What can neurofeedback and transcranial alternating current stimulation reveal about cross-frequency coupling?

. 2025 ; 19 () : 1465773. [epub] 20250212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40012676

In recent years, the dynamics and function of cross-frequency coupling (CFC) in electroencephalography (EEG) have emerged as a prevalent area of investigation within the research community. One possible approach in studying CFC is to utilize non-invasive neuromodulation methods such as transcranial alternating current stimulation (tACS) and neurofeedback (NFB). In this study, we address (1) the potential applicability of single and multifrequency tACS and NFB protocols in CFC research; (2) the prevalence of CFC types, such as phase-amplitude or amplitude-amplitude CFC, in tACS and NFB studies; and (3) factors that contribute to inter- and intraindividual variability in CFC and ways to address them potentially. Here we analyzed research studies on CFC, tACS, and neurofeedback. Based on current knowledge, CFC types have been reported in tACS and NFB studies. We hypothesize that direct and indirect effects of tACS and neurofeedback can induce CFC. Several variability factors such as health status, age, fatigue, personality traits, and eyes-closed (EC) vs. eyes-open (EO)condition may influence the CFC types. Modifying the duration of the tACS and neurofeedback intervention and selecting a specific demographic experimental group could reduce these sources of CFC variability. Neurofeedback and tACS appear to be promising tools for studying CFC.

Zobrazit více v PubMed

Agnoli S., Zanon M., Mastria S., Avenanti A., Corazza G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia 118, 99–106. doi: 10.1016/j.neuropsychologia.2018.02.015, PMID: PubMed DOI

Ahn S., Mellin J. M., Alagapan S., Alexander M. L., Gilmore J. H., Jarskog L. F., et al. . (2019). Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. NeuroImage 186, 126–136. doi: 10.1016/j.neuroimage.2018.10.056, PMID: PubMed DOI PMC

Alagapan S., Schmidt S. L., Lefebvre J., Hadar E. (2016). Modulation of cortical oscillations by low- frequency direct cortical stimulation is state-dependent. PLoS Biol. 14:e1002424. doi: 10.1371/journal.pbio.1002424, PMID: PubMed DOI PMC

Alexander M. L., Alagapan S., Lugo C. E., Mellin J. M., Lustenberger C., Rubinow D. R., et al. . (2019). Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl. Psychiatry 9:106. doi: 10.1038/s41398-019-0439-0, PMID: PubMed DOI PMC

Ancoli S., Kamiya J. (1978). Methodological issues in alpha biofeedback training. Biofeedback Self Regul. 3, 159–183. doi: 10.1007/BF00998900, PMID: PubMed DOI

Andino-Pavlovsky V., Souza A. C., Scheffer-Teixeira R., Tort A. B. L., Etchenique R., Ribeiro S. (2017). Dopamine modulates delta-gamma phase-amplitude coupling in the prefrontal cortex of behaving rats. Front. Neural Circuits 11. doi: 10.3389/fncir.2017.00029, PMID: PubMed DOI PMC

Antal A., Alekseichuk I., Bikson M., Brockmöller J., Brunoni A. R., Chen R., et al. . (2017). Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 128, 1774–1809. doi: 10.1016/j.clinph.2017.06.001, PMID: PubMed DOI PMC

Antal A., Herrmann C. S. (2016). Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016, 1–12. doi: 10.1155/2016/3616807, PMID: PubMed DOI PMC

Antal A., Paulus W. (2013). Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 7, 1–4. doi: 10.3389/fnhum.2013.00317, PMID: PubMed DOI PMC

Arns M., de Ridder S., Strehl U., Breteler M., Coenen A. (2009). Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40, 180–189. doi: 10.1177/155005940904000311, PMID: PubMed DOI

Bagherzadeh Y., Baldauf D., Pantazis D., Desimone R. (2020). Alpha synchrony and the Neurofeedback control of spatial attention. Neuron 105, 577–587.e5. doi: 10.1016/j.neuron.2019.11.001, PMID: PubMed DOI

Bazanova O. M., Mernaya E. M., Shtark M. B. (2009). Biofeedback in psychomotor training. Electrophysiolog. Basis. 39, 437–447. doi: 10.1007/s11055-009-9157-z PubMed DOI

Berger A. M., Davelaar E. J. (2018). Frontal alpha oscillations and attentional control: A virtual reality Neurofeedback study. Neuroscience 378, 189–197. doi: 10.1016/j.neuroscience.2017.06.007, PMID: PubMed DOI

Berger A., Pixa N. H., Steinberg F., Doppelmayr M. (2018). Brain oscillatory and hemodynamic activity in a bimanual coordination task following transcranial alternating current stimulation (tACS): A combined EEG-fNIRS study. Front. Behav. Neurosci. 12, 1–17. doi: 10.3389/fnbeh.2018.00067, PMID: PubMed DOI PMC

Biel A. L., Minarik T., Sauseng P. (2021). EEG cross-frequency phase synchronization as an index of memory matching in visual search. NeuroImage 235:117971. doi: 10.1016/j.neuroimage.2021.117971, PMID: PubMed DOI

Bjekić J., Živanović M., Stanković M., Paunović D., Konstantinović U., Filipović S. R. (2024). The subjective experience of transcranial electrical stimulation: a within-subject comparison of tolerability and side effects between tDCS, tACS, and otDCS. Front. Hum. Neurosci. 18:1468538. doi: 10.3389/fnhum.2024.1468538, PMID: PubMed DOI PMC

Bland N. S., Sale M. V. (2019). Current challenges: the ups and downs of tACS. Exp. Brain Res. 237, 3071–3088. doi: 10.1007/s00221-019-05666-0, PMID: PubMed DOI

Bramson B., den Ouden H., Toni I., Roelofs K. (2020). Improving emotional-action control by targeting long-range phase-amplitude neuronal coupling. bioRxiv, 1–19. doi: 10.1101/2020.06.04.129569 PubMed DOI PMC

Brignani D., Ruzzoli M., Mauri P., Miniussi C. (2013). Is transcranial alternating current stimulation effective in modulating brain oscillations? PLoS One 8:e56589. doi: 10.1371/journal.pone.0056589, PMID: PubMed DOI PMC

Buzsáki G. (2006). Rhythms of the Brain. New York: Oxford University Press. p. 464. Available at: https://faculty.washington.edu/seattle/brain-physics/textbooks/buzsaki.pdf

Canolty R. T., Knight R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515. doi: 10.1016/j.tics.2010.09.001, PMID: PubMed DOI PMC

Carlson J., Ross G. W. (2021). Neurofeedback impact on chronic headache, sleep, and attention disorders experienced by veterans with mild traumatic brain injury: A pilot study. Biofeedback 49, 2–9. doi: 10.5298/1081-5937-49.01.01 DOI

Castellano M., Ibañez-Soria D., Kroupi E., Acedo J., Campolo M., Soria-Frisch A., et al. . (2020). Intermittent tACS during a visual task impacts neural oscillations and LZW complexity. Exp. Brain Res. 238, 1411–1422. doi: 10.1007/s00221-020-05820-z, PMID: PubMed DOI

Darvas F., Miller K. J., Rao R. P. N., Ojemann J. G. (2009). Nonlinear phase-phase cross-frequency coupling mediates communication between distant sites in human neocortex. J. Neurosci. 29, 426–435. doi: 10.1523/JNEUROSCI.3688-08.2009, PMID: PubMed DOI PMC

De Graaf T. A., Duecker F., Stankevich Y., ten S., Sack A. T. (2017). Seeing in the dark: Phosphene thresholds with eyes open versus closed in the absence of visual inputs. Brain Stimul. 10, 828–835. doi: 10.1016/j.brs.2017.04.127, PMID: PubMed DOI

de la Salle S., Choueiry J., Payumo M., Devlin M., Noel C., Abozmal A., et al. . (2024). Transcranial alternating current stimulation alters auditory steady-state oscillatory rhythms and their cross-frequency couplings. Clin. EEG Neurosci. 55, 329–339. doi: 10.1177/15500594231179679, PMID: PubMed DOI PMC

Deiber M. P., Hasler R., Colin J., Dayer A., Aubry J. M., Baggio S., et al. . (2020). Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. NeuroImage Clin. 25:102145. doi: 10.1016/j.nicl.2019.102145, PMID: PubMed DOI PMC

Dessy E., Mairesse O., van Puyvelde M., Cortoos A., Neyt X., Pattyn N. (2020). Train your brain? Can we really selectively train specific EEG frequencies with Neurofeedback training. Front. Hum. Neurosci. 14, 1–9. doi: 10.3389/fnhum.2020.00022, PMID: PubMed DOI PMC

Di Bernardi Luft C., Zioga I., Thompson N. M., Banissy M. J., Bhattacharya J. (2018). Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations. Proc. Natl. Acad. Sci. USA 115, E12144–E12152. doi: 10.1073/pnas.1811465115, PMID: PubMed DOI PMC

Díaz H. M., Cid F. M., Otárola J., Rojas R., Alarcón O., Cañete L. (2019). EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Comput. Sci. 162, 974–981. doi: 10.1016/j.procs.2019.12.075 DOI

Dressler O., Schneider G., Stockmanns G., Kochs E. F. (2004). Awareness and the EEG power spectrum: analysis of frequencies. Br. J. Anaesth. 93, 806–809. doi: 10.1093/bja/aeh270, PMID: PubMed DOI

Enriquez-Geppert S., Huster R. J., Herrmann C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Front. Hum. Neurosci. 11, 1–19. doi: 10.3389/fnhum.2017.00051, PMID: PubMed DOI PMC

Escolano C., Navarro-Gil M., Garcia-Campayo J., Congedo M., Minguez J. (2014). The effects of individual upper alpha Neurofeedback in ADHD: an open-label pilot study. Appl. Psychophysiol. Biofeedback 39, 193–202. doi: 10.1007/s10484-014-9257-6, PMID: PubMed DOI

Escolano C., Olivan B., Lopez-Del-Hoyo Y., Garcia-Campayo J., Minguez J. (2012). Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. IEEE Eng. Med. Biol. Society Annual Conference Conference proceed. 2012, 4643–4647. doi: 10.1109/EMBC.2012.6347002, PMID: PubMed DOI

Fell J., Elfadil H., Klaver P., Röschke J., Elger C. E., Fernández G. (2002). Covariation of spectral and nonlinear EEG measures with alpha biofeedback. Int. J. Neurosci. 112, 1047–1057. doi: 10.1080/00207450290026049, PMID: PubMed DOI

Feurra M., Pasqualetti P., Bianco G., Santarnecchi E., Rossi A., Rossi S. (2013). State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters. J. Neurosci. 33, 17483–17489. doi: 10.1523/JNEUROSCI.1414-13.2013, PMID: PubMed DOI PMC

Garside P., Arizpe J., Lau C., Goh C., Walsh V. (2015). Brain stimulation cross-hemispheric alternating current stimulation during a nap disrupts slow wave activity and associated memory consolidation. Brain Stimul. 8, 520–527. doi: 10.1016/j.brs.2014.12.010, PMID: PubMed DOI PMC

Gong A., Gu F., Nan W., Qu Y., Jiang C., Fu Y. (2021). A review of Neurofeedback training for improving sport performance from the perspective of user experience. Front. Neurosci. 15, 1–14. doi: 10.3389/fnins.2021.638369, PMID: PubMed DOI PMC

González J., Cavelli M., Mondino A., Rubido N., Tort B. L. (2020). Communication through coherence by means of cross-frequency coupling. Neuroscience 449, 157–164. doi: 10.1016/j.neuroscience.2020.09.019 PubMed DOI

Greenberg S., Aislinn P., Kirsten D. C. (2016). Development and validation of the fatigue state questionnaire: preliminary findings. Open Psychol. J. 9, 50–65. doi: 10.2174/1874350101609010050 DOI

Groppe D. M., Bickel S., Keller C. J., Jain S. K., Hwang S. T., Harden C., et al. . (2013). Dominant frequencies of resting human brain activity as measured by the electrocorticogram. NeuroImage 79, 223–233. doi: 10.1016/j.neuroimage.2013.04.044, PMID: PubMed DOI PMC

Gruzelier J. H. (2014a). Neuroscience and biobehavioral reviews EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neurosci. Biobehav. Rev. 44, 159–182. doi: 10.1016/j.neubiorev.2014.03.015 PubMed DOI

Gruzelier J. H. (2014b). Differential effects on mood of 12–15 (SMR) and 15–18 (beta1) Hz neurofeedback. Int. J. Psychophysiol. 93, 112–115. doi: 10.1016/j.ijpsycho.2012.11.007, PMID: PubMed DOI

Hanslmayr S., Sauseng P., Doppelmayr M., Schabus M., Klimesch W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 30, 1–10. doi: 10.1007/s10484-005-2169-8, PMID: PubMed DOI

He B. J., Snyder A. Z., Zempel J. M., Smyth M. D., Raichle M. E. (2008). Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc. Natl. Acad. Sci. USA 105, 16039–16044. doi: 10.1073/pnas.0807010105, PMID: PubMed DOI PMC

Helfrich R. F., Herrmann C. S., Engel A. K., Schneider T. R. (2016). Different coupling modes mediate cortical cross-frequency interactions. NeuroImage 140, 76–82. doi: 10.1016/j.neuroimage.2015.11.035, PMID: PubMed DOI

Helfrich R. F., Knepper H., Nolte G., Strüber D., Rach S., Herrmann C. S., et al. . (2014a). Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 12:e1002031. doi: 10.1371/journal.pbio.1002031, PMID: PubMed DOI PMC

Helfrich R. F., Schneider T. R., Rach S., Trautmann-lengsfeld S. A., Engel A. K. (2014b). Report entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 24, 333–339. doi: 10.1016/j.cub.2013.12.041 PubMed DOI

Herrera C. G., Cadavieco M. C., Jego S., Ponomarenko A., Korotkova T., Adamantidis A. (2016). Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci. 19, 290–298. doi: 10.1038/nn.4209, PMID: PubMed DOI PMC

Herring J. D., Esterer S., Marshall T. R., Jensen O., Bergmann T. O. (2019). Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. NeuroImage 184, 440–449. doi: 10.1016/j.neuroimage.2018.09.047, PMID: PubMed DOI

Herrmann C. S., Rach S., Neuling T., Strüber D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 7, 1–13. doi: 10.3389/fnhum.2013.00279, PMID: PubMed DOI PMC

Herrmann C. S., Strüber D., Helfrich R. F., Engel A. K. (2016). EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 103, 12–21. doi: 10.1016/j.ijpsycho.2015.02.003 PubMed DOI

Hülsemann M. J., Naumann E., Rasch B. (2019). Quantification of phase-amplitude coupling in neuronal oscillations:comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front. Neurosci. 13, 1–15. doi: 10.3389/fnins.2019.00573, PMID: PubMed DOI PMC

Hyafil A. (2015). Misidentifications of specific forms of cross-frequency coupling: three warnings. Front. Neurosci. 9, 1–6. doi: 10.3389/fnins.2015.00370, PMID: PubMed DOI PMC

Hyafil A., Giraud A. L., Fontolan L., Gutkin B. (2015). Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 38, 725–740. doi: 10.1016/j.tins.2015.09.001, PMID: PubMed DOI

Ibrahim G. M., Wong S. M., Anderson R. A., Singh-Cadieux G., Akiyama T., Ochi A., et al. . (2014). Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms. Exp. Neurol. 251, 30–38. doi: 10.1016/j.expneurol.2013.10.019, PMID: PubMed DOI

Izutsu N., Yanagisawa T., Fukuma R., Kishima H. (2023). Magnetoencephalographic neurofeedback training decreases β-low-γ phase-amplitude coupling of the motor cortex of healthy adults: a double-blinded randomized crossover feasibility study. J. Neural Eng. 20:036005. doi: 10.1088/1741-2552/acd0d6, PMID: PubMed DOI

Jensen O., Gips B., Bergmann T. O., Bonnefond M. (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 37, 357–369. doi: 10.1016/j.tins.2014.04.001 PubMed DOI

Jiang H., Bahramisharif A., van Gerven M. A. J., Jensen O. (2015). Measuring directionality between neuronal oscillations of different frequencies. NeuroImage 118, 359–367. doi: 10.1016/j.neuroimage.2015.05.044, PMID: PubMed DOI

Jirsa V., Müller V. (2013). Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 7. doi: 10.3389/fncom.2013.00078, PMID: PubMed DOI PMC

Jun E., Hsieh G., Reinecke K. (2017). Types of motivation affect study selection, attention, and dropouts in online experiments. Proceed. ACM on Human-Computer Interaction 1.CSCW, 1, 1–15. doi: 10.1145/3134691 DOI

Jurewicz K. (2018). EEG-neurofeedback training of beta band (12 – 22 Hz) a ff ects alpha and beta frequencies – A controlled study of a healthy population. Neuropsychologia 108, 13–24. doi: 10.1016/j.neuropsychologia.2017.11.021 PubMed DOI

Kanai R., Paulus W., Walsh V. (2010). Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin. Neurophysiol. 121, 1551–1554. doi: 10.1016/j.clinph.2010.03.022, PMID: PubMed DOI

Kasten F. H., Herrmann C. S. (2017). Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front. Hum. Neurosci. 11, 1–16. doi: 10.3389/fnhum.2017.00002, PMID: PubMed DOI PMC

Ketz N., Jones A. P., Bryant N. B., Clark V. P., Pilly P. K. (2018). Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J. Neurosci. 38, 7314–7326. doi: 10.1523/JNEUROSCI.0273-18.2018, PMID: PubMed DOI PMC

Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195. doi: 10.1016/S0165-0173(98)00056-3, PMID: PubMed DOI

Klimesch W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 16, 606–617. doi: 10.1016/j.tics.2012.10.007, PMID: PubMed DOI PMC

Klinzing J. G., Mölle M., Weber F., Supp G., Hipp J. F., Engel A. K., et al. . (2016). Spindle activity phase-locked to sleep slow oscillations. NeuroImage 134, 607–616. doi: 10.1016/j.neuroimage.2016.04.031, PMID: PubMed DOI

Knyazev G. G. (2011). Cross-frequency coupling of brain oscillations: an impact of state anxiety. Int. J. Psychophysiol. 80, 236–245. doi: 10.1016/j.ijpsycho.2011.03.013, PMID: PubMed DOI

Knyazev G. G., Savostyanov A. N., Bocharov A. V., Tamozhnikov S. S., Kozlova E. A., Leto I. V., et al. . (2019). Cross-frequency coupling in developmental perspective. Front. Hum. Neurosci. 13, 1–10. doi: 10.3389/fnhum.2019.00158, PMID: PubMed DOI PMC

Ko S., Park W. (2018). Effects of quantitative electroencephalography based Neurofeedback training on autonomous regulations in patients with alcohol use disorder. Asian Nurs. Res. (Korean. Soc. Nurs. Sci). 12, 136–144. doi: 10.1016/j.anr.2018.05.003, PMID: PubMed DOI

Krause M. R., Vieira P. G., Csorba B. A., Pilly P. K., Pack C. C. (2019). Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. USA 116, 5747–5755. doi: 10.1073/pnas.1815958116, PMID: PubMed DOI PMC

Kvašňák E. (2019). Perception and pain thresholds of tDCS and tACS. Physiol. Res. 68, S427–S431. doi: 10.33549/PHYSIOLRES.934381, PMID: PubMed DOI

Kvašňák E., Orendáčová M., Vránová J. (2022). Phosphene attributes depend on frequency and intensity of retinal tACS. Physiol. Res. 71, 561–571. doi: 10.33549/physiolres.934887, PMID: PubMed DOI PMC

Lavy Y., Dwolatzky T., Kaplan Z., Guez J., Todder D. (2019). Neurofeedback improves memory and peak alpha frequency in individuals with mild cognitive impairment. Appl. Psychophysiol. Biofeedback 44, 41–49. doi: 10.1007/s10484-018-9418-0 PubMed DOI

Lee Y. J., Lee G. W., Seo W. S., Koo B. H., Kim H. G., Cheon E. J. (2019). Neurofeedback treatment on depressive symptoms and functional recovery in treatment-resistant patients with major depressive disorder: an open-label pilot study. J. Korean Med. Sci. 34, 1–16. doi: 10.3346/jkms.2019.34.e287, PMID: PubMed DOI PMC

Lee J. H., Whittington M. A., Kopell N. J. (2013). Top-down beta rhythms support selective attention via interlaminar interaction: a model. PLoS Comput. Biol. 9:e1003164. doi: 10.1371/journal.pcbi.1003164, PMID: PubMed DOI PMC

Lefebvre J., Hutt A., Frohlich F. (2017). Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations. eLife 6:e32054. doi: 10.7554/eLife.32054, PMID: PubMed DOI PMC

Legarda S. B., McMahon D., Othmer S., Othmer S. (2011). Clinical neurofeedback: case studies, proposed mechanism, and implications for pediatric neurology practice. J. Child Neurol. 26, 1045–1051. doi: 10.1177/0883073811405052, PMID: PubMed DOI

Liang Z., Ren N., Wen X., Li H., Guo H., Ma Y., et al. . (2021). Age-dependent cross frequency coupling features from children to adults during general anesthesia. NeuroImage 240:118372. doi: 10.1016/j.neuroimage.2021.118372, PMID: PubMed DOI

Lisman J. (2010). Working memory: the importance of theta and gamma oscillations. Curr. Biol. 20, R490–R492. doi: 10.1016/j.cub.2010.04.011, PMID: PubMed DOI

Lisman J. E., Jensen O. (2013). The Theta-gamma neural code. Neuron 77, 1002–1016. doi: 10.1016/j.neuron.2013.03.007, PMID: PubMed DOI PMC

Liu C. C., Chien J. H., Kim J. H., Chuang Y. F., Cheng D. T., Anderson W. S., et al. . (2015). Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs. Neuroscience 303, 412–421. doi: 10.1016/j.neuroscience.2015.07.010, PMID: PubMed DOI PMC

Liu A., Vöröslakos M., Kronberg G., Henin S., Krause M. R., Huang Y., et al. . (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 9. doi: 10.1038/s41467-018-07233-7, PMID: PubMed DOI PMC

Liu S., Wong C. M., Liu X., Wang H., Bezerianos A., Sun Y.. (2023). Driving Fatigue Effects on Cross-Frequency Phase Synchrony Embedding in Multilayer Brain Network. IEEE T. Instrum. Meas. 72, 1–14. doi: 10.1109/TIM.2023.3271740 DOI

Lubar J. F., Shouse M. N. (1976). EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR) A preliminary report. Biofeedback Self Regul. 1, 293–306. doi: 10.1007/BF01001170, PMID: PubMed DOI

Luft C. D. B., Zioga I., Banissy M. J., Bhattacharya J. (2019). Spontaneous visual imagery during meditation for creating visual art: an EEG and brain stimulation case study. Front. Psychol. 10, 1–14. doi: 10.3389/fpsyg.2019.00210, PMID: PubMed DOI PMC

McAuley E., Duncan T., Tammen V. V. (1989). Psychometric properties of the intrinsic motivation inventory in a competitive sport setting: A confirmatory factor analysis. Res. Q. Exerc. Sport 60, 48–58. doi: 10.1080/02701367.1989.10607413, PMID: PubMed DOI

Miller R. (2007). Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int. J. Psychophysiol. 64, 18–23. doi: 10.1016/j.ijpsycho.2006.07.009, PMID: PubMed DOI

Müller V., Lindenberger U. (2012). Lifespan differences in nonlinear dynamics during rest and auditory oddball performance. Dev. Sci. 15, 540–556. doi: 10.1111/j.1467-7687.2012.01153.x, PMID: PubMed DOI

Musall S., Von Pföstl V., Rauch A., Logothetis N. K., Whittingstall K. (2014). Effects of neural synchrony on surface EEG. Cereb. Cortex 24, 1045–1053. doi: 10.1093/cercor/bhs389, PMID: PubMed DOI

Nan W., Rodrigues J. P., Ma J., Qu X., Wan F., Mak P. I., et al. . (2012). Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 86, 83–87. doi: 10.1016/j.ijpsycho.2012.07.182, PMID: PubMed DOI

Neuling T., Rach S., Herrmann C. S. (2013). Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 7, 1–12. doi: 10.3389/fnhum.2013.00161, PMID: PubMed DOI PMC

Neuling T., Wagner S., Wolters C. H., Zaehle T., Herrmann C. S. (2012). Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front. Psychol. 3, 1–10. doi: 10.3389/fpsyt.2012.00083, PMID: PubMed DOI PMC

Ngo H. V. V., Claussen J. C., Born J., Mölle M. (2013). Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep Res. 22, 22–31. doi: 10.1111/j.1365-2869.2012.01039.x, PMID: PubMed DOI

Noureddin B., Lawrence P. D., Birch G. E. (2012). Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker. IEEE Trans. Biomed. Eng. 59, 2103–2110. doi: 10.1109/TBME.2011.2108295, PMID: PubMed DOI

Nuwer M. R. (1988). Quantitative EEG: I. Techniques and problems of frequency analysis and topographic mapping. J. Clin. Neurophysiol. 5, 1–44. doi: 10.1097/00004691-198801000-00001 PubMed DOI

O’Doherty J. P. (2004). Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14, 769–776. doi: 10.1016/j.conb.2004.10.016, PMID: PubMed DOI

Othmer S., Othmer S. F. (2017). Toward a Frequency-based Theory of Neurofeedback. US: Academic Press. p. 225–278.

Palva S., Palva J. M. (2007). New vistas for α-frequency band oscillations. Trends Neurosci. 30, 150–158. doi: 10.1016/j.tins.2007.02.001, PMID: PubMed DOI

Pevzner A., Izadi A., Lee D. J., Shahlaie K., Gurkoff G. G. (2016). Making waves in the brain: what are oscillations, and why modulating them makes sense for brain injury. Front. Syst. Neurosci. 10, 1–18. doi: 10.3389/fnsys.2016.00030, PMID: PubMed DOI PMC

Pfurtscheller G., Stancak A., Jr., Edlinger G. (1997). On the existence of different types of central beta rhythms below 30 Hz. Electroencephalogr. Clin. Neurophysiol. 102, 316–325. doi: 10.1016/S0013-4694(96)96612-2, PMID: PubMed DOI

Picazio S., Veniero D., Ponzo V., Caltagirone C., Gross J., Thut G., et al. . (2014). Prefrontal control over motor cortex cycles at beta frequency during movement inhibition. Curr. Biol. 24, 2940–2945. doi: 10.1016/j.cub.2014.10.043, PMID: PubMed DOI PMC

Pimenta M. G., van Run C., de Fockert J. W., Gruzelier J. H. (2018). Neurofeedback of SMR and Beta1 frequencies: an investigation of learning indices and frequency-specific effects. Neuroscience 378, 211–224. doi: 10.1016/j.neuroscience.2017.07.056 PubMed DOI

Polanía R., Nitsche M. A., Korman C., Batsikadze G., Paulus W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22, 1314–1318. doi: 10.1016/j.cub.2012.05.021, PMID: PubMed DOI

Popov T., Popova P., Harkotte M., Awiszus B., Rockstroh B., Miller G. A. (2018). Cross-frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory. NeuroImage 181, 728–733. doi: 10.1016/j.neuroimage.2018.07.067, PMID: PubMed DOI

Prim J. H., Ahn S., Davila M. I., Alexander M. L., McCulloch K. L., Fröhlich F. (2019). Targeting the autonomic nervous system balance in patients with chronic low back pain using transcranial alternating current stimulation: A randomized, crossover, double-blind, placebo-controlled pilot study. J. Pain Res. 12, 3265–3277. doi: 10.2147/JPR.S208030, PMID: PubMed DOI PMC

Raco V., Bauer R., Olenik M., Brkic D., Gharabaghi A. (2014). Neurosensory effects of transcranial alternating current stimulation. Brain Stimul. 7, 823–831. doi: 10.1016/j.brs.2014.08.005, PMID: PubMed DOI

Riddle J., Alexander M. L., Schiller C. E., Rubinow D. R., Frohlich F. (2022). Reward-based decision-making engages distinct modes of cross-frequency coupling. Cereb. Cortex 32, 2079–2094. doi: 10.1093/cercor/bhab336, PMID: PubMed DOI PMC

Riddle J., McFerren A., Frohlich F. (2021). Causal role of cross-frequency coupling in distinct components of cognitive control. Prog. Neurobiol. 202:102033. doi: 10.1016/j.pneurobio.2021.102033, PMID: PubMed DOI PMC

Rodriguez-Larios J., Alaerts K. (2019). Tracking transient changes in the neural frequency architecture: harmonic relationships between theta and alpha peaks facilitate cognitive performance. J. Neurosci. 39, 6291–6298. doi: 10.1523/JNEUROSCI.2919-18.2019, PMID: PubMed DOI PMC

Rodriguez-Larios J., Faber P., Achermann P., Tei S., Alaerts K. (2020). From thoughtless awareness to effortful cognition: alpha - theta cross-frequency dynamics in experienced meditators during meditation, rest and arithmetic. Sci. Rep. 10, 5419–5411. doi: 10.1038/s41598-020-62392-2, PMID: PubMed DOI PMC

Ros T., Munneke M. A. M., Ruge D., Gruzelier J. H., Rothwell J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 31, 770–778. doi: 10.1111/j.1460-9568.2010.07100.x, PMID: PubMed DOI

Salimpour Y., Anderson W. S. (2019). Cross-frequency coupling based neuromodulation for treating neurological disorders. Front. Neurosci. 13, 1–13. doi: 10.3389/fnins.2019.00125, PMID: PubMed DOI PMC

Sauseng P., Klimesch W., Gruber W. R., Birbaumer N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. NeuroImage 40, 308–317. doi: 10.1016/j.neuroimage.2007.11.032, PMID: PubMed DOI

Schroeder C. E., Lakatos P. (2009). The gamma oscillation: master or slave? Brain Topogr. 22, 24–26. doi: 10.1007/s10548-009-0080-y, PMID: PubMed DOI PMC

Schutter D. J. L. G., Knyazev G. G. (2012). Cross-frequency coupling of brain oscillations in studying motivation and emotion. Motiv. Emot. 36, 46–54. doi: 10.1007/s11031-011-9237-6, PMID: PubMed DOI PMC

Shi W., Yeh C. H., Hong Y. (2019). Cross-frequency transfer entropy characterize coupling of interacting nonlinear oscillators in complex systems. IEEE Trans. Biomed. Eng. 66, 521–529. doi: 10.1109/TBME.2018.2849823, PMID: PubMed DOI

Spaak E., Bonnefond M., Maier A., Leopold D. A., Jensen O. (2012). Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex. Curr. Biol. 22, 2313–2318. doi: 10.1016/j.cub.2012.10.020, PMID: PubMed DOI PMC

Stankovski T., Ticcinelli V., McClintock P. V. E., Stefanovska A. (2017). Neural cross-frequency coupling functions. Front. Syst. Neurosci. 11. doi: 10.3389/fnsys.2017.00033, PMID: PubMed DOI PMC

Stecher H. I., Pollok T. M., Strüber D., Sobotka F., Herrmann C. S. (2017). Ten minutes of α-tACS and ambient illumination independently modulate eeg α-power. Front. Hum. Neurosci. 11, 1–10. doi: 10.3389/fnhum.2017.00257, PMID: PubMed DOI PMC

Takahashi K., Saleh M., Penn R. D., Hatsopoulos N. G. (2011). Propagating waves in human motor cortex. Front. Hum. Neurosci. 5:40. doi: 10.3389/fnhum.2011.00040, PMID: PubMed DOI PMC

Turi Z., Ambrus G. G., Janacsek K., Emmert K., Hahn L., Paulus W., et al. . (2013). Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation. Restor. Neurol. Neurosci. 31, 275–285. doi: 10.3233/RNN-120297, PMID: PubMed DOI

Turi Z., Mittner M., Lehr A., Bürger H., Antal A., Paulus W. (2020). Ө-γ cross-frequency transcranial alternating current stimulation over the trough impairs cognitive. Control. 7, 1–12. doi: 10.1523/ENEURO.0126-20.2020, PMID: PubMed DOI PMC

van G., Denissen A. J. M., Jäger M., Vernon D., Dekker M. K. J., Mihajlović V., et al. . (2012). A novel self-guided approach to alpha activity training. Int. J. Psychophysiol. 83, 282–294. doi: 10.1016/j.ijpsycho.2011.11.004, PMID: PubMed DOI

Vanneste S., Joos K., Ost J., De Ridder D. (2016). Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress. Neurobiol. Stress 8, 211–224. doi: 10.1016/j.ynstr.2016.11.003, PMID: PubMed DOI PMC

Vanneste S., Song J. J., De Ridder D. (2018). Thalamocortical dysrhythmia detected by machine learning. Nat. Commun. 9:1103. doi: 10.1038/s41467-018-02820-0, PMID: PubMed DOI PMC

Veniero D., Vossen A., Gross J., Thut G. (2015). Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front. Cell. Neurosci. 9:477. doi: 10.3389/fncel.2015.00477, PMID: PubMed DOI PMC

Vossen A., Gross J., Thut G. (2015). Alpha power increase after transcranial alternating current stimulation at alpha frequency (a-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 8, 499–508. doi: 10.1016/j.brs.2014.12.004, PMID: PubMed DOI PMC

Wagner J., Makeig S., Hoopes D., Gola M. (2019). Can oscillatory alpha-gamma phase-amplitude coupling be used to understand and enhance TMS effects? Front. Hum. Neurosci. 13:263. doi: 10.3389/fnhum.2019.00263, PMID: PubMed DOI PMC

Wang X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268. doi: 10.1152/physrev.00035.2008, PMID: PubMed DOI PMC

Wang P., Göschl F., Friese U., König P., Engel A. K. (2019). Long-range functional coupling predicts performance: oscillatory EEG networks in multisensory processing. NeuroImage 196, 114–125. doi: 10.1016/j.neuroimage.2019.04.001, PMID: PubMed DOI

Weber E., Köberl A., Frank S., Doppelmayr M. (2011). Predicting successful learning of SMR neurofeedback in healthy participants: methodological considerations. Appl. Psychophysiol. Biofeedback 36, 37–45. doi: 10.1007/s10484-010-9142-x, PMID: PubMed DOI

Wischnewski M., Engelhardt M., Salehinejad M. A., Schutter D. J. L. G., Kuo M. F., Nitsche M. A. (2019). NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation. Cereb. Cortex 29, 2924–2931. doi: 10.1093/cercor/bhy160, PMID: PubMed DOI

Yeh C.-H., Zhang C., Shi W., Lo M.-T., Tinkhauser G., Oswal A. (2023). Cross-frequency coupling and intelligent Neuromodulation. Cyborg Bionic Syst. 4, 1–14. doi: 10.34133/cbsystems.0034, PMID: PubMed DOI PMC

Zaehle T., Rach S., Herrmann C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5, e13766–e13767. doi: 10.1371/journal.pone.0013766, PMID: PubMed DOI PMC

Zarubin G., Gundlach C., Nikulin V., Villringer A., Bogdan M. (2020). Transient amplitude modulation of alpha-band oscillations by short-time intermittent closed-loop tACS. Front. Hum. Neurosci. 14. doi: 10.3389/fnhum.2020.00366, PMID: PubMed DOI PMC

Zhang Y., Chen Y., Bressler S. L., Ding M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 156, 238–246. doi: 10.1016/j.neuroscience.2008.06.061, PMID: PubMed DOI PMC

Zhang W., Li C., Wang X., Liu S., Ming D. (2023). Boosting working memory performance by cross-frequency transcranial alternating current stimulation over the fronto-parietal network at theta and gamma frequency. Brain Stimul. 16:301. doi: 10.1016/j.brs.2023.01.543 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...