• This record comes from PubMed

Colloidal lithography as a novel approach for the development of Ni-nanocavity insulin sensor

. 2022 Jun 30 ; 12 (1) : 11020. [epub] 20220630

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 35773298
PubMed Central PMC9246938
DOI 10.1038/s41598-022-15283-7
PII: 10.1038/s41598-022-15283-7
Knihovny.cz E-resources

In this study, a highly sensitive, fast, and selective enzyme-free electrochemical sensor based on the deposition of Ni cavities on conductive glass was proposed for insulin detection. Considering the growing prevalence of diabetes mellitus, an electrochemical sensor for the determination of insulin was proposed for the effective diagnosis of the disease. Colloidal lithography enabled deposition of nanostructured layer (substrate) with homogeneous distribution of Ni cavities on the electrode surface with a large active surface area. The morphology and structure of conductive indium tin oxide glass modified with Ni cavities (Ni-c-ITO) were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The diameter of the resulting cavities was approximately 500 nm, while their depth was calculated at 190 ± 4 nm and 188 ± 18 nm using AFM and SEM, respectively. The insulin assay performance was evaluated by cyclic voltammetry. Ni-c-ITO exhibited excellent analytical characteristics, including high sensitivity (1.032 µA µmol-1 dm3), a low detection limit (156 µmol dm-3), and a wide dynamic range (500 nmol dm-3 to 10 µmol dm-3). Finally, the determination of insulin in buffer with interferents and in real blood serum samples revealed high specificity and demonstrated the practical potential of the method.

See more in PubMed

Haidar A, et al. A novel dual-hormone insulin- and-pramlintide artificial pancreas for type 1 diabetes: A randomized controlled crossover trial. Diabetes Care. 2020;43:597–606. doi: 10.2337/dc19-1922. PubMed DOI

Czakó L, Hegyi P, Rakonczay Z, Wittmann T, Otsuki M. Interactions between the endocrine and exocrine pancreas and their clinical relevance. Pancreatology. 2009;9:351–359. doi: 10.1159/000181169. PubMed DOI

Huising MO. Paracrine regulation of insulin secretion. Diabetologia. 2020;63:2057–2063. doi: 10.1007/s00125-020-05213-5. PubMed DOI PMC

Šišoláková I, et al. Influence of a polymer membrane on the electrochemical determination of insulin in nanomodified screen printed carbon electrodes. Bioelectrochemistry. 2019;130:107326. doi: 10.1016/j.bioelechem.2019.06.011. PubMed DOI

Šišoláková I, et al. Comparison of insulin determination on NiNPs/chitosan-MWCNTs and NiONPs/chitosan-MWCNTs modified pencil graphite electrode. Electroanalysis. 2019;31:103–112. doi: 10.1002/elan.201800483. DOI

Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat. Rev. Endocrinol. 2020;16:349–362. doi: 10.1038/s41574-020-0355-7. PubMed DOI

Qaid MM, Abdelrahman MM. Role of insulin and other related hormones in energy metabolism—a review. Cogent Food Agric. 2016;2:1267691.

Shang W, et al. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J. Endocrinol. 2008;198:561–569. doi: 10.1677/JOE-08-0104. PubMed DOI

Association American Diabetes Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37:81–90. doi: 10.2337/dc14-S081. PubMed DOI PMC

Januszewski AS, et al. Insulin micro-secretion in Type 1 diabetes and related microRNA profiles. Sci. Rep. 2021;11:1–11. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC

Cho J, Scragg R, Pandol SJ, Petrov MS. Exocrine pancreatic dysfunction increases the risk of new-onset diabetes mellitus: Results of a nationwide cohort study. Clin. Transl. Sci. 2021;14:170–178. doi: 10.1111/cts.12837. PubMed DOI PMC

Cho NH, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023. PubMed DOI

Groeneveld Y, Petri H, Hermans J, Springer MP. Relationship between blood glucose level and mortality in Type 2 diabetes mellitus: A systematic review. Diabet. Med. 1999;16:2–13. doi: 10.1046/j.1464-5491.1999.00003.x. PubMed DOI

Torimoto K, Okada Y, Mori H, Tanaka Y. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Diabetes Technol. Ther. 2013;12:1–7. PubMed PMC

Ghorbani A, Shafiee-Nick R. Pathological consequences of C-peptide deficiency in insulin-dependent diabetes mellitus. World J. Diabetes. 2015;6:145–150. doi: 10.4239/wjd.v6.i1.145. PubMed DOI PMC

Fong DS, et al. Retinopathy in diabetes. Diabetes Care. 2004;27:84–87. doi: 10.2337/diacare.27.2007.S84. PubMed DOI

Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 2015;353:687–696.

Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet. 2009;373:1773–1779. doi: 10.1016/S0140-6736(09)60731-5. PubMed DOI

Tan SY, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr. Clin. Res. Rev. 2019;13:364–372. doi: 10.1016/j.dsx.2018.10.008. PubMed DOI

Lefkovits YR, Stewart ZA, Murphy HR. Gestational diabetes. Medicine (United Kingdom) 2019;47:114–118.

Crowther CA, et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N. Engl. J. Med. 2005;352:2477–2486. doi: 10.1056/NEJMoa042973. PubMed DOI

Lin X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020;10:14790. doi: 10.1038/s41598-020-71908-9. PubMed DOI PMC

Hovancová J, Šišoláková I, Oriňaková R, Oriňak A. Nanomaterial-based electrochemical sensors for detection of glucose and insulin. J. Solid State Electrochem. 2017;21:2147–2166. doi: 10.1007/s10008-017-3544-0. DOI

Kim YR, et al. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010;25:2366–2369. doi: 10.1016/j.bios.2010.02.031. PubMed DOI

Sherino B, Mohamad S, AbdulHalim SN, Abdul Manan NS. Electrochemical detection of hydrogen peroxide on a new microporous Ni–metal organic framework material-carbon paste electrode. Sens. Actuators B Chem. 2018;254:1148–1156. doi: 10.1016/j.snb.2017.08.002. DOI

Zhong Z, et al. Poly(EDOT-pyridine-EDOT) and poly(EDOT-pyridazine-EDOT) hollow nanosphere materials for the electrochemical detection of Pb2+ and Cu2+ J. Electroanal. Chem. 2018;822:112–122. doi: 10.1016/j.jelechem.2018.05.022. DOI

de Eguilaz MR, Cumba LR, Forster RJ. Electrochemical detection of viruses and antibodies: A mini review. Electrochem. Commun. 2020;116:106762. doi: 10.1016/j.elecom.2020.106762. PubMed DOI PMC

Manzano M, Viezzi S, Mazerat S, Marks RS, Vidic J. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron. 2018;100:89–95. doi: 10.1016/j.bios.2017.08.043. PubMed DOI

Šišoláková I, et al. Zn nanoparticles modified screen printed carbon electrode as a promising sensor for insulin determination. Electroanalysis. 2021;33:627–634. doi: 10.1002/elan.202060417. DOI

Šišoláková I, et al. Electrochemical determination of insulin at CuNPs/chitosan-MWCNTs and CoNPs/chitosan-MWCNTs modified screen printed carbon electrodes. J. Electroanal. Chem. 2020;860:113881. doi: 10.1016/j.jelechem.2020.113881. DOI

Petruš O, et al. Detection of organic dyes by surface-enhanced Raman spectroscopy using plasmonic NiAg nanocavity films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;249:119322. doi: 10.1016/j.saa.2020.119322. PubMed DOI

Ul-Hamid A, Quddusa A, Saricimena H, Dafallaa H. Corrosion behavior of coarse- and fine-grain Ni coatings incorporating NaH2PO4·H2O inhibitor treated substrates. Mater. Res. 2015;18:20–26. doi: 10.1590/1516-1439.253114. DOI

Zhang Y, et al. Preparation of 3D rose-like nickel oxide nanoparticles by electrodeposition method and application in gas sensors. J. Mater. Sci. Mater. Electron. 2016;27:1817–1827. doi: 10.1007/s10854-015-3959-2. DOI

Xia N, Gerhardt RA. Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods. Mater. Res. Express. 2016;3:25.

Sundara Venkatesh P, Ramakrishnan V, Jeganathan K. Vertically aligned indium doped zinc oxide nanorods for the application of nanostructured anodes by radio frequency magnetron sputtering. CrystEngComm. 2012;14:3907–3914. doi: 10.1039/c2ce25220a. DOI

Deo RP, Lawrence NS, Wang J. Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes. Analyst. 2004;129:1076–1081. doi: 10.1039/B407418A. PubMed DOI

Unutulmazsoy Y, Merkle R, Fischer D, Mannhart J, Maier J. The oxidation kinetics of thin nickel films between 250 and 500 °C. Phys. Chem. Chem. Phys. 2017;19:9045–9052. doi: 10.1039/C7CP00476A. PubMed DOI

Shepa J, et al. NiO nanoparticles for electrochemical insulin detection. Sensors. 2021;21:12–17. doi: 10.3390/s21155063. PubMed DOI PMC

Shrivastava A, Gupta VB, Article R. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2011;2:21–25. doi: 10.4103/2229-5186.79345. DOI

Taib M, et al. Reflectance aptasensor based on metal salphen label for rapid and facile determination of insulin. Talanta. 2020;207:120321. doi: 10.1016/j.talanta.2019.120321. PubMed DOI

Abazar F, Noorbakhsh A. Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sens. Actuators B Chem. 2020;304:127281. doi: 10.1016/j.snb.2019.127281. DOI

Mirsalari M, Elhami S. Colorimetric detection of insulin in human serum using GO/AuNPs/TX-100 nanocomposite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;240:118617. doi: 10.1016/j.saa.2020.118617. PubMed DOI

Zhang M, Mullens C, Gorski W. Insulin oxidation and determination at carbon electrodes. Anal. Chem. 2005;77:6396–6401. doi: 10.1021/ac0508752. PubMed DOI

Businova P, et al. Voltammetric sensor for direct insulin detection. Proced. Eng. 2012;47:1235–1238. doi: 10.1016/j.proeng.2012.09.376. DOI

Salimi A, Hallaj R. Cobalt oxide nanostructure-modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin. J. Solid State Electrochem. 2012;16:1239–1246. doi: 10.1007/s10008-011-1510-9. DOI

Martínez-Periñán E, et al. Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modified electrodes. Sens. Actuators B Chem. 2016;222:331–338. doi: 10.1016/j.snb.2015.08.033. DOI

Find record

Citation metrics

Loading data ...

    Archiving options