Polyploidization as an opportunistic mutation: The role of unreduced gametes formation and genetic drift in polyploid establishment

. 2022 Aug ; 35 (8) : 1099-1109. [epub] 20220630

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35770884

Grantová podpora
RVO 67985939 Akademie Věd České Republiky
20-22783S Grantová Agentura České Republiky
850852 DOUBLEADAPT European Research Council - International

It is broadly assumed that polyploidy success reflects an increase in fitness associated with whole-genome duplication (WGD), due to higher tolerance to stressful conditions. Nevertheless, WGD also arises with several costs in neo-polyploid lineages, like genomic instability, or cellular mis-management. In addition to these costs, neo-polyploid individuals also face frequency dependent selection because of frequent low-fitness triploids formed by cross-ploidy pollinations when tetraploids are primarily rare in the population. Interestingly, the idea that polyploidy can be fixed by genetic drift as a neutral or deleterious mutation is currently underexplored in the literature. To test how and when polyploidy can fix in a population by chance, we built a theoretical model in which autopolyploidization occurs through the production of unreduced gametes, a trait modelled as a quantitative trait that is allowed to vary through time. We found that when tetraploid individuals are less or as fit as their diploid progenitors, fixation of polyploidy is only possible when genetic drift is stronger than natural selection. The necessity of drift for tetraploid fixation holds even when polyploidy confers a selective advantage, except for scenarios where tetraploids are much fitter than diploids. Finally, we found that self-fertilization is less beneficial for tetraploid establishment than previously thought, notably when polyploids harbour an initial decrease in fitness. Our results bring a novel, non-exclusive explanation for the unequal temporal and spatial distribution of polyploid species.

Zobrazit více v PubMed

Arrigo, N., & Barker, M. S. (2012). Rarely successful polyploids and their legacy in plant genomes. Current Opinion in Plant Biology, 15, 140-146.

Baack, E. J. (2005). To succeed globally, disperse locally: Effects of local pollen and seed dispersal on tetraploid establishment. Heredity, 94, 538-546.

Baack, E. J., & Stanton, M. L. (2005). Ecological factors influencing tetraploid speciation in snow buttercups (Ranunculus adoneus): Niche differentiation and tetraploid establishment. Evolution, 59, 1936-1944.

Barker, M. S., Arrigo, N., Baniaga, A. E., Li, Z., & Levin, D. A. (2016). On the relative abundance of autopolyploids and allopolyploids. New Phytologist, 210, 391-398.

Bastiaanssen, H. J. M., Van Den Berg, P. M. M. M., Lindhout, P., Jacobsen, E., & Ramanna, M. S. (1998). Postmeiotic restitution in 2n-egg formation of diploid potato. Heredity, 81, 20-27.

Bohutínská, M., Alston, M., Monnahan, P., Mandáková, T., Bray, S., Paajanen, P., Kolář, F., & Yant, L. (2021). Novelty and convergence in adaptation to whole genome duplication. Molecular Biology and Evolution, 38, 3910-3924.

Bomblies, K. (2020). When everything changes at once: Finding a new normal after genome duplication. Proceedings of the Royal Society B: Biological Sciences, 287, 20202154.

Bretagnolle, F. (2001). Pollen production and spontaneous polyploidization in diploid populations of Anthoxanthum alpinum. Biological Journal of the Linnean Society, 72, 241-247.

Bretagnolle, F., & Thompson, J. D. (1995). Gametes with the somatic chromosome number: Mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytologist, 129, 1-22.

Brochmann, C., Brysting, A. K., Alsos, I. G., Borgen, L., Grundt, H. H., Scheen, A.-C., & Elven, R. (2004). Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82, 521-536.

Brown, J. H. (1984). On the relationship between abundance and distribution of species. The American Naturalist, 124, 255-279.

Brownfield, L., & Köhler, C. (2011). Unreduced gamete formation in plants: Mechanisms and prospects. Journal of Experimental Botany, 62, 1659-1668.

Buggs, R. J., & Pannell, J. R. (2007). Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evolution, 61, 125-140.

Burton, T. L., & Husband, B. (2000). Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: Mechanisms of inviability and implications for polyploid evolution. Evolution, 54, 1182-1191.

Čertner, M., Kúr, P., Kolář, F., & Suda, J. (2019). Climatic conditions and human activities shape diploid-tetraploid coexistence at different spatial scales in the common weed Tripleurospermum inodorum (Asteraceae). Journal of Biogeography, 46, 1355-1366.

Chao, D.-Y., Dilkes, B., Luo, H., Douglas, A., Yakubova, E., Lahner, B., & Salt, D. E. (2013). Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science, 341, 658-659.

Clo, J., & Kolář, F. (2021). Short- and long-term consequences of genome doubling: A meta-analysis. American Journal of Botany, 108, 2315-2322.

Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature Reviews Genetics, 6, 836-846.

De Storme, N., Copenhaver, G. P., & Geelen, D. (2012). Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiology, 160, 1808-1826.

De Storme, N., & Geelen, D. (2013). Sexual polyploidization in plants - Cytological mechanisms and molecular regulation. New Phytologist, 198, 670-684.

Doyle, J. J., & Coate, J. E. (2019). Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. International Journal of Plant Sciences, 180, 1-52.

Duchoslav, M., Fialová, M., & Jandová, M. (2017). The ecological performance of tetra-, penta-and hexaploid geophyte Allium oleraceum in reciprocal transplant experiment may explain the occurrence of multiple-cytotype populations. Journal of Plant Ecology, 10, 569-580.

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Longman Group.

Felber, F. (1991). Establishment of a tetraploid cytotype in a diploid population: Effect of relative fitness of the cytotypes. Journal of Evolutionary Biology, 4, 195-207.

Fernández, A., & Neffa, V. G. S. (2004). Genomic relationships between Turnera krapovickasii (2x, 4x) and T. ulmifolia (6x) (Turneraceae, Turnera). Caryologia, 57, 45-51.

Fowler, N. L., & Levin, D. A. (1984). Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. The American Naturalist, 124, 703-711.

Glémin, S., & Ronfort, J. (2013). Adaptation and maladaptation in selfing and outcrossing species: New mutations versus standing variation. Evolution, 67, 225-240.

Gregory, T. R., & Mable, B. K. (2005). Polyploidy in animals. In T. R. Gregory (Ed.), The evolution of the genome (pp. 428-501). Academic.

Griswold, C. K. (2021). The effects of migration load, selfing, inbreeding depression, and the genetics of adaptation on autotetraploid versus diploid establishment in peripheral habitats. Evolution, 75, 39-55.

Halligan, D. L., & Keightley, P. D. (2009). Spontaneous mutation accumulation studies in evolutionary genetics. Annual Review of Ecology, Evolution, and Systematics, 40, 151-172.

Hannweg, K., Steyn, W., & Bertling, I. (2016). In vitro-induced tetraploids of Plectranthus esculentus are nematode-tolerant and have enhanced nutritional value. Euphytica, 207, 343-351.

Harlan, J. R., & deWet, J. M. (1975). On Ö. Winge and a prayer: The origins of polyploidy. The Botanical Review, 41, 361-390.

Herben, T., Trávníček, P., & Chrtek, J. (2016). Reduced and unreduced gametes combine almost freely in a multiploidy system. Perspectives in Plant Ecology, Evolution and Systematics, 18, 15-22.

Hias, N., Svara, A., & Keulemans, J. W. (2018). Effect of polyploidisation on the response of apple (Malus × domestica Borkh.) to Venturia inaequalis infection. European Journal of Plant Pathology, 151, 515-526.

Husband, B. C. (2004). The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biological Journal of the Linnean Society, 82, 537-546.

Husband, B. C., Ozimec, B., Martin, S. L., & Pollock, L. (2008). Mating consequences of polyploid evolution in flowering plants: Current trends and insights from synthetic polyploids. International Journal of Plant Sciences, 169, 195-206.

Husband, B. C., & Sabara, H. A. (2003). Reproductive isolation and their diploid autotetraploids Chamerion progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytologist, 161, 703-713.

Kim, J. S., Oginuma, K., & Tobe, H. (2009). Syncyte formation in the microsporangium of chrysanthemum (Asteraceae): A pathway to infraspecific polyploidy. Journal of Plant Research, 122, 439-444.

Kolář, F., Čertner, M., Suda, J., Schönswetter, P., & Husband, B. C. (2017). Mixed-ploidy species: Progress and opportunities in polyploid research. Trends in Plant Science, 22, 1041-1055.

Kovalsky, I. E., & Solís Neffa, V. G. (2012). Evidence of 2n microspore production in a natural diploid population of Turnera sidoides subsp. carnea and its relevance in the evolution of the T. sidoides (Turneraceae) autopolyploid complex. Journal of Plant Research, 125, 725-734.

Kovalsky, I. E., & Solís Neffa, V. G. (2016). Evidence of the production of 2n eggs in diploid plants of the autopolyploid complex Turnera sidoides L. (Passifloraceae). Plant Systematics and Evolution, 302, 357-366.

Kreiner, J. M., Kron, P., & Husband, B. C. (2017a). Evolutionary dynamics of unreduced gametes. Trends in Genetics, 33, 583-593.

Kreiner, J. M., Kron, P., & Husband, B. C. (2017b). Frequency and maintenance of unreduced gametes in natural plant populations: Associations with reproductive mode, life history and genome size. New Phytologist, 214, 879-889.

Kron, P., & Husband, B. C. (2009). Hybridization and the reproductive pathways mediating gene flow between native Malus coronaria and domestic apple, M. domestica. Botany, 87, 864-874.

Levin, D. A. (1975). Minority cytotype exclusion in local plant populations. Taxon, 24, 35-43.

Li, B.-H., Xu, X.-M., & Ridout, M. S. (2004). Modelling the establishment and spread of autotetraploid plants in a spatially heterogeneous environment. Journal of Evolutionary Biology, 17, 562-573.

Lynch, M., Conery, J., & Burger, R. (1995). Mutation accumulation and the extinction of small populations. The American Naturalist, 146, 489-518.

Mable, B. K. (2004). ‘Why polyploidy is rarer in animals than in plants’: Myths and mechanisms. Biological Journal of the Linnean Society, 82, 453-466.

Martin, S. L., & Husband, B. C. (2013). Adaptation of diploid and tetraploid Chamerion angustifolium to elevation but not local environment. Evolution, 67, 1780-1791.

Mason, A. S., Nelson, M. N., Yan, G., & Cowling, W. A. (2011). Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biology, 11, 103.

Mason, A. S., & Pires, J. C. (2015). Unreduced gametes: Meiotic mishap or evolutionary mechanism? Trends in Genetics, 31, 5-10.

Mayrose, I., Zhan, S. H., Rothfels, C. J., Arrigo, N., Barker, M. S., Rieseberg, L. H., & Otto, S. P. (2015). Methods for studying polyploid diversification and the dead end hypothesis: A reply to Soltis et al. (2014). New Phytologist, 206, 27-35.

Mayrose, I., Zhan, S. H., Rothfels, C. J., Magnuson-Ford, K., Barker, M. S., Rieseberg, L. H., & Otto, S. P. (2011). Recently formed polyploid plants diversify at lower rates. Science, 333, 1257.

McIntyre, P. J., & Strauss, S. (2017). An experimental test of local adaptation among cytotypes within a polyploid complex. Evolution, 71, 1960-1969.

Meyers, L. A., & Levin, D. A. (2006). On the abundance of polyploids in flowering plants. Evolution, 60, 1198-1206.

Oberlander, K. C., Dreyer, L. L., Goldblatt, P., Suda, J., & Linder, H. P. (2016). Species-rich and polyploid-poor: Insights into the evolutionary role of whole-genome duplication from the cape flora biodiversity hotspot. American Journal of Botany, 103, 1336-1347.

Oswald, B. P., & Nuismer, S. L. (2011). A unified model of autopolyploid establishment and evolution. The American Naturalist, 178, 687-700.

Otto, S. P. (2007). The evolutionary consequences of polyploidy. Cell, 131, 452-462.

Parisod, C., Holderegger, R., & Brochmann, C. (2010). Evolutionary consequences of autopolyploidy. New Phytologist, 186, 5-17.

Parrott, W. A., & Smith, R. R. (1986). Evidence for the existence of endosperm balance number in the true clovers (Trifolium spp.). Canadian Journal of Genetics and Cytology, 28, 581-586.

Pécrix, Y., Rallo, G., Folzer, H., Cigna, M., Gudin, S., & Le Bris, M. (2011). Polyploidization mechanisms: Temperature environment can induce diploid gamete formation in Rosa sp. Journal of Experimental Botany, 62, 3587-3597.

Porturas, L. D., Anneberg, T. J., Curé, A. E., Wang, S., Althoff, D. M., & Segraves, K. A. (2019). A meta-analysis of whole genome duplication and the effects on flowering traits in plants. American Journal of Botany, 106, 469-476.

Raabová, J., Fischer, M., & Münzbergová, Z. (2008). Niche differentiation between diploid and hexaploid Aster amellus. Oecologia, 158, 463-472.

Ramanna, M. S., & Jacobsen, E. (2003). Relevance of sexual polyploidization for crop improvement-a review. Euphytica, 133, 3-8.

Ramsey, J. (2007). Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity, 98, 143-150.

Ramsey, J., & Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics, 29, 467-501.

Ramsey, J., & Schemske, D. W. (2002). Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics, 33, 589-639.

Rausch, J. H., & Morgan, M. T. (2005). The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishmen. Evolution, 59, 1867-1875.

Rice, A., Šmarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., Meiri, S., Belmaker, J., & Mayrose, I. (2019). The global biogeography of polyploid plants. Nature Ecology & Evolution, 3, 265-273.

Rodriguez, D. J. (1996). A model for the establishment of polyploidy in plants. The American Naturalist, 147, 33-46.

Rojas-Andrés, B. M., Padilla-García, N., de Pedro, M., López-González, N., Delgado, L., Albach, D. C., Castro, M., Castro, S., Loureiro, J., & Martínez-Ortega, M. M. (2020). Environmental differences are correlated with the distribution pattern of cytotypes in Veronica subsection Pentasepalae at a broad scale. Annals of Botany, 125, 471-484.

Ruiz, M., Quiñones, A., Martínez-Cuenca, M.-R., Aleza, P., Morillon, R., Navarro, L., Primo-Millo, E., & Martínez-Alcántara, B. (2016). Tetraploidy enhances the ability to exclude chloride from leaves in Carrizo citrange seedlings. Journal of Plant Physiology, 205, 1-10.

Sheidai, M., Jafari, S., Taleban, P., & Keshavarzi, M. (2009). Cytomixis and unreduced pollen grain formation in Alopecurus L. and Catbrosa Beauv. (Poaceae). Cytologia, 74, 31-41.

Simón-Porcar, V. I., Silva, J. L., Meeus, S., Higgins, J. D., & Vallejo-Marín, M. (2017). Recent autopolyploidization in a naturalized population of Mimulus guttatus (Phrymaceae). Botanical Journal of the Linnean Society, 185, 189-207.

Soltis, D. E., Soltis, P. S., Schemske, D. W., Hancock, J. F., Thompson, J. N., Husband, B. C., & Judd, W. S. (2007). Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? Taxon, 56, 13-30.

Stebbins, G. L. (1950). Variation and evolution in plants. Columbia University Press.

Stebbins, G. L. (1971). Processes of organic evolution. Prentice-Hall

Tavoletti, S., Mariani, A., & Veronesi, F. (1991). Phenotypic recurrent selection for 2n pollen and 2n egg production in diploid alfalfa. Euphytica, 57, 97-102.

Tayalé, A., & Parisod, C. (2013). Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenetic and Genome Research, 140, 79-96.

Te Beest, M., Le Roux, J. J., Richardson, D. M., Brysting, A. K., Suda, J., Kubešová, M., & Pysek, P. (2012). The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 109, 19-45.

Trávníček, P., Dočkalová, Z., Rosenbaumová, R., Kubátová, B., Szeląg, Z., & Chrtek, J. (2011). Bridging global and microregional scales: Ploidy distribution in Pilosella echioides (Asteraceae) in Central Europe. Annals of Botany, 107, 443-454.

Van de Peer, Y., Ashman, T.-L., Soltis, P. S., & Soltis, D. E. (2021). Polyploidy: An evolutionary and ecological force in stressful times. The Plant Cell, 33, 11-26.

Van de Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18, 411-424.

Van Drunen, W. E., & Friedman, J. (2021). Autopolyploid establishment depends on life history strategy and the mating outcomes of clonal architecture. bioRxiv 2021.10.21.465190.

Vanneste, K., Baele, G., Maere, S., & Van de Peer, Y. (2014). Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Research, 24, 1334-1347.

Vanneste, K., Maere, S., & Van de Peer, Y. (2014). Tangled up in two: A burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philosophical transactions of the Royal Society B: Biological Sciences, 369, 20130353.

Wang, W., He, Y., Cao, Z., & Deng, Z. (2018). Induction of tetraploids in impatiens (Impatiens walleriana) and characterization of their changes in morphology and resistance to downy mildew. HortScience, 53, 925-931.

Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., & Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 13875-13879.

Yao, Y., Carretero-Paulet, L., & Van de Peer, Y. (2019). Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS ONE, 14, e0220257.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Inbreeding depression in polyploid species: a meta-analysis

. 2022 Dec ; 18 (12) : 20220477. [epub] 20221214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...