Influence of Gender, Body Mass Index, and Age on the Pharmacokinetics of Itraconazole in Healthy Subjects: Non-Compartmental Versus Compartmental Analysis

. 2022 ; 13 () : 796336. [epub] 20220615

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35784683

Itraconazole is a triazole antifungal agent with highly variable pharmacokinetics, with not yet fully identified factors as the source of this variability. Our study aimed to examine the influence of body mass index, gender, and age on the first dose pharmacokinetics of itraconazole in healthy subjects, using pharmacokinetic modeling, non-compartmental versus compartmental ones. A total of 114 itraconazole and hydroxy-itraconazole sets of plasma concentrations of healthy subjects of both genders, determined using a validated liquid chromatographic method with mass spectrometric detection (LC-MS), were obtained for pharmacokinetic analyses performed by the computer program Kinetica 5®. Genetic polymorphism in CYP3A4, CYP3A5, CYP1A1, CYP2C9, and CYP2C19 was analyzed using PCR-based methods. Multiple linear regression analysis indicated that gender had a significant effect on AUC as the most important pharmacokinetics endpoint, whereas body mass index and age did not show such an influence. Therefore, further analysis considered gender and indicated that both geometric mean values of itraconazole and hydroxy-itraconazole plasma concentrations in men were prominently higher than those in women. A significant reduction of the geometric mean values of Cmax and AUC and increment of Vd in females compared with males were obtained. Analyzed genotypes and gender differences in drug pharmacokinetics could not be related. Non-compartmental and one-compartmental models complemented each other, whereas the application of the two-compartmental model showed a significant correlation with the analysis of one compartment. They indicated a significant influence of gender on itraconazole pharmacokinetics after administration of the single oral dose of the drug, given under fed conditions. Women were less exposed to itraconazole and hydroxy-itraconazole than men due to poorer absorption of itraconazole, its more intense pre-systemic metabolism, and higher distribution of both drug and its metabolite.

Zobrazit více v PubMed

Abdel-Rahman S. M., Jacobs R. F., Massarella J., Kauffman R. E., Bradley J. S., Kimko H. C., et al. (2007). Single-dose Pharmacokinetics of Intravenous Itraconazole and Hydroxypropyl-Beta-Cyclodextrin in Infants, Children, and Adolescents. Antimicrob. Agents Chemother. 51 (8), 2668–2673. 10.1128/AAC.00297-07 PubMed DOI PMC

Abuhelwa A. Y., Foster D. J., Mudge S., Hayes D., Upton R. N. (2015). Population Pharmacokinetic Modeling of Itraconazole and Hydroxyitraconazole for Oral SUBA-Itraconazole and Sporanox Capsule Formulations in Healthy Subjects in Fed and Fasted States. Antimicrob. Agents Chemother. 59, 5681–5696. 10.1128/AAC.00973-1510.1128/AAC.00973-15 PubMed DOI PMC

Abuhelwa A. Y., Mudge S., Hayes D., Upton R. N., Foster D. J. (2016). Population In Vitro-In Vivo Correlation Model Linking Gastrointestinal Transit Time, pH, and Pharmacokinetics: Itraconazole as a Model Drug. Pharm. Res. 33, 1782–1794. 10.1007/s11095-016-1917-1 PubMed DOI

Abuhelwa A. Y., Mudge S., Upton R. N., Foster D. J. R. (2018). Population In Vitro-In Vivo Pharmacokinetic Model of First-Pass Metabolism: Itraconazole and Hydroxy-Itraconazole. J. Pharmacokinet. Pharmacodyn. 45, 181–197. 10.1007/s10928-017-9555-8 PubMed DOI

Allegra S., Fatiguso G., De Francia S., Favata F., Pirro E., Carcieri C., et al. (2017). Pharmacokinetic Evaluation of Oral Itraconazole for Antifungal Prophylaxis in Children. Clin. Exp. Pharmacol. Physiol. 44, 1083–1088. 10.1111/1440-1681.12822 PubMed DOI

Anderson G. D. (2005). Sex and Racial Differences in Pharmacological Response: Where Is the Evidence? Pharmacogenetics, Pharmacokinetics, and Pharmacodynamics. J. Womens Health (Larchmt) 14, 19–29. 10.1089/jwh.2005.14.19 PubMed DOI

Bae S. K., Park S. J., Shim E. J., Mun J. H., Kim E. Y., Shin J. G., et al. (2011). Increased Oral Bioavailability of Itraconazole and its Active Metabolite, 7-hydroxyitraconazole, when Coadministered with a Vitamin C Beverage in Healthy Participants. J. Clin. Pharmacol. 51 (3), 444–451. 10.1177/0091270010365557 PubMed DOI

Barone J. A., Koh J. G., Bierman R. H., Colaizzi J. L., Swanson K. A., Gaffar M. C., et al. (1993). Food Interaction and Steady-State Pharmacokinetics of Itraconazole Capsules in Healthy Male Volunteers. Antimicrob. Agents Chemother. 37, 778–784. 10.1128/AAC.37.4.778 PubMed DOI PMC

Bellmann R., Smuszkiewicz P. (2017). Pharmacokinetics of Antifungal Drugs: Practical Implications for Optimized Treatment of Patients. Infection 45, 737–779. 10.1007/s15010-017-1042-z PubMed DOI PMC

Bury D., Tissing W. J. E., Muilwijk E. W., Wolfs T. F. W., Brüggemann R. J. (2021). Clinical Pharmacokinetics of Triazoles in Pediatric Patients. Clin. Pharmacokinet. 60, 1103–1147. 10.1007/s40262-021-00994-3 PubMed DOI PMC

Datapharm (2021). Summary of Product Characteristics: Sporanox Capsules. EMC; . https://www.medicines.org.uk/emc/product/1513/smpc#companyDetails (Accessed April 08, 2021).

De Doncker P., Pande S., Richarz U., Garodia N. (2017). Itraconazole: What Clinicians Should Know? Indian J. Drugs Dermatol 3, 4. 10.4103/ijdd.ijdd_20_17 DOI

Dragojević-Simić V., Kovačević A., Jaćević V., Rančić N., Djordjević S., Kilibarda V., et al. (2018). Bioequivalence Study of Two Formulations of Itraconazole 100 Mg Capsules in Healthy Volunteers under Fed Conditions: a Randomized, Three-Period, Reference-Replicated, Crossover Study. Expert Opin. Drug Metabolism Toxicol. 14 (9), 979–988. 10.1080/17425255.2018.1503649 PubMed DOI

Endrenyi L., Tothfalusi L. (2019). Bioequivalence for Highly Variable Drugs: Regulatory Agreements, Disagreements, and Harmonization. J. Pharmacokinet. Pharmacodyn. 46, 117–126. 10.1007/s10928-019-09623-w PubMed DOI

European Medicines Agency (EMA) (2011). Guideline on Bioanalytical Method Validation. EMA. Available at: https://www.ema.europa.eu/en/bioanalytical-method-validat ion (Accessed September 29, 2021). PubMed

European Medicines Agency (EMA) (2010). Guideline on the Investigation of Bioequivalence. EMA. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf (Accessed September 29, 2021). PubMed

Fagiolino P., González N., Vázquez M., Eiraldi R. (2007). Itraconazole Bioequivalence Revisited: Influence of Gender on Highly Variable Drugs. Open Drug Meta J. 1, 7–13. 10.2174/1874073100701010007 DOI

Feldman D. N., Feldman J. G., Greenblatt R., Anastos K., Pearce L., Cohen M., et al. (2009). CYP1A1 Genotype Modifies the Impact of Smoking on Effectiveness of HAART Among Women. AIDS Educ. Prev. 21, 81–93. 10.1521/aeap.2009.21.3_supp.81 PubMed DOI PMC

Hardin T. C., Graybill J. R., Fetchick R., Woestenborghs R., Rinaldi M. G., Kuhn J. G. (1988). Pharmacokinetics of Itraconazole Following Oral Administration to Normal Volunteers. Antimicrob. Agents Chemother. 32, 1310–1313. 10.1128/aac.32.9.1310 PubMed DOI PMC

Hennig S., Wainwright C. E., Bell S. C., Miller H., Friberg L. E., Charles B. G. (2006). Population Pharmacokinetics of Itraconazole and its Active Metabolite Hydroxy-Itraconazole in Paediatric Cystic Fibrosis and Bone Marrow Transplant Patients. Clin. Pharmacokinet. 45 (11), 1099–1114. 10.2165/00003088-200645110-00004 PubMed DOI

Heykants J., Van Peer A., Van de Velde V., Van Rooy P., Meuldermans W., Lavrijsen K., et al. (1982). The Clinical Pharmacokinetics of Itraconazole: an Overview. Mycoses 32 Suppl 1 (Suppl. 1), 67–87. 10.1111/j.1439-0507.1989.tb02296.x PubMed DOI

Heykants J., Michiels M., Meuldermans W., Monbaliu J., Lavrijsen K., Peer A. V., et al. (1987). “The Pharmacokinetics of Itraconazole in Animals and Man: an Overview,” in Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. Editor Fromtling R. A. (Prous Science; ), 223–249.

Islam M. M., Iqbal U., Walther B. A., Nguyen P. A., Li Y. J., Dubey N. K., et al. (2017). Gender-based Personalized Pharmacotherapy: a Systematic Review. Arch. Gynecol. Obstet. 295, 1305–1317. 10.1007/s00404-017-4363-3 PubMed DOI

Isoherranen N., Kunze K. L., Allen K. E., Nelson W. L., Thummel K. E. (2004). Role of Itraconazole Metabolites in CYP3A4 Inhibition. Drug Metab. Dispos. 32, 1121–1131. 10.1124/dmd.104.000315 PubMed DOI

John J., Loo A., Mazur S., Walsh T. J. (2019). Therapeutic Drug Monitoring of Systemic Antifungal Agents: a Pragmatic Approach for Adult and Pediatric Patients. Expert Opin. Drug Metab. Toxicol. 15 (11), 881–895. 10.1080/17425255.2019.1671971 PubMed DOI

Koks C. H., Huitema A. D., Kroon E. D., Chuenyam T., Sparidans R. W., Lange J. M., et al. (2003). Population Pharmacokinetics of Itraconazole in Thai HIV-1-Infected Persons. Ther. Drug Monit. 25, 229–233. 10.1097/00007691-200304000-00014 PubMed DOI

Lestner J., Hope W. W. (2013). Itraconazole: an Update on Pharmacology and Clinical Use for Treatment of Invasive and Allergic Fungal Infections. Expert Opin. Drug Metab. Toxicol. 9, 911–926. 10.1517/17425255.2013.794785 PubMed DOI

Lindsay J., Sandaradura I., Wong K., Arthur C., Stevenson W., Kerridge I., et al. (2017). Serum Levels, Safety and Tolerability of New Formulation SUBA-Itraconazole Prophylaxis in Patients with Haematological Malignancy or Undergoing Allogeneic Stem Cell Transplantation. J. Antimicrob. Chemother. 72 (12), 3414–3419. 10.1093/jac/dkx295 PubMed DOI

Maertens J. A. (2004). History of the Development of Azole Derivatives. Clin. Microbiol. Infect. 10 Suppl 1, 1–10. 10.1111/j.1470-9465.2004.00841.x PubMed DOI

McEvoy G. K. (2016). AHFS Drug Information 2016. Bethesda, Maryland: American Society of Health-System Pharmacists (ASHP).

Meibohm B., Beierle I., Derendorf H. (2002). How Important Are Gender Differences in Pharmacokinetics? Clin. Pharmacokinet. 41, 329–342. 10.2165/00003088-200241050-00002 PubMed DOI

Nakamura Y., Matsumoto K., Sato A., Morita K. (2019). Effective Plasma Concentrations of Itraconazole and its Active Metabolite for the Treatment of Pulmonary Aspergillosis. J. Infect. Chemother. 26 (2), 170–174. 10.1016/j.jiac.2019.08.002 PubMed DOI

Patni A. K., Monif T., Khuroo A. H., Iyer S. S., Tiwary A. K. (2010). A Comparative Bioavailability Study of Two Formulations of Itraconazole 100 Mg Capsule in Healthy Human Indian Subjects under Fasting Conditions. Clin. Res. Regul. Aff. 27, 128–132. 10.3109/10601333.2010.513388 DOI

Pleym H., Spigset O., Kharasch E. D., Dale O. (2003). Gender Differences in Drug Effects: Implications for Anesthesiologists. Acta Anaesthesiol. Scand. 47, 241–259. 10.1034/j.1399-6576.2003.00036.x PubMed DOI

Poirier J. M., Cheymol G. (1998). Optimisation of Itraconazole Therapy Using Target Drug Concentrations. Clin. Pharmacokinet. 35, 461–473. 10.2165/00003088-199835060-00004 PubMed DOI

Prentice A. G., Glasmacher A. (2005). Making Sense of Itraconazole Pharmacokinetics. J. Antimicrob. Chemother. 56 Suppl 1, i17–i22. 10.1093/jac/dki220 PubMed DOI

Prieto Garcia L., Janzén D., Kanebratt K. P., Ericsson H., Lennernäs H., Lundahl A. (2018). Physiologically Based Pharmacokinetic Model of Itraconazole and Two of its Metabolites to Improve the Predictions and the Mechanistic Understanding of CYP3A4 Drug-Drug Interactions. Drug Metab. Dispos. 46, 1420–1433. 10.1124/dmd.118.081364 PubMed DOI

Rogers P. D., Krysan D. J. (2018). “Antifungal Agents,” in Goodman and Gilman’s the Pharmacological Basis of Therapeutics. Editors Brunton L., Hilal-Dandan R., Knollmann B.. 13th ed. (New York: McGraw-Hill Education; ), 1087

Shargel L., Wu-Pong S., Yu A. (2012). Applied Biopharmaceutics and Pharmacokinetics. 6th ed. Mc Graw Hill: Medical.

Shi S., Klotz U. (2011). Age-Related Changes in Pharmacokinetics. Curr. Drug Metab. 12, 601–610. 10.2174/138920011796504527 PubMed DOI

Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F. P. (1994). Interindividual Variations in Human Liver Cytochrome P-450 Enzymes Involved in the Oxidation of Drugs, Carcinogens and Toxic Chemicals: Studies with Liver Microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414 PubMed

Soldin O. P., Chung S. H., Mattison D. R. (2011). Sex Differences in Drug Disposition. J. Biomed. Biotechnol. 2011, 187103. 10.1155/2011/187103 PubMed DOI PMC

Soldin O. P., Mattison D. R. (2009). Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 48, 143–157. 10.2165/2F00003088-200948030-00001 PubMed DOI PMC

Sweetman S. C. (2009). Martindale: The Complete Drug Reference. 36th (Edition Book & CD-ROM Package). 36th ed. London: Pharmaceutical Press. https://www.amazon.com/Martindale-Complete-ReferenceCD-ROM-Package/dp/0853698422.

Thummel K., Shen D., Isoherranen N. (2018). “Design and Optimization of Dosage Regimens: Pharmacokinetic Data,” in Goodman and Gilman’s the Pharmacological Basis of Therapeutics. Editors Brunton L., Hilal-Dandan R., Knollman B. B. (McGraw-Hill Education; ), 1325.

Tissot F., Agrawal S., Pagano L., Petrikkos G., Groll A. H., Skiada A., et al. (2017). ECIL-6 Guidelines for the Treatment of Invasive Candidiasis, Aspergillosis and Mucormycosis in Leukemia and Hematopoietic Stem Cell Transplant Patients. Haematologica 102, 433–444. 10.3324/haematol.2016.152900 PubMed DOI PMC

Walsh T. J., Anaissie E. J., Denning D. W., Herbrecht R., Kontoyiannis D. P., Marr K. A., et al. (2008). Treatment of Aspergillosis: Clinical Practice Guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis. 46, 327–360. 10.1086/525258 PubMed DOI

Watson S., Caster O., Rochon P. A., den Ruijter H. (2019). Reported Adverse Drug Reactions in Women and Men: Aggregated Evidence from Globally Collected Individual Case Reports during Half a Century. EClinicalMedicine 17, 100188. 10.1016/j.eclinm.2019.10.001 PubMed DOI PMC

Yun H. Y., Baek M. S., Park I. S., Choi B. K., Kwon K. I. (2006). Comparative Analysis of the Effects of Rice and Bread Meals on Bioavailability of Itraconazole Using NONMEM in Healthy Volunteers. Eur. J. Clin. Pharmacol. 62 (12), 1033–1039. 10.1007/s00228-006-0200-5 PubMed DOI

Zucker I., Prendergast B. J. (2020). Sex Differences in Pharmacokinetics Predict Adverse Drug Reactions in Women. Biol. Sex. Differ. 11, 308. 10.1186/s13293-020-00308-5 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...