Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35770470
PubMed Central
PMC9616582
DOI
10.33549/physiolres.934887
PII: 934887
Knihovny.cz E-zdroje
- MeSH
- fosfeny MeSH
- lidé MeSH
- přímá transkraniální stimulace mozku * MeSH
- retina MeSH
- světelná stimulace metody MeSH
- zrakové korové centrum * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Phosphene is the experience of light without natural visual stimulation. It can be induced by electrical stimulation of the retina, optic nerve or cortex. Induction of phosphenes can be potentially used in assistive devices for the blind. Analysis of phosphene might be beneficial for practical reasons such as adjustment of transcranial alternating current stimulation (tACS) frequency and intensity to eliminate phosphene perception (e.g., tACS studies using verum tACS group and sham group) or, on the contrary, to maximize perception of phosphenes in order to be more able to study their dynamics. In this study, subjective reports of 50 healthy subjects exposed to different intensities of retinal tACS at 4 different frequencies (6, 10, 20 and 40 Hz) were analyzed. The effectiveness of different tACS frequencies in inducing phosphenes was at least 92 %. Subject reported 41 different phosphene types; the most common were light flashes and light circles. Changing the intensity of stimulation often induced a change in phosphene attributes. Up to nine phosphene attributes changed when the tACS intensity was changed. Significant positive correlation was observed between number of a different phosphene types and tACS frequency. Based on these findings, it can be concluded that tACS is effective in eliciting phosphenes whose type and attributes change depending on the frequency and intensity of tACS. The presented results open new questions for future research.
Zobrazit více v PubMed
Salari V, Scholkmann F, Vimal RLP, Császár N, Aslani M, Bókkon I. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence. Prog Retin Eye Res. 2017;60:101–119. doi: 10.1016/j.preteyeres.2017.07.001. PubMed DOI
Ashtari M, Cyckowski L, Yazdi A, Viands A, Marshall K, Bókkon I, Maguire A, Bennett J. fMRI of retina-originated phosphenes experienced by patients with leber congenital amaurosis. PLoS One. 2014;9(1):1–12. doi: 10.1371/journal.pone.0086068. PubMed DOI PMC
Aurora SK, Welch KMA, Al-Sayed F. The threshold for phosphenes is lower in migraine. Cephalalgia. 2003;23(4):258–263. doi: 10.1046/j.1468-2982.2003.00471.x. PubMed DOI
American S, America N, American S. Gerald Oster Source: Scientific American, Vol. 222, No. 2 (February 1970), pp . 82–87 Published by : Scientific American, a division of Nature America, Inc. 1970;222(2):82–87. doi: 10.1038/scientificamerican0270-82. DOI
Pai AV, Bellare J, Gandhi TK. Chemoretina: An alternate approach to retinal prosthesis: Visual stimulation strategy using chemicals. 2016 IEEE Annu India Conf INDICON 2016; DOI
Schutter DJLG, Hortensius R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol. 2010;121(7):1080–1084. doi: 10.1016/j.clinph.2009.10.038. PubMed DOI
Evans ID, Palmisano S, Croft RJ. Retinal and Cortical Contributions to Phosphenes During Transcranial Electrical Current Stimulation. Bioelectromagnetics. 2021;42(2):146–158. doi: 10.1002/bem.22317. PubMed DOI
Jang J, Kim H, Song YM, Park J-U. Implantation of electronic visual prosthesis for blindness restoration. Opt Mater Express. 2019;9(10):3878. doi: 10.1364/OME.9.003878. DOI
Billock VA, Tsou BH. Elementary visual hallucinations and their relationships to neural pattern-forming mechanisms. Psychol Bull. 2012;138(4):744–774. doi: 10.1037/a0027580. PubMed DOI
Luft CDB, Zioga I, Banissy MJ, Bhattacharya J. Spontaneous visual imagery during meditation for creating visual art: An EEG and brain stimulation case study. Front Psychol. 2019;10(FEB):1–14. doi: 10.3389/fpsyg.2019.00210. PubMed DOI PMC
Evans ID, Palmisano S, Loughran SP, Legros A, Croft RJ. Frequency-dependent and montage-based differences in phosphene perception thresholds via transcranial alternating current stimulation. Bioelectromagnetics. 2019;40(6):365–374. doi: 10.1002/bem.22209. PubMed DOI
Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–187. doi: 10.1038/s41593-017-0054-4. PubMed DOI
Kohútová B, Fricová J, Klírová M, Novák T, Rokyta R. Theta burst stimulation in the treatment of chronic orofacial pain: A randomized controlled trial. Physiol Res. 2017;66(6):1041–1047. doi: 10.33549/physiolres.933474. PubMed DOI
Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22(14):1314–1318. doi: 10.1016/j.cub.2012.05.021. PubMed DOI
Antal A, Paulus W. Transcranial alternating current stimulation (tACS) Front Hum Neurosci. 2013;7(JUN):1–4. doi: 10.3389/fnhum.2013.00317. PubMed DOI PMC
Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek J, Johnson M, Opitz A. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. bioRxiv. 2019:1–9. doi: 10.1101/696344. PubMed DOI PMC
Kasten FH, Herrmann CS. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front Hum Neurosci. 2017;11(January):1–16. doi: 10.3389/fnhum.2017.00002. PubMed DOI PMC
Kanamaru M, Tan PX, Kamioka E. Clarification of Perceived Phosphenes Positions by tACS considering Electrical Current flow and Exposed Visual Retinae. IEEE Reg 10 Humanit Technol Conf R10-HTC. 2020; 2020-Decem; DOI
Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol. 2010;121(9):1551–1554. doi: 10.1016/j.clinph.2010.03.022. PubMed DOI
Kvašňák E. Perception and pain thresholds of tDCS and tACS. Physiol Res. 2019;68(December 2019):S427–S431. doi: 10.33549/physiolres.934381. PubMed DOI
Kvasnak E, Haugen KH. Sensation and pain thresholds of transcranial stimulation with direct and alternating electric current. EMF-Med 2018 - 1st EMF-Med World Conf Biomed Appl Electromagn Fields COST EMF-MED Final Event with 6th MCM; DOI
Turi Z, Ambrus GG, Janacsek K, Emmert K, Hahn L, Paulus W, Antal A. Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation. Restor Neurol Neurosci. 2013;31(3):275–285. doi: 10.3233/RNN-120297. PubMed DOI
Kar K, Krekelberg B. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol. 2012;108(8):2173–2178. doi: 10.1152/jn.00505.2012. PubMed DOI PMC
Othmer S, Othmer SF. Toward a frequency-based theory of neurofeedback. 2017. DOI
Allefeld C, Pütz P, Kastner K, Wackermann J. Flicker-light induced visual phenomena: Frequency dependence and specificity of whole percepts and percept features. Conscious Cogn. 2011;20(4):1344–1362. doi: 10.1016/j.concog.2010.10.026. PubMed DOI
Chen X, Wang F, Fernandez E, Roelfsema PR. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science. 2020;370(6521):1191–1196. doi: 10.1126/science.abd7435. PubMed DOI
Laakso I, Hirata A. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. J Neural Eng. 2013;10(4) doi: 10.1088/1741-2560/10/4/046009. PubMed DOI
Fiene M, Schwab BC, Misselhorn J, Herrmann CS, Schneider TR, Engel AK. Phase-specific manipulation of rhythmic brain activity by transcranial alternating current stimulation. Brain Stimul. 2020;13(5):1254–1262. doi: 10.1016/j.brs.2020.06.008. PubMed DOI
VanToi V, Riva CE. Variations of blood flow at optic nerve head induced by sinusoidal flicker stimulation in cats. J Physiol. 1995:189–202. doi: 10.1113/jphysiol.1995.sp020509. PubMed DOI PMC
Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-Dependent Electrical Stimulation of the Visual Cortex. Curr Biol. 2008;18(23):1839–1843. doi: 10.1016/j.cub.2008.10.027. PubMed DOI
Dugué L, Marque P, VanRullen R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci. 2011;31(33):11889–11893. doi: 10.1523/JNEUROSCI.1161-11.2011. PubMed DOI PMC
Terhune DB, Murray E, Near J, Stagg CJ, Cowey A, Kadosh RC. Phosphene perception relates to visual cortex glutamate levels and covaries with atypical visuospatial awareness. Cereb Cortex. 2015;25(11):4341–4350. doi: 10.1093/cercor/bhv015. PubMed DOI PMC
Groppe DM, Bickel S, Keller CJ, Jain SK, Hwang ST, Harden C, Mehta AD. Dominant frequencies of resting human brain activity as measured by the electrocorticogram. Neuroimage. 2013;79:223–233. doi: 10.1016/j.neuroimage.2013.04.044. PubMed DOI PMC
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a rKlimesch, W (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 1999;29(2–3):169–195. doi: 10.1016/S0165-0173(98)00056-3. PubMed DOI
Ray S, Niebur E, Hsiao SS, Sinai A, Crone NE. High-frequency gamma activity (80–150 Hz) is increased in human cortex during selective attention. Clin Neurophysiol. 2008;119(1):116–133. doi: 10.1016/j.clinph.2007.09.136. PubMed DOI PMC
Lisman J. Working memory: The importance of theta and gamma oscillations. Curr Biol. 2010;20(11):R490–R492. doi: 10.1016/j.cub.2010.04.011. PubMed DOI
Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425(6961):954–956. doi: 10.1038/nature02078. PubMed DOI
Plevkova J, Brozmanova M, Harsanyiova J, Honetschlager J, Buday T. Various Aspects of Sex and Gender Bias in Biomedical Research. Physiol Res. 2020;69(3):S367–S378. doi: 10.33549/physiolres.934593. PubMed DOI PMC
Ostatníková D, Lakatošová S, Babková J, Hodosy J, Celec P. Testosterone and the Brain: From Cognition to Autism. Physiol Res. 2021;69(Suppl 3):S403–S419. doi: 10.33549/10.33549/physiolres.93459240. PubMed DOI PMC
Tonhajzerova I, Mestanik M. New perspectives in the model of stress response. Physiol Res. 2017;66(2):S173–S185. doi: 10.33549/physiolres.933674. PubMed DOI