearing mineral deposits. Economic Geology, 100, 203–224.

Cawood, P. A. , & Hawkesworth, C. J. (2013). Temporal relations between mineral deposits and global tectonic cycles. In Jenkin, G. R. T. , Lusty, P. A. J. , McDonald, I. , Smith, M. P. , Boyce, A. J. , & Wilkinson, J. J. (Eds.), Ore deposits in an evolving Earth (pp. 9–21). Geological Society, London, Special Publications.

Hazen, R. M. , Liu, X.‐M. , Downs, R. T. , Golden, J. , Pires, A. J. , Grew, E. S. , Hystad, G. , Estrada, C. , & Sverjensky, D. A. (2014). Mineral evolution: Episodic metallogenesis, the supercontinent cycle, and the coevolving geosphere and biosphere. Society of Economic Geologists, 18, 1–15.

Bradley, D. C. (2015). Mineral evolution and Earth history. American Mineralogist, 100, 4–5.

Pirajno, F. , & Santosh, M. (2015). Mantle plumes, supercontinents, intracontinental rifting and mineral systems. Precambrian Research, 259, 243–261.

Tkachev, A. V. , & Rundqvist, D. V. (2016). Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity. Geology of Ore Deposits, 58, 263–283.

Yale, L. B. , & Carpenter, S. J. (1998). Large igneous provinces and giant dike swarms: Proxies for supercontinent cyclicity and mantle convection. Earth and Planetary Science Letters, 163, 109–122.

Li, Z.‐X. , & Zhong, S. (2009). Supercontinent–superplume coupling, true polar wander and plume mobility: Plate dominance in whole‐mantle tectonics. Physics of the Earth and Planetary Interiors, 176, 143–156.

Ernst, R. E. , Bleeker, W. , Söderlund, U. , & Kerr, A. C. (2013). Large igneous provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174, 1–14.

Condie, K. , Pisarevsky, S. A. , Korenaga, J. , & Gardoll, S. (2015). Is the rate of supercontinent assembly changing with time? Precambrian Research, 259, 278–289.

Söderlund, U. , Klausen, M. B. , Ernst, R. E. , & Bleeker, W. (2016). New advances in using large igneous provinces (LIPs) to reconstruct ancient supercontinents. Geologiska Foereningens I Stockholm Foerhandlingar, 138, 1–5.

Zhong, S. , Zhang, N. , Li, Z.‐X. , & Roberts, J. H. (2007). Supercontinent cycles, true polar wander, and very long‐wavelength mantle convection. Earth and Planetary Science Letters, 261, 551–564.

Yoshida, M. , & Santosh, M. (2011). Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models. Earth‐Science Reviews, 105, 1–24.

Ganne, J. , Feng, X. , Rey, P. , & De Andrade, V. (2016). Statistical petrology reveals a link between supercontinents cycle and mantle global climate. American Mineralogist, 101, 2768–2773.

Trim, S. J. , & Lowman, J. P. (2016). Interaction between the supercontinent cycle and the evolution of intrinsically dense provinces in the deep mantle. Journal of Geophysical Research, Solid Earth, 121, 8941–8969.

PubMed PMC

Heron, P. J. (2019). Mantle plumes and mantle dynamics in the Wilson cycle. In Wilson, R. W. , Houseman, G. A. , McCaffrey, K. J. W. , Doré, A. G., & Buiter, S. J. H. (Eds.), Fifty years of the Wilson cycle concept in plate tectonics (pp. 87–103.) Geological Society, London, Special Publications.

Doucet, L. S. , Li, Z.‐X. , Ernst, R. E. , Kirscher, U. , El Dien, H. G. , & Mitchell, R. N. (2020). Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology, 48, 159–163.

Worsley, T. R. , Nance, D. , & Moody, J. B. (1984). Global tectonics and eustasy for the past 2 billion years. Marine Geology, 58, 373–400.

Heller, P. L. , & Angevine, C. L. (1985). Sea‐level cycles during the growth of Atlantic‐type oceans. Earth and Planetary Science Letters, 75, 417–426.

Cogné, J.‐P. , & Humler, E. (2008). Global scale patterns of continental fragmentation: Wilson's cycles as a constraint for long‐term sea‐level changes. Earth and Planetary Science Letters, 273, 251–259.

Conrad, C. P. (2013). The solid Earth's influence on sea level. Geological Society of America Bulletin, 125, 1027–1052.

Karlsen, K. S. , Domeier, M. , Gaina, C. , & Conrad, C. P. (2020). A tracer‐based algorithm for automatic generation of seafloor age grids fromplate tectonic reconstructions. Computers & Geosciences, 140, 104508.

Young, A. , Flament, N. , Williams, S. E. , Merdith, A. , Cao, X. , & Müller, R. D. (2022). Long‐term Phanerozoic sea level change from solid Earth processes. Earth and Planetary Science Letters, 584, 117451.

Horita, J. , Zimmermann, H. , & Holland, H. D. (2002). Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporates. Geochimica et Cosmochimica Acta, 66, 3733–3756.

Müller, R. D. , Dutkiewicz, A. , Seton, M. , & Gaina, C. (2013). Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology, 41, 907–910.

Goddéris, Y. , Donnadieu, Y. , Hir, G. L. , Lefebvre, V. , & Nardin, E. (2014). The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth‐Science Reviews, 128, 122–138.

Condie, K. (2001). Precambrian superplumes and supercontinents: A record in black shales, carbon isotopes, and paleoclimates? Precambrian Research, 106, 239–260.

Shields, G. A. (2007). A normalised seawater strontium isotope curve: Possible implications for Neoproterozoic‐Cambrian weathering rates and the further oxygenation of the Earth. eEarth, 2, 35–42.

Algeo, T. J. , Luo, G. M. , Song, H. Y. , Lyons, T. W. , & Canfield, D. E. (2015). Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 12, 2131–2151.

Krapez, B. (1997). Sequence‐stratigraphic concepts applied to the identification of depositional basins and global tectonic cycles. Australian Journal of Earth Sciences, 44, 1–36.

Eriksson, P. G. , Catuneanu, O. , Nelson, D. R. , & Popa, M. (2005). Controls on Precambrian sea level change and sedimentary cyclicity. Sedimentary Geology, 176, 43–65.

Eriksson, P. G. , Banerjee, S. , Catuneanu, O. , Corcoran, P. L. , Eriksson, K. A. , Hiatt, E. E. , Laflamme, M. , Lenhardt, N. , Long, D. G. F. , Miall, A. D. , Mints, M. V. , Pufahl, P. K. , Sarkar, S. , Simpson, E. L. , & Williams, G. E. (2013). Secular changes in sedimentation systems and sequence stratigraphy. Gondwana Research, 24, 468–489.

Worsley, T. R. , & Kidder, D. L. (1991). First‐order coupling of paleogeography and CO2, with global surface temperature and its latitudinal contrast. Geology, 19, 1161–1164.

Lindsay, J. F. , & Brasier, M. D. (2004). The evolution of the Precambrian atmosphere: Carbon isotopic evidence from the Australian continent. In Eriksson, P. G. , Altermann, W. , Nelson, D. R. , Mueller, W. U., & Catuneanu, O. (Eds.), The Precambrian Earth: Tempos and events (pp. 388–403). Amsterdam: Elsevier.

Campbell, I. H. , & Allen, C. M. (2008). Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1, 554–558.

Nance, R. D. , Worsley, T. R. , & Moody, J. B. (1986). Post‐Archean biogeochemical cycles and long‐term episodicity in tectonic process. Geology, 14, 514–518.

Santosh, M. (2010). Supercontinent tectonics and biogeochemical cycle: A matter of ‘life and death’. Geoscience Frontiers, 1, 21–30.

Hoffman, P. F. (1999). The break‐up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. Journal of African Earth Sciences, 28, 17–33.

Eyles, N. (2008). Glacio‐epochs and the supercontinent cycle after ∼ 3.0 Ga: Tectonic boundary conditions for glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 89–129.

Young, G. M. (2013). Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geoscience Frontiers, 4, 247–261.

Jellinek, A. M. , Lenardic, A. , & Pierrehumbert, R. T. (2020). Ice, fire or fizzle: The climate footprint of Earth's supercontinental cycles. Geochemistry, Geophysics, Geosystems, 21, e2019GC008464.

PubMed

PubMed

Lindsay, J. F. , & Brasier, M. D. (2002). Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins. Precambrian Research, 114, 1–34.

Bond, D. P. G. , & Grasby, S. E. (2017). On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 3–29.

Condie, K. C. (2011). The supercontinent cycle. Chapter 8 in Earth as an evolving planetary system (2nd ed., pp. 317–355). Amsterdam: Academic Press.

Bradley, D. C. (2011). Secular trends in the geologic record and the supercontinent cycle. Earth‐Science Reviews, 108, 16–33.

Nance, R. D. , & Murphy, J. B. (2013). Origins of the supercontinent cycle. Geoscience Frontiers, 4, 439–448.

PubMed

Umbgrove, J. H. F. (1947). The pulse of the Earth. The Hague, Netherlands: Martinus Nijhoff.

Holmes, A. (1951). The sequence of Precambrian orogenic belts in south and central Africa. In International Geological Congress. London.

Holmes, A. (1954). Principles of physical geology. London: Thomas Nelson and Sons.

Wilson, A. F. , Compston, W. , Jeffery, P. M. , & Riley, G. H. (1959). Radiometric ages from the Precambrian rocks in Australia. Journal of the Geological Society of Australia, 6, 179–195.

Gastil, R. G. (1960). The distribution of mineral dates in time and space. American Journal of Science, 258, 1–35.

Runcorn, S. K. (1962). Convection currents in the Earth's mantle. Nature, 195, 1248–1249.

Sloss, L. L. (1963). Sequences in the cratonic interior of North America. Geological Society of America Bulletin, 74, 93–114.

Sutton, J. (1963). Long‐term cycles in the evolution of the continents. Nature, 198, 731–735.

Santosh, M. , & Zhao, G. (2009). Supercontinent dynamics. Gondwana Research, 15, 225–227.

Rogers, J. J. W. , & Santosh, M. (2004). Continents and supercontinents. New York: Oxford University Press.

Goldfarb, R. J. , Bradley, D. , & Leach, D. L. (2010). Secular variation in economic geology. Economic Geology, 105, 459–465.

Santosh, M. (2010). A synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment. Journal of Geodynamics, 50, 116–133.

Strand, K. (2012). Global and continental‐scale glaciations on the Precambrian earth. Marine and Petroleum Geology, 33, 69–79.

Cawood, P. A. , Hawkesworth, C. J. , & Dhuime, B. (2013). The continental record and the generation of continental crust. Geological Society of America Bulletin, 125, 14–32.

Spencer, C. J. , Cawood, P. A. , Hawkesworth, C. J. , Raub, T. D. , Prave, A. R. , & Roberts, N. M. W. (2014). Proterozoic onset of crustal reworking and collisional tectonics: Reappraisal of the zircon oxygen isotope record. Geology, 42, 451–454.

Cao, W. , Lee, C.‐T. y. A. , & Lackey, J. S. (2017). Episodic nature of continental arc activity since 750 Ma: A global compilation. Earth and Planetary Science Letters, 461, 85–95.

Brown, M. (2014). The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5, 553–569.

Anderson, D. L. (1982). Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297, 391–393.

Coltice, N. , Bertrand, H. , Rey, P. , Jourdan, F. , Phillips, B. R. , & Ricard, Y. (2009). Global warming of the mantle beneath continents back to the Archaean. Gondwana Research, 15, 254–266.

PubMed

Guillaume, B. , Pochat, S. , Monteux, J. , Husson, L. , & Choblet, G. (2016). Can eustatic charts go beyond first order? Insights from the Permian–Triassic. Lithosphere, 8, 505–518.

Kump, L. R. , Brantley, S. L. , & Arthur, M. A. (2000). Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences, 28, 611–667.

Scotese, C. R. , Song, H. , Mills, B. J. W. , & Van Der Meer, D. G. (2021). Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years. Earth‐Science Reviews, 215, 103503.

Goddéris, Y. , Le Hir, G. , Macouin, M. , Donnadieu, Y. , Hubert‐Théou, L. , Dera, G. , Aretz, M. , Fluteau, F. , Li, Z. X. , & Halverson, G. P. (2017). Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic. Gondwana Research, 42, 151–162.

Paulsen, T. , Deering, C. , Sliwinski, J. , Chatterjee, S. , & Bachman, O. (2022). Continental magmatism and uplift as the primary driver for first‐order oceanic 87Sr/86Sr variability with implications for global climate and atmospheric oxygenation. GSA Today, 32, 4–10.

Bercovici, D. , & Long, M. D. (2014). Slab rollback instability and supercontinent dispersal. Geophysical Research Letters, 41, 6659–6666.

Keppie, F. (2015). How subduction broke up Pangaea with implications for the supercontinent cycle. In Li, Z.‐X. , Evans, D. A. D. , & Murphy, J. B. (Eds.), Supercontinent cycles through Earth history (pp. 265–288). Geological Society, London, Special Publications.

Dal Zilio, L. , Faccenda, M. , & Capitanio, F. (2018). The role of deep subduction in supercontinent breakup. Tectonophysics, 746, 312–324.

Ernst, R. E. , Wingate, M. T. D. , Buchan, K. L. , & Li, Z. X. (2008). Global record of 1600–700 Ma large igneous provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160, 159–178.

Bradley, D. C. (2008). Passive margins through Earth history. Earth‐Science Reviews, 91, 1–26.

Kirschner, J. P. , Kominz, M. A. , & Mwakanyamale, K. E. (2010). Quantifying extension of passive margins: Implications for sea level change. Tectonics, 29, TC4005.

Craig, J. , Thurow, J. , Thusu, B. , Whitham, A. , & Abutarruma, Y. (2009). Global Neoproterozoic petroleum systems: The emerging potential in North Africa. In Craig, J., Thurow, J., Thusu, B., Whitham, A., & Abutarrumam Y. (Eds.), Global Neoproterozoic petroleum systems: The emerging potential in North Africa (pp. 1–25). Geological Society, London, Special Publications.

Gurnis, M. (1988). Large‐scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332, 695–699.

Lowman, J. P. , & Jarvis, G. T. (1999). Effects of mantle heat source distribution on supercontinent stability. Journal of Geophysical Research, Solid Earth, 104, 12733–12746.

Murphy, J. B. , & Nance, R. D. (2003). Do supercontinents introvert or extrovert?: Sm‐Nd isotope evidence. Geology, 31, 873–876.

Vaughan, A. P. M. , & Storey, B. C. (2007). A new supercontinent self‐destruct mechanism: Evidence from the Late Triassic–Early Jurassic. Journal of the Geological Society of London, 164, 383–392.

Padma Rao, B. , & Ravi Kumar, M. (2014). Seismic evidence for slab graveyards atop the core mantle boundary beneath the Indian Ocean Geoid Low. Physics of the Earth and Planetary Interiors, 236, 52–59.

PubMed

Heron, P. J. , Lowman, J. P. , & Stein, C. (2015). Influences on the positioning of mantle plumes following supercontinent formation. Journal of Geophysical Research, Solid Earth, 120, 3628–3648.

Evans, D. A. D. (2003). True polar wander and supercontinents. Tectonophysics, 362, 303–320.

PubMed

Collins, W. J. (2003). Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth and Planetary Science Letters, 205, 225–237.

Zhang, N. , Dang, Z. , Huang, C. , & Li, Z.‐X. (2018). The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geoscience Frontiers, 9, 997–1007.

Niu, Y. (2020). On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes. Journal of Asian Earth Sciences, 194, 104367.

Condie, K. C. , Davaille, A. , Aster, R. C. , & Arndt, N. (2014). Upstairs‐downstairs: Supercontinents and large igneous provinces, are they related? International Geology Review, 57, 1341–1348.

Condie, K. C. , & Puetz, S. J. (2019). Time series analysis of mantle cycles Part II: The geologic record in zircons, large igneous provinces and mantle lithosphere. Geoscience Frontiers, 10, 1327–1336.

Raymo, M. E. , & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359, 117–122.

Goddéris, Y. , Donnadieu, Y. , Lefebvre, V. , Le Hir, G. , & Nardin, E. (2012). Tectonic control of continental weathering, atmospheric CO2, and climate over Phanerozoic times. Comptes Rendus Geosciences, 344, 652–662.

Chamberlin, T. C. (1899). An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. Journal of Geology, 7, 545–584.

Ernst, R. E. , Bond, D. P. G. , Zhang, S.‐H. , Buchan, K. L. , Grasby, S. E. , Youbi, N. , El Bilali, H. , Bekker, A. , & Doucet, L. S. (2021). Large igneous province record through time and implications for secular environmental changes and geological time‐scale boundaries. In Ernst, R. E. , Dickson, A. J. , & Bekker, A. (Eds.), Large igneous provinces: A driver of global environmental and biotic changes (pp. 1–26). AGU Geophysical Monograph.

Ernst, R. E. (2014). Large igneous provinces. Cambridge University Press.

Ernst, R. E. , & Youbi, N. (2017). How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478, 30–52.

PubMed

Vail, P. R. , Mitchum, R. M. Jr. , & Thompson, S. III . (1977). Seismic stratigraphy and global changes of sea level, Part 4: Global cycles of relative changes of sea level. In Payton, C. E. (Ed.), Seismic stratigraphy – Applications to hydrocarbon exploration (pp. 83–97). American Association of Petroleum Geologists.

Hallam, A. (1992). Phanerozoic sea level changes. New York: Columbia University Press.

Berner, R. A. (1999). A new look at the long‐term carbon cycle. GSA Today, 9, 2–6.

Berner, R. A. (2004). The Phanerozoic carbon cycle: CO2 and O2 . Oxford: Oxford University Press.

PubMed

Gaillardet, J. , Dupré, B. , Louvat, P. , & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30.

Brady, P. V. , & Gíslason, S. R. (1997). Seafloor weathering controls on atmospheric CO2 and global climate. Geochimica et Cosmochimica Acta, 61, 965–973.

Gillis, K. M. , & Coogan, L. A. (2011). Secular variation in carbon uptake into the ocean crust. Earth and Planetary Science Letters, 302, 385–392.

Coogan, L. A. , & Dosso, S. E. (2015). Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr‐isotopic composition of seawater. Earth and Planetary Science Letters, 415, 38–46.

Lee, C.‐T. A. , Shen, B. , Slotnick, B. S. , Liao, K. , Dickens, G. R. , Yokoyama, Y. , Lenardic, A. , Dasgupta, R. , Jellinek, M. , Lackey, J. S. , Schneider, T. , & Tice, M. M. (2013). Continental arc–island arc fluctuations, growth of crustal carbonates, and long‐term climate change. Geosphere, 9, 21–36.

West, A. J. (2012). Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon‐cycle feedbacks. Geology, 40, 811–814.

Fielding, C. R. , Frank, T. D. , & Isbell, J. L. (2008). The late Palaeozoic ice age: A review of current understanding and synthesis of global climate patterns. In Fielding, C. R. , Frank, T. D. , & Isbell, J. L. (Eds.), Resolving the late Paleozoic ice age in time and space (pp. 343–354). Geological Society of America.

Montañez, I. P. , & Poulsen, C. J. (2013). The Late Palaeozoic Ice Age: An evolving paradigm. Annual Review of Earth and Planetary Sciences, 41, 629–656.

Prave, A. R. , Condon, D. J. , Hoffmann, K. H. , Tapster, S. , & Fallick, A. E. (2016). Duration and nature of the end‐Cryogenian (Marinoan) glaciation. Geology, 44, 631–634.

Hoffman, P. F. , & Li, Z.‐X. (2009). A palaeogeographic context for Neoproterozoic glaciations. Palaeogeography, Palaeoclimatology, Palaeoecology, 277, 158–172.

Hebert, C. L. , Kaufman, A. J. , Penniston‐Dorland, S. C. , & Martin, A. J. (2010). Radiometric and stratigraphic constraints on terminal Ediacaran (post‐Gaskiers) glaciation and metazoan evolution. Precambrian Research, 182, 402–412.

Pu, J. P. , Bowring, S. A. , Ramezani, J. , Myrow, P. , Raub, T. D. , Landing, E. d. , Mills, A. , Hodgin, E. , & Macdonald, F. A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44, 955–958.

Hebert, C. L. , Kaufman, A. J. , Penniston‐Dorland, S. C. , & Martin, A. J. (2018). A ∼565 Ma old glaciation in the Ediacaran of peri‐Gondwanan West Africa. International Journal of Earth Sciences, 182, 402–412.

Rooney, A. D. , Strauss, J. V. , Brandon, A. D. , & Macdonald, F. A. (2015). A Cryogenian chronology: Two long‐lasting, synchronous Neoproterozoic snowball Earth glaciations. Geology, 43, 459–462.

Cox, G. M. , Isakson, V. , Hoffman, P. F. , Gernon, T. M. , Schmitz, M. D. , Shahin, S. , Collins, A. S. , Preiss, W. , Blades, M. L. , Mitchell, R. N. , & Nordsvan, A. (2018). South Australian U‐Pb zircon (CA‐ID‐TIMS) age supports globally synchronous Sturtian deglaciation. Precambrian Research, 315, 257–263.

Lan, Z. , Huyskens, M. H. , Lu, K. , Li, X.‐H. , Zhang, G. , Lu, D. , & Yin, Q.‐Z. (2020). Toward refining the onset age of Sturtian glaciation in South China. Precambrian Research, 338, 105555.

Brasier, A. T. , Martin, A. P. , Melezhik, V. A. , Prave, A. R. , Condon, D. J. , & Fallick, A. E. (2013). Earth's earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia. Precambrian Research, 235, 278–294.

Rasmussen, B. , Bekker, A. , & Fletcher, I. R. (2013). Correlation of Paleoproterozoic glaciations based on U‐Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth and Planetary Science Letters, 382, 173–180.

Tang, H. , & Chen, Y. (2013). Global glaciations and atmospheric change at ca. 2.3 Ga. Geoscience Frontiers, 4, 583–596.

Von Brunn, V. , & Gold, D. J. C. (1993). Diamictite in the Archaean Pongola sequence of southern Africa. Journal of African Earth Sciences, 16, 367–374.

Young, G. M. , Brunn, V. V. , Gold, D. J. C. , & Minter, W. E. L. (1998). Earth's oldest reported glaciation: Physical and chemical evidence from the Archean Mozaan Group (∼2.9 Ga) of South Africa. Journal of Geology, 106, 523–538.

Luskin, C. , Wilson, A. , Gold, D. , & Hofmann, A. (2019). The Pongola Supergroup: Mesoarchaean deposition following Kaapvaal Craton stabilization. In Kröner, A. , & Hofmann, A. (Eds.), The Archaean geology of the Kaapvaal Craton, Southern Africa (pp. 225–254). Amsterdam: Springer.

Young, G. M. (2019). Aspects of the Archean‐Proterozoic transition: How the great Huronian Glacial Event was initiated by rift‐related uplift and terminated at the rift‐drift transition during break‐up of Lauroscandia. Earth‐Science Reviews, 190, 171–189.

Eyles, N. (1993). Earth's glacial record and its tectonic setting. Earth‐Science Reviews, 35, 1–248.

Young, G. M. (1995). Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents? Geology, 23, 153–156.

Delabroye, A. , & Vecoli, M. (2010). The end‐Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy. Earth‐Science Reviews, 98, 269–282.

Finlay, A. J. , Selby, D. , & Gröcke, D. R. (2010). Tracking the Hirnantian glaciation using Os isotopes. Earth and Planetary Science Letters, 293, 339–348.

PubMed PMC

Holland, H. D. (2002). Volcanic gases, black smokers, and the Great Oxidation Event. Geochimica et Cosmochimica Acta, 66, 3811–3826.

PubMed

Ciborowski, T. J. R. , & Kerr, A. C. (2016). Did mantle plume magmatism help trigger the Great Oxidation Event? Lithos, 246–247, 128–133.

Beukes, N. J. , Dorland, H. , Gutzmer, J. , Nedachi, M. , & Ohmoto, H. (2002). Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology, 30, 491–494.

Gaucher, C. , & Frei, R. (2018). The Archean‐Proterozoic boundary and the Great Oxidation Event. In Sial, A. N. , Gaucher, C. , Ramkumar, M. , & Ferreira, V. P. (Eds.), Chemostratigraphy across major chronological boundaries (pp. 35–45). American Geophysical Union.

Kump, L. R. , Fallick, A. E. , Melezhik, V. A. , Strauss, H. , & Lepland, A. (2013). The Great Oxidation Event. In Melezhik, V. , Prave, A. R. , Hanski, E. J. , Fallick, A. E., Lepland, A., Kump, L. R., & Strauss, H. (Eds.), Reading the archive of Earth's oxygenation. Frontiers in Earth sciences (pp. 1517–1533). Heidelberg: Springer.

Eriksson, P. G. , & Cheney, E. S. (1992). Evidence for the transition to an oxygen‐rich atmosphere during the evolution of red beds in the Lower Proterozoic sequences of southern Africa. Precambrian Research, 54, 257–269.

PubMed

Hoffman, P. F. (2013). The Great Oxidation and a Siderian snowball Earth: MIF‐S based correlation of Paleoproterozoic glacial epochs. Chemical Geology, 362, 143–156.

Bekker, A. , Kaufman, A. , Karhu, J. , & Eriksson, K. (2005). Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137, 167–206.

PubMed PMC

Tajika, E. , & Harada, M. (2019). Great Oxidation Event and snowball Earth. In Yamagishi, A. , Kakegawa, T. , & Usui, T. (Eds.), Astrobiology (pp. 261–271). Singapore: Springer.

Kirschvink, J. L. (1992). Late Proterozoic low‐latitude global glaciation: The snowball Earth. In Schopf, J. W. , & Klein, C. (Eds.), The Proterozoic biosphere: A multidisciplinary study (pp. 51–52). Cambridge University Press.

Hoffman, P. F. , & Schrag, D. P. (2002). The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129–155.

Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619.

Sellers, W. D. (1969). A global climatic model based on the energy balance of the Earth‐atmosphere system. Journal of Applied Meteorology, 8, 392–400.

PubMed PMC

Macdonald, F. A. , Schmitz, M. D. , Strauss, J. V. , Halverson, G. P. , Gibson, T. M. , Eyster, A. , Cox, G. , Mamrol, P. , & Crowley, J. L. (2018). Cryogenian of Yukon. Precambrian Research, 319, 114–143.

PubMed

Kirschvink, J. L. , & Raub, T. D. (2003). A methane fuse for the Cambrian explosion: Carbon cycles and true polar wander. Comptes Rendus Geoscience, 335, 65–78.

Condie, K. C. (2004). Supercontinents and superplume events: Distinguishing signals in the geologic record. Physics of the Earth and Planetary Interiors, 146, 319–332.

Coppold, M. , & Powell, W. (2006). A geoscience guide to the Burgess Shale: Geology and paleontology in Yoho National Park (2nd ed.). Field, BC: Burgess Shale Geoscience Foundation.

Hay, W. W. (2016). Experimenting on a small planet: A history of scientific discoveries, a future of climate change and global warming (2nd ed.). Basel: Springer.

Cohen, A. S. , Coe, A. L. , Harding, S. M. , & Schwark, L. (2004). Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology, 32, 157–160.

Wignall, P. B. (2005). The timing of paleoenvironmental change and cause‐and‐effect relationships during the early Jurassic mass extinction in Europe. American Journal of Science, 305, 1014–1032.

PubMed

Bryan, S. E. , & Ferrari, L. (2013). Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geological Society of America Bulletin, 125, 1053–1078.

Wang, Y. U. , Santosh, M. , Luo, Z. , & Hao, J. (2015). Large igneous provinces linked to supercontinent assembly. Journal of Geodynamics, 85, 1–10.

Dalziel, I. W. D. , Lawver, L. A. , & Murphy, J. B. (2000). Plumes, orogenesis, and supercontinental fragmentation. Earth and Planetary Science Letters, 178, 1–11.

Santosh, M. , Maruyama, S. , & Yamamoto, S. (2009). The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research, 15, 324–341.

Ernst, R. , & Bleeker, W. (2010). Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences, 47, 695–739.

Klausen, M. B. (2020). Conditioned duality between supercontinental ‘assembly’ and ‘breakup’ LIPs. Geoscience Frontiers, 11, 1635–1649.

Pastor‐Galán, D. , Nance, R. D. , Murphy, J. B. , & Spencer, C. J. (2019). Supercontinents: Myths, mysteries, and milestones. In Wilson, R. W. , Houseman, G. A. , & McCaffrey, K. J. W. , Doré, A. G., & Buiter, S. J. H. (Eds.), Fifty years of the Wilson cycle concept in plate tectonics (pp. 39–64). Geological Society, London, Special Publications.

Puetz, S. J. , & Condie, K. C. (2019). Time series analysis of mantle cycles Part I: Periodicities and correlations among seven global isotopic databases. Geoscience Frontiers, 10, 1305–1326.

Condie, K. C. , Pisarevsky, S. A. , & Puetz, S. J. (2021). LIPs, orogens and supercontinents: The ongoing saga. Gondwana Research, 96, 105–121.

Torsvik, T. H. , Smethurst, M. A. , Burke, K. , & Steinberger, B. (2006). Large igneous provinces generated from the margins of the large low velocity provinces in the deep mantle. Geophysical Journal International, 167, 1447–1460.

PubMed

Burke, K. , Steinberger, B. , Torsvik, T. H. , & Smethurst, M. A. (2008). Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth and Planetary Science Letters, 265, 49–60.

Condie, K. C. (2001). Mantle plumes and their record in Earth history. Cambridge University Press.

Ernst, R. E. , & Buchan, K. L. (2003). Recognizing mantle plumes in the geological record. Annual Review of Earth and Planetary Sciences, 31, 469–523.

Guzewich, S. D. , Oman, L. D. , Richardson, J. A. , Whelley, P. L. , Bastelberger, S. T. , Young, K. E. , Bleacher, J. E. , Fauchez, T. J. , & Kopparapu, R. K. (2022). Volcanic climate warming through radiative and dynamical feedbacks of SO2 emissions. Geophysical Research Letters, 49, e2021GL096612.

Ganino, C. , & Arndt, N. T. (2009). Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology, 37, 323–326.

Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth‐Science Reviews, 53, 1–33.

Courtillot, V. , & Renne, P. R. (2003). On the ages of flood basalt events. Comptes Rendus Geoscience, 335, 113–140.

Kiselev, A. I. , Ernst, R. E. , Yarmolyuk, V. V. , & Egorov, K. N. (2012). Radiated rifts and dyke swarms of the Middle Paleozoic Yakutsk plume of eastern Siberian craton. Journal of Asian Earth Sciences, 45, 1–16.

Ernst, R. E. , Rodygin, S. A. , & Grinev, O. M. (2020). Age correlation of large igneous provinces with Devonian biotic crises. Global and Planetary Change, 185, 103097.

Zhou, M.‐F. U. , Malpas, J. , Song, X.‐Y. , Robinson, P. T. , Sun, M. , Kennedy, A. K. , Lesher, C. M. , & Keays, R. R. (2002). A temporal link between the Emeishan large igneous province (SW China) and the end‐Guadalupian mass extinction. Earth and Planetary Science Letters, 196, 113–122.

Ivanov, A. V. , He, H. , Yan, L. , Ryabov, V. V. , Shevko, A. Y. , Palesskii, S. V. , & Nikolaeva, I. V. (2013). Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo‐Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth‐Science Reviews, 122, 58–76.

Black, B. A. , Neely, R. R. , Lamarque, J.‐F. , Elkins‐Tanton, L. T. , Kiehl, J. T. , Shields, C. A. , Mills, M. J. , & Bardeen, C. (2018). Systemic swings in end‐Permian climate from Siberian Traps carbon and sulfur outgassing. Nature Geoscience, 11, 949–954.

PubMed

Percival, L. M. E. , Witt, M. L. I. , Mather, T. A. , Hermoso, M. , Jenkyns, H. C. , Hesselbo, S. P. , Al‐Suwaidi, A. H. , Storm, M. S. , Xu, W. , & Ruhl, M. (2015). Globally enhanced mercury deposition during the end‐Pliensbachian extinction and Toarcian OAE: A link to the Karoo–Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428, 267–280.

PubMed

Bond, D. P. G. , & Wignall, P. B. (2014). Large igneous provinces and mass extinctions: An update. In Keller, G. , & Kerr, A. C. (Eds.), Volcanism, impacts, and mass extinctions: Causes and effects (pp. 29–55). Geological Society of America.

PubMed

Schrag, D. P. , Berner, R. A. , Hoffman, P. F. , & Halverson, G. P. (2002). On the initiation of a snowball Earth. Geochemistry, Geophysics, Geosystems, 3, 1–21.

Goddéris, Y. , Donnadieu, Y. , Nédélec, A. , Dupré, B. , Dessert, C. , Grard, A. , Ramstein, G. , & François, L. M. (2003). The Sturtian ‘snowball’ glaciation: Fire and ice. Earth and Planetary Science Letters, 211, 1–12.

Cox, G. M. , Halverson, G. P. , Stevenson, R. K. , Vokaty, M. , Poirier, A. , Kunzmann, M. , Li, Z.‐X. , Denyszyn, S. W. , Strauss, J. V. , & Macdonald, F. A. (2016). Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446, 89–99.

Tabor, C. R. , Feng, R. , & Otto‐Bliesner, B. L. (2019). Climate responses to the splitting of a supercontinent: Implications for the breakup of Pangea. Geophysical Research Letters, 46, 6059–6068.

Foley, B. J. , & Driscoll, P. E. (2016). Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution. Geochemistry, Geophysics, Geosystems, 17, 1885–1914.

Cordani, U. G. , D'agrella‐Filho, M. S. , Brito‐Neves, B. B. , & Trindade, R. I. F. (2003). Tearing up Rodinia: The Neoproterozoic palaeogeography of South American cratonic fragments. Terra Nova, 15, 350–359.

Rainbird, R. , Cawood, P. A. , & Gehrels, G. (2012). The great Grenvillian sedimentation episode: Record of supercontinent Rodinia's assembly. In Busby, C. , & Azor, A. (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 585–601). Chichester: Wiley‐Blackwell.

Slabunov, A. I. , Guo, J. , Balagansky, V. V. , Lubnina, N. V. , & Zhang, L. (2017). Early Precambrian crustal evolution of the Belomorian and Trans‐North China orogens and supercontinents reconstruction. Geodynamics and Tectonophysics, 8, 569–572.

Royer, D. L. , Berner, R. A. , Montañez, I. P. , Neil, J. T. , & Beerling, D. J. (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today, 14, 4–10.

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...