Graphene Nanobeacons with High-Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
No 683024
European Research Council - International
PubMed
35775954
DOI
10.1002/smll.202201003
Knihovny.cz E-zdroje
- Klíčová slova
- carboxylation, heavy metals, nitrogen-doped graphene acid, paper-based sensors, sensing, sorption,
- MeSH
- adsorpce MeSH
- dekontaminace MeSH
- grafit * MeSH
- kadmium MeSH
- olovo MeSH
- těžké kovy * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- grafit * MeSH
- kadmium MeSH
- olovo MeSH
- těžké kovy * MeSH
- voda MeSH
Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g-1 , respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+ , respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.
Department of Materials Science and Engineering University of Ioannina Ioannina 45110 Greece
ICREA Institució Catalana de Recerca i Estudis Avançats Pg Lluís Companys 23 Barcelona 08010 Spain
Physics Department University of Ioannina Ioannina 45110 Greece
Zobrazit více v PubMed
S. Bolisetty, R. Mezzenga, Nat. Nanotechnol. 2016, 11, 365.
G. L. Sun, E. E. Reynolds, A. M. Belcher, Nat. Sustainability 2020, 3, 303.
J. O. Nriagu, Science 1996, 272, 223.
Sustainable Development Knowledge Platform (United Nations), https://sustainabledevelopment.un.org (accessed: March 2022)
{WHO} Fact Sheet on Water: Key Facts, Access to Water, Water and Health, https://water.org/documents/223/FY22_Key_Water.org_facts.pdf (accessed: June 2022).
Water scarcity, https://www.unicef.org/wash/water-scarcity (accessed: March 2022)
J. Filip, J. Kolařík, E. Petala, M. Petr, O. Šráček, R. Zbořil, in Nanoscale Zerovalent Iron Particles for Environmental Restoration (Eds: T. Phenrat, G. V. Lowry), Springer, Cham 2019, pp. 157-199.
T. J. Bandosz, Activated Carbon Surfaces in Environmental Remediation, Elsevier, New York 2006.
L. Xie, Z. Yu, S. M. Islam, K. Shi, Y. Cheng, M. Yuan, J. Zhao, G. Sun, H. Li, S. Ma, M. G. Kanatzidis, Adv. Funct. Mater. 2018, 28, 1800502.
Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, Nat. Commun. 2018, 9, 187.
A. A. Uliana, N. T. Bui, J. Kamcev, M. K. Taylor, J. J. Urban, J. R. Long, Science 2021, 372, 296.
J. Kolařík, A. Bakandritsos, Z. Bad'ura, R. Lo, G. Zoppellaro, Š. Kment, A. Naldoni, Y. Zhang, M. Petr, O. Tomanec, J. Filip, M. Otyepka, P. Hobza, R. Zbořil, ACS Nano 2021, 15, 3349.
S. Ma, L. Huang, L. Ma, Y. Shim, S. M. Islam, P. Wang, L.-D. Zhao, S. Wang, G. Sun, X. Yang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 3670.
C. W. Abney, J. C. Gilhula, K. Lu, W. Lin, Adv. Mater. 2014, 26, 7993.
Q. Li, D. Wang, X. Fang, B. Zong, Y. Liu, Z. Li, S. Mao, K. K. Ostrikov, Chem. Commun. 2021, 57, 1161.
J. Linton, J. S. Yeomans, Nat. Mater. 2004, 3, 199.
A. D. Pournara, A. Margariti, G. D. Tarlas, A. Kourtelaris, V. Petkov, C. Kokkinos, A. Economou, G. S. Papaefstathiou, M. J. Manos, J. Mater. Chem. A 2019, 7, 15432.
S.-Y. Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2016, 138, 3031.
N. Gogoi, M. Barooah, G. Majumdar, D. Chowdhury, ACS Appl. Mater. Interfaces 2015, 7, 3058.
Y. Zhang, J. R. Vallin, J. K. Sahoo, F. Gao, B. W. Boudouris, M. J. Webber, W. A. Phillip, ACS Cent. Sci. 2018, 4, 1697.
X. Shi, W. Gu, W. Peng, B. Li, N. Chen, K. Zhao, Y. Xian, ACS Appl. Mater. Interfaces 2014, 6, 2568.
X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, D. Luo, Sens. Actuators, B 2018, 255, 1577.
E. Cho, J. Kim, B. Tejerina, T. M. Hermans, H. Jiang, H. Nakanishi, M. Yu, A. Z. Patashinski, S. C. Glotzer, F. Stellacci, B. A. Grzybowski, Nat. Mater. 2012, 11, 978.
Z.-Q. Zhou, Y.-P. Liao, J. Yang, S. Huang, Q. Xiao, L.-Y. Yang, Y. Liu, Spectrochim. Acta, Part A 2020, 228, 117795.
J. Zhou, B. Li, A. Qi, Y. Shi, J. Qi, H. Xu, L. Chen, Sens. Actuators, B Chem. 2020, 305, 127462.
X. Wang, L. Kong, Y. Gan, T. Liang, S. Zhou, J. Sun, H. Wan, P. Wang, Anal. Chim. Acta 2020, 1131, 126.
S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, B. Yang, RSC Adv. 2012, 2, 2717.
L. Lu, L. Zhou, J. Chen, F. Yan, J. Liu, X. Dong, F. Xi, P. Chen, ACS Nano 2018, 12, 12673.
A. Kumar, A. R. Chowdhuri, D. Laha, T. K. Mahto, P. Karmakar, S. K. Sahu, Sens. Actuators, B 2017, 242, 679.
Y. Liu, Q. Zhou, Y. Yuan, Y. Wu, Carbon 2017, 115, 550.
C. Liu, X. Chen, B. Zongab, S. Mao, J. Mater. Chem. A 2019, 7, 6616.
L. Liu, K. Ye, C. Lin, Z. Jia, T. Xue, A. Nie, Y. Cheng, J. Xiang, C. Mu, B. Wang, F. Wen, K. Zhai, Z. Zhao, Y. Gong, Z. Liu, Y. Tian, Nat. Commun. 2021, 12, 3870.
J. Dong, K. Zhang, X. Li, Y. Qian, H. Zhu, D. Yuan, Q.-H. Xu, J. Jiang, D. Zhao, Nat. Commun. 2017, 8, 1142.
J. Chen, Q. Huang, H. Huang, L. Mao, M. Liu, X. Zhang, Y. Wei, Nanoscale 2020, 12, 3574.
Y. Xiang, Y. Lu, Nat. Chem. 2011, 3, 697.
O. Knopfmacher, M. L. Hammock, A. L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, Z. Bao, Nat. Commun. 2014, 5, 2954.
Y. Guan, B. Sun, Microsyst. Nanoeng. 2020, 6, 14.
M. Park, T. S. Seo, Biosens. Bioelectron. 2019, 126, 405.
E. Vermisoglou, D. Panáček, K. Jayaramulu, M. Pykal, I. Frébort, M. Kolář, M. Hajdúch, R. Zbořil, M. Otyepka, Biosens. Bioelectron. 2020, 166, 112436.
I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, J. M. Mauro, Nat. Mater. 2003, 2, 630.
Q. Li, D. Wang, X. Fang, X. Wang, S. Mao, K. K. Ostrikov, Adv. Funct. Mater. 2021, 31, 2104572.
J. M. R. Flauzino, E. P. Nguyen, Q. Yang, G. Rosati, D. Panáček, A. G. Brito-Madurro, J. M. Madurro, A. Bakandritsos, M. Otyepka, A. Merkoçi, Biosens. Bioelectron. 2022, 195, 113628.
K. Hola, Y. Zhang, Y. Wang, E. P. Giannelis, R. Zboril, A. L. Rogach, Nano Today 2014, 9, 590.
O. Kozák, M. Sudolská, G. Pramanik, P. Cígler, M. Otyepka, R. Zbořil, Chem. Mater. 2016, 28, 4085.
Q. Wang, S. Zhang, H. Ge, G. Tian, N. Cao, Y. Li, Sens. Actuators, B 2015, 207, 25.
Lead and Cadmium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality, https://apps.who.int/iris/handle/10665/75364 (accessed: June 2022).
J. Li, Y. Lu, J. Am. Chem. Soc. 2000, 122, 10466.
C.-W. Liu, C.-C. Huang, H.-T. Chang, Anal. Chem. 2009, 81, 2383.
I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
V. Šedajová, A. Bakandritsos, P. Błoński, M. Medveď, R. Langer, D. Zaoralová, J. Ugolotti, J. Dzíbelová, P. Jakubec, V. Kupka, M. Otyepka, Energy Environ. Sci. 2022, 15, 740.
P. Lazar, R. Mach, M. Otyepka, J. Phys. Chem. C 2019, 123, 10695.
D. Zaoralová, V. Hrubý, V. Šedajová, R. Mach, V. Kupka, J. Ugolotti, A. Bakandritsos, M. Medved, M. Otyepka, ACS Sustainable Chem. Eng. 2020, 8, 4764.
X. Wang, C. G. Bazuin, C. Pellerin, Vib. Spectrosc. 2014, 71, 18.
J. Senthilnathan, C.-C. Weng, J.-D. Liao, M. Yoshimura, Sci. Rep. 2013, 3, 2414.
G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., Wiley, New York 2021, p. 332.
J. Oomens, J. D. Steill, J. Phys. Chem. A 2008, 112, 3281.
D. W. Mayo, F. A. Miller, R. W. Hannah, Course Notes on the Interpretation of Infrared and Raman Spectra, Wiley, New York 2004, p. 222.
P. Yasaei, B. Kumar, R. Hantehzadeh, M. Kayyalha, A. Baskin, N. Repnin, C. Wang, R. F. Klie, Y. P. Chen, P. Král, A. Salehi-Khojin, Nat. Commun. 2014, 5, 4911.
Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 2008, 3, 563.
M. Bacon, S. J. Bradley, T. Nann, Part. Part. Syst. Charact. 2014, 31, 415.
M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, P. Chen, J. Mater. Chem. C 2014, 2, 6954.
Z. Liu, F. Li, Y. Luo, M. Li, G. Hu, X. Pu, T. Tang, J. Wen, X. Li, W. Li, Molecules 2021, 26, 3922.
Q. Xue, H. Huang, L. Wang, Z. Chen, M. Wu, Z. Li, D. Pan, Nanoscale 2013, 5, 12098.
M. Fu, F. Ehrat, Y. Wang, K. Z. Milowska, C. Reckmeier, A. L. Rogach, J. K. Stolarczyk, A. S. Urban, J. Feldmann, Nano Lett. 2015, 15, 6030.
S. Kim, C. M. Park, M. Jang, A. Son, N. Her, M. Yu, S. Snyder, D.-H. Kim, Y. Yoon, Chemosphere 2018, 212, 1104.
R. G. Pearson, J. Chem. Educ. 1968, 45, 581.
L.-L. Li, J. Ji, R. Fei, C.-Z. Wang, Q. Lu, J.-R. Zhang, L.-P. Jiang, J.-J. Zhu, Adv. Funct. Mater. 2012, 22, 2971.
R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik, J. Heimann, A. Gagor, B. Feist, R. Wrzalik, Dalton Trans. 2013, 42, 5682.
Y. Yu, G. Zhang, L. Ye, J. Appl. Polym. Sci. 2019, 136, 47318.
M. A. Tofighy, T. Mohammadi, J. Hazard. Mater. 2011, 185, 140.
X. Guo, B. Du, Q. Wei, J. Yang, L. Hu, L. Yan, W. Xu, J. Hazard. Mater. 2014, 278, 211.
F. Ge, M.-M. Li, H. Ye, B.-X. Zhao, J. Hazard. Mater. 2012, 211-212, 366.
Y. Li, J. He, K. Zhang, T. Liu, Y. Hu, X. Chen, C. Wang, X. Huang, L. Kong, J. Liu, RSC Adv. 2019, 9, 397.
P. Bhunia, G. Kim, C. Baik, H. Lee, Chem. Commun. 2012, 48, 9888.
M. Nováček, O. Jankovský, J. Luxa, D. Sedmidubský, M. Pumera, V. Fila, M. Lhotka, K. Klímová, S. Matějková, Z. Sofer, J. Mater. Chem. A 2017, 5, 2739.
G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Environ. Sci. Technol. 2011, 45, 10454.
H. Xue, Q. Chen, F. Jiang, D. Yuan, G. Lv, L. Liang, L. Liu, M. Hong, Chem. Sci. 2016, 7, 5983.
B. Wang, H. Wu, L. Yu, R. Xu, T.-T. Lim, X. W. D. Lou, Adv. Mater. 2012, 24, 1111.
L. Ma, Q. Wang, S. M. Islam, Y. Liu, S. Ma, M. G. Kanatzidis, J. Am. Chem. Soc. 2016, 138, 2858.
Z. Tao, Y. Zhou, N. Duan, Z. Wang, Catalysts 2020, 10, 600.
D. Zhang, M. Zhu, L. Zhao, J. Zhang, K. Wang, D. Qi, Y. Zhou, Y. Bian, J. Jiang, Inorg. Chem. 2017, 56, 14533.
M. Devi, A. Dhir, C. P. Pradeep, RSC Adv. 2016, 6, 112728.
A. Shahat, K. T. Kubra, S. Salman, N. Hasan, M. Hasan, Microchem. J. 2021, 164, 105967.
L. Chen, Y. Lu, M. Qin, F. Liu, L. Huang, J. Wang, H. Xu, N. Li, G. Huang, Z. Luo, B. Zheng, Sensors 2020, 20, 995.
Y. Zhang, Z. Zhang, D. Yin, J. Li, R. Xie, W. Yang, ACS Appl. Mater. Interfaces 2013, 5, 9709.
M. Tang, X. Liu, N. Zhang, J. Pang, Y. Zou, F. Chai, H. Wu, L. Chen, Anal. Methods 2019, 11, 5214.
W.-J. Niu, D. Shan, R.-H. Zhu, S.-Y. Deng, S. Cosnier, X.-J. Zhang, Carbon 2016, 96, 1034.
L. Tran, S. Park, Sci. Rep. 2021, 11, 15196.
S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, S. K. Ghosh, Angew. Chem., Int. Ed. 2013, 52, 2881.
B. Wang, P. Wang, L.-H. Xie, R.-B. Lin, J. Lv, J.-R. Li, B. Chen, Nat. Commun. 2019, 10, 3861.
V. Strauss, J. T. Margraf, C. Dolle, B. Butz, T. J. Nacken, J. Walter, W. Bauer, W. Peukert, E. Spiecker, T. Clark, D. M. Guldi, J. Am. Chem. Soc. 2014, 136, 17308.
F. Aquino, N. Govind, J. Autschbach, J. Chem. Theory Comput. 2010, 6, 2669.
S. M. Z. Hossain, J. D. Brennan, Anal. Chem. 2011, 83, 8772.
A. M. López_Marzo, J. Pons, D. A. Blake, A. Merkoçi, Biosens. Bioelectron. 2013, 47, 190.
D. Mazumdar, J. Liu, G. Lu, J. Zhou, Y. Lu, Chem. Commun. 2010, 46, 1416.
Single Atom Engineered Antibiotics Overcome Bacterial Resistance