Influence of Gender, Body Mass Index, and Age on the Pharmacokinetics of Itraconazole in Healthy Subjects: Non-Compartmental Versus Compartmental Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35784683
PubMed Central
PMC9240599
DOI
10.3389/fphar.2022.796336
PII: 796336
Knihovny.cz E-zdroje
- Klíčová slova
- age, body mass index, compartmental analysis, gender, genetic polymorphism, hydroxy-itraconazole, itraconazole, non-compartmental analysis,
- Publikační typ
- časopisecké články MeSH
Itraconazole is a triazole antifungal agent with highly variable pharmacokinetics, with not yet fully identified factors as the source of this variability. Our study aimed to examine the influence of body mass index, gender, and age on the first dose pharmacokinetics of itraconazole in healthy subjects, using pharmacokinetic modeling, non-compartmental versus compartmental ones. A total of 114 itraconazole and hydroxy-itraconazole sets of plasma concentrations of healthy subjects of both genders, determined using a validated liquid chromatographic method with mass spectrometric detection (LC-MS), were obtained for pharmacokinetic analyses performed by the computer program Kinetica 5®. Genetic polymorphism in CYP3A4, CYP3A5, CYP1A1, CYP2C9, and CYP2C19 was analyzed using PCR-based methods. Multiple linear regression analysis indicated that gender had a significant effect on AUC as the most important pharmacokinetics endpoint, whereas body mass index and age did not show such an influence. Therefore, further analysis considered gender and indicated that both geometric mean values of itraconazole and hydroxy-itraconazole plasma concentrations in men were prominently higher than those in women. A significant reduction of the geometric mean values of Cmax and AUC and increment of Vd in females compared with males were obtained. Analyzed genotypes and gender differences in drug pharmacokinetics could not be related. Non-compartmental and one-compartmental models complemented each other, whereas the application of the two-compartmental model showed a significant correlation with the analysis of one compartment. They indicated a significant influence of gender on itraconazole pharmacokinetics after administration of the single oral dose of the drug, given under fed conditions. Women were less exposed to itraconazole and hydroxy-itraconazole than men due to poorer absorption of itraconazole, its more intense pre-systemic metabolism, and higher distribution of both drug and its metabolite.
Centre for Clinical Pharmacology Military Medical Academy Belgrade Serbia
Department for Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove Czechia
Institute of Microbiology and Immunology University of Belgrade Faculty of Medicine Belgrade Serbia
Medical Faculty of the Military Medical Academy University of Defence in Belgrade Belgrade Serbia
Zobrazit více v PubMed
Abdel-Rahman S. M., Jacobs R. F., Massarella J., Kauffman R. E., Bradley J. S., Kimko H. C., et al. (2007). Single-dose Pharmacokinetics of Intravenous Itraconazole and Hydroxypropyl-Beta-Cyclodextrin in Infants, Children, and Adolescents. Antimicrob. Agents Chemother. 51 (8), 2668–2673. 10.1128/AAC.00297-07 PubMed DOI PMC
Abuhelwa A. Y., Foster D. J., Mudge S., Hayes D., Upton R. N. (2015). Population Pharmacokinetic Modeling of Itraconazole and Hydroxyitraconazole for Oral SUBA-Itraconazole and Sporanox Capsule Formulations in Healthy Subjects in Fed and Fasted States. Antimicrob. Agents Chemother. 59, 5681–5696. 10.1128/AAC.00973-1510.1128/AAC.00973-15 PubMed DOI PMC
Abuhelwa A. Y., Mudge S., Hayes D., Upton R. N., Foster D. J. (2016). Population In Vitro-In Vivo Correlation Model Linking Gastrointestinal Transit Time, pH, and Pharmacokinetics: Itraconazole as a Model Drug. Pharm. Res. 33, 1782–1794. 10.1007/s11095-016-1917-1 PubMed DOI
Abuhelwa A. Y., Mudge S., Upton R. N., Foster D. J. R. (2018). Population In Vitro-In Vivo Pharmacokinetic Model of First-Pass Metabolism: Itraconazole and Hydroxy-Itraconazole. J. Pharmacokinet. Pharmacodyn. 45, 181–197. 10.1007/s10928-017-9555-8 PubMed DOI
Allegra S., Fatiguso G., De Francia S., Favata F., Pirro E., Carcieri C., et al. (2017). Pharmacokinetic Evaluation of Oral Itraconazole for Antifungal Prophylaxis in Children. Clin. Exp. Pharmacol. Physiol. 44, 1083–1088. 10.1111/1440-1681.12822 PubMed DOI
Anderson G. D. (2005). Sex and Racial Differences in Pharmacological Response: Where Is the Evidence? Pharmacogenetics, Pharmacokinetics, and Pharmacodynamics. J. Womens Health (Larchmt) 14, 19–29. 10.1089/jwh.2005.14.19 PubMed DOI
Bae S. K., Park S. J., Shim E. J., Mun J. H., Kim E. Y., Shin J. G., et al. (2011). Increased Oral Bioavailability of Itraconazole and its Active Metabolite, 7-hydroxyitraconazole, when Coadministered with a Vitamin C Beverage in Healthy Participants. J. Clin. Pharmacol. 51 (3), 444–451. 10.1177/0091270010365557 PubMed DOI
Barone J. A., Koh J. G., Bierman R. H., Colaizzi J. L., Swanson K. A., Gaffar M. C., et al. (1993). Food Interaction and Steady-State Pharmacokinetics of Itraconazole Capsules in Healthy Male Volunteers. Antimicrob. Agents Chemother. 37, 778–784. 10.1128/AAC.37.4.778 PubMed DOI PMC
Bellmann R., Smuszkiewicz P. (2017). Pharmacokinetics of Antifungal Drugs: Practical Implications for Optimized Treatment of Patients. Infection 45, 737–779. 10.1007/s15010-017-1042-z PubMed DOI PMC
Bury D., Tissing W. J. E., Muilwijk E. W., Wolfs T. F. W., Brüggemann R. J. (2021). Clinical Pharmacokinetics of Triazoles in Pediatric Patients. Clin. Pharmacokinet. 60, 1103–1147. 10.1007/s40262-021-00994-3 PubMed DOI PMC
Datapharm (2021). Summary of Product Characteristics: Sporanox Capsules. EMC; . https://www.medicines.org.uk/emc/product/1513/smpc#companyDetails (Accessed April 08, 2021).
De Doncker P., Pande S., Richarz U., Garodia N. (2017). Itraconazole: What Clinicians Should Know? Indian J. Drugs Dermatol 3, 4. 10.4103/ijdd.ijdd_20_17 DOI
Dragojević-Simić V., Kovačević A., Jaćević V., Rančić N., Djordjević S., Kilibarda V., et al. (2018). Bioequivalence Study of Two Formulations of Itraconazole 100 Mg Capsules in Healthy Volunteers under Fed Conditions: a Randomized, Three-Period, Reference-Replicated, Crossover Study. Expert Opin. Drug Metabolism Toxicol. 14 (9), 979–988. 10.1080/17425255.2018.1503649 PubMed DOI
Endrenyi L., Tothfalusi L. (2019). Bioequivalence for Highly Variable Drugs: Regulatory Agreements, Disagreements, and Harmonization. J. Pharmacokinet. Pharmacodyn. 46, 117–126. 10.1007/s10928-019-09623-w PubMed DOI
European Medicines Agency (EMA) (2011). Guideline on Bioanalytical Method Validation. EMA. Available at: https://www.ema.europa.eu/en/bioanalytical-method-validat ion (Accessed September 29, 2021). PubMed
European Medicines Agency (EMA) (2010). Guideline on the Investigation of Bioequivalence. EMA. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf (Accessed September 29, 2021). PubMed
Fagiolino P., González N., Vázquez M., Eiraldi R. (2007). Itraconazole Bioequivalence Revisited: Influence of Gender on Highly Variable Drugs. Open Drug Meta J. 1, 7–13. 10.2174/1874073100701010007 DOI
Feldman D. N., Feldman J. G., Greenblatt R., Anastos K., Pearce L., Cohen M., et al. (2009). CYP1A1 Genotype Modifies the Impact of Smoking on Effectiveness of HAART Among Women. AIDS Educ. Prev. 21, 81–93. 10.1521/aeap.2009.21.3_supp.81 PubMed DOI PMC
Hardin T. C., Graybill J. R., Fetchick R., Woestenborghs R., Rinaldi M. G., Kuhn J. G. (1988). Pharmacokinetics of Itraconazole Following Oral Administration to Normal Volunteers. Antimicrob. Agents Chemother. 32, 1310–1313. 10.1128/aac.32.9.1310 PubMed DOI PMC
Hennig S., Wainwright C. E., Bell S. C., Miller H., Friberg L. E., Charles B. G. (2006). Population Pharmacokinetics of Itraconazole and its Active Metabolite Hydroxy-Itraconazole in Paediatric Cystic Fibrosis and Bone Marrow Transplant Patients. Clin. Pharmacokinet. 45 (11), 1099–1114. 10.2165/00003088-200645110-00004 PubMed DOI
Heykants J., Van Peer A., Van de Velde V., Van Rooy P., Meuldermans W., Lavrijsen K., et al. (1982). The Clinical Pharmacokinetics of Itraconazole: an Overview. Mycoses 32 Suppl 1 (Suppl. 1), 67–87. 10.1111/j.1439-0507.1989.tb02296.x PubMed DOI
Heykants J., Michiels M., Meuldermans W., Monbaliu J., Lavrijsen K., Peer A. V., et al. (1987). “The Pharmacokinetics of Itraconazole in Animals and Man: an Overview,” in Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. Editor Fromtling R. A. (Prous Science; ), 223–249.
Islam M. M., Iqbal U., Walther B. A., Nguyen P. A., Li Y. J., Dubey N. K., et al. (2017). Gender-based Personalized Pharmacotherapy: a Systematic Review. Arch. Gynecol. Obstet. 295, 1305–1317. 10.1007/s00404-017-4363-3 PubMed DOI
Isoherranen N., Kunze K. L., Allen K. E., Nelson W. L., Thummel K. E. (2004). Role of Itraconazole Metabolites in CYP3A4 Inhibition. Drug Metab. Dispos. 32, 1121–1131. 10.1124/dmd.104.000315 PubMed DOI
John J., Loo A., Mazur S., Walsh T. J. (2019). Therapeutic Drug Monitoring of Systemic Antifungal Agents: a Pragmatic Approach for Adult and Pediatric Patients. Expert Opin. Drug Metab. Toxicol. 15 (11), 881–895. 10.1080/17425255.2019.1671971 PubMed DOI
Koks C. H., Huitema A. D., Kroon E. D., Chuenyam T., Sparidans R. W., Lange J. M., et al. (2003). Population Pharmacokinetics of Itraconazole in Thai HIV-1-Infected Persons. Ther. Drug Monit. 25, 229–233. 10.1097/00007691-200304000-00014 PubMed DOI
Lestner J., Hope W. W. (2013). Itraconazole: an Update on Pharmacology and Clinical Use for Treatment of Invasive and Allergic Fungal Infections. Expert Opin. Drug Metab. Toxicol. 9, 911–926. 10.1517/17425255.2013.794785 PubMed DOI
Lindsay J., Sandaradura I., Wong K., Arthur C., Stevenson W., Kerridge I., et al. (2017). Serum Levels, Safety and Tolerability of New Formulation SUBA-Itraconazole Prophylaxis in Patients with Haematological Malignancy or Undergoing Allogeneic Stem Cell Transplantation. J. Antimicrob. Chemother. 72 (12), 3414–3419. 10.1093/jac/dkx295 PubMed DOI
Maertens J. A. (2004). History of the Development of Azole Derivatives. Clin. Microbiol. Infect. 10 Suppl 1, 1–10. 10.1111/j.1470-9465.2004.00841.x PubMed DOI
McEvoy G. K. (2016). AHFS Drug Information 2016. Bethesda, Maryland: American Society of Health-System Pharmacists (ASHP).
Meibohm B., Beierle I., Derendorf H. (2002). How Important Are Gender Differences in Pharmacokinetics? Clin. Pharmacokinet. 41, 329–342. 10.2165/00003088-200241050-00002 PubMed DOI
Nakamura Y., Matsumoto K., Sato A., Morita K. (2019). Effective Plasma Concentrations of Itraconazole and its Active Metabolite for the Treatment of Pulmonary Aspergillosis. J. Infect. Chemother. 26 (2), 170–174. 10.1016/j.jiac.2019.08.002 PubMed DOI
Patni A. K., Monif T., Khuroo A. H., Iyer S. S., Tiwary A. K. (2010). A Comparative Bioavailability Study of Two Formulations of Itraconazole 100 Mg Capsule in Healthy Human Indian Subjects under Fasting Conditions. Clin. Res. Regul. Aff. 27, 128–132. 10.3109/10601333.2010.513388 DOI
Pleym H., Spigset O., Kharasch E. D., Dale O. (2003). Gender Differences in Drug Effects: Implications for Anesthesiologists. Acta Anaesthesiol. Scand. 47, 241–259. 10.1034/j.1399-6576.2003.00036.x PubMed DOI
Poirier J. M., Cheymol G. (1998). Optimisation of Itraconazole Therapy Using Target Drug Concentrations. Clin. Pharmacokinet. 35, 461–473. 10.2165/00003088-199835060-00004 PubMed DOI
Prentice A. G., Glasmacher A. (2005). Making Sense of Itraconazole Pharmacokinetics. J. Antimicrob. Chemother. 56 Suppl 1, i17–i22. 10.1093/jac/dki220 PubMed DOI
Prieto Garcia L., Janzén D., Kanebratt K. P., Ericsson H., Lennernäs H., Lundahl A. (2018). Physiologically Based Pharmacokinetic Model of Itraconazole and Two of its Metabolites to Improve the Predictions and the Mechanistic Understanding of CYP3A4 Drug-Drug Interactions. Drug Metab. Dispos. 46, 1420–1433. 10.1124/dmd.118.081364 PubMed DOI
Rogers P. D., Krysan D. J. (2018). “Antifungal Agents,” in Goodman and Gilman’s the Pharmacological Basis of Therapeutics. Editors Brunton L., Hilal-Dandan R., Knollmann B.. 13th ed. (New York: McGraw-Hill Education; ), 1087
Shargel L., Wu-Pong S., Yu A. (2012). Applied Biopharmaceutics and Pharmacokinetics. 6th ed. Mc Graw Hill: Medical.
Shi S., Klotz U. (2011). Age-Related Changes in Pharmacokinetics. Curr. Drug Metab. 12, 601–610. 10.2174/138920011796504527 PubMed DOI
Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F. P. (1994). Interindividual Variations in Human Liver Cytochrome P-450 Enzymes Involved in the Oxidation of Drugs, Carcinogens and Toxic Chemicals: Studies with Liver Microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414 PubMed
Soldin O. P., Chung S. H., Mattison D. R. (2011). Sex Differences in Drug Disposition. J. Biomed. Biotechnol. 2011, 187103. 10.1155/2011/187103 PubMed DOI PMC
Soldin O. P., Mattison D. R. (2009). Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 48, 143–157. 10.2165/2F00003088-200948030-00001 PubMed DOI PMC
Sweetman S. C. (2009). Martindale: The Complete Drug Reference. 36th (Edition Book & CD-ROM Package). 36th ed. London: Pharmaceutical Press. https://www.amazon.com/Martindale-Complete-ReferenceCD-ROM-Package/dp/0853698422.
Thummel K., Shen D., Isoherranen N. (2018). “Design and Optimization of Dosage Regimens: Pharmacokinetic Data,” in Goodman and Gilman’s the Pharmacological Basis of Therapeutics. Editors Brunton L., Hilal-Dandan R., Knollman B. B. (McGraw-Hill Education; ), 1325.
Tissot F., Agrawal S., Pagano L., Petrikkos G., Groll A. H., Skiada A., et al. (2017). ECIL-6 Guidelines for the Treatment of Invasive Candidiasis, Aspergillosis and Mucormycosis in Leukemia and Hematopoietic Stem Cell Transplant Patients. Haematologica 102, 433–444. 10.3324/haematol.2016.152900 PubMed DOI PMC
Walsh T. J., Anaissie E. J., Denning D. W., Herbrecht R., Kontoyiannis D. P., Marr K. A., et al. (2008). Treatment of Aspergillosis: Clinical Practice Guidelines of the Infectious Diseases Society of America. Clin. Infect. Dis. 46, 327–360. 10.1086/525258 PubMed DOI
Watson S., Caster O., Rochon P. A., den Ruijter H. (2019). Reported Adverse Drug Reactions in Women and Men: Aggregated Evidence from Globally Collected Individual Case Reports during Half a Century. EClinicalMedicine 17, 100188. 10.1016/j.eclinm.2019.10.001 PubMed DOI PMC
Yun H. Y., Baek M. S., Park I. S., Choi B. K., Kwon K. I. (2006). Comparative Analysis of the Effects of Rice and Bread Meals on Bioavailability of Itraconazole Using NONMEM in Healthy Volunteers. Eur. J. Clin. Pharmacol. 62 (12), 1033–1039. 10.1007/s00228-006-0200-5 PubMed DOI
Zucker I., Prendergast B. J. (2020). Sex Differences in Pharmacokinetics Predict Adverse Drug Reactions in Women. Biol. Sex. Differ. 11, 308. 10.1186/s13293-020-00308-5 PubMed DOI PMC