Linguistic Abnormalities in Isolated Rapid Eye Movement Sleep Behavior Disorder
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35799404
DOI
10.1002/mds.29140
Knihovny.cz E-zdroje
- Klíčová slova
- Parkinson's disease, discourse, lexical features, prodromal synucleinopathy biomarker, spoken language,
- MeSH
- kognitivní dysfunkce * diagnóza MeSH
- lidé MeSH
- lingvistika MeSH
- Parkinsonova nemoc * komplikace MeSH
- porucha chování v REM spánku * diagnóza MeSH
- synukleinopatie * MeSH
- vývojové poruchy řeči * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Patients with synucleinopathies frequently display language abnormalities. However, whether patients with isolated rapid eye movement sleep behavior disorder (iRBD) have prodromal language impairment remains unknown. OBJECTIVE: We examined whether the linguistic abnormalities in iRBD can serve as potential biomarkers for conversion to synucleinopathy, including the possible effect of mild cognitive impairment (MCI), speaking task, and automation of analysis procedure. METHODS: We enrolled 139 Czech native participants, including 40 iRBD without MCI and 14 iRBD with MCI, compared with 40 PD without MCI, 15 PD with MCI, and 30 healthy control subjects. Spontaneous discourse and story-tale narrative were transcribed and linguistically annotated. A quantitative analysis was performed computing three linguistic features. Human annotations were compared with fully automated annotations. RESULTS: Compared with control subjects, patients with iRBD showed poorer content density, reflecting the reduction of content words and modifiers. Both PD and iRBD subgroups with MCI manifested less occurrence of unique words and a higher number of n-grams repetitions, indicating poorer lexical richness. The spontaneous discourse task demonstrated language impairment in iRBD without MCI with an area under the curve of 0.72, while the story-tale narrative task better reflected the presence of MCI, discriminating both PD and iRBD subgroups with MCI from control subjects with an area under the curve of up to 0.81. A strong correlation between manually and automatically computed results was achieved. CONCLUSIONS: Linguistic features might provide a reliable automated method for detecting cognitive decline caused by prodromal neurodegeneration in subjects with iRBD, providing critical outcomes for future therapeutic trials. © 2022 International Parkinson and Movement Disorder Society.
Zobrazit více v PubMed
Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med 2013;14:744-748.
Postuma RB, Gagnon J-F, Bertrand J-A, Génier Marchand D, Montplaisir JY. Parkinson risk in idiopathic REM sleep behavior disorder. Neurology 2015;84:1104-1113.
Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration - an update. Nat Rev Neurol 2017;14(1):40-55.
Miglis MG, Adler CH, Antelmi E, et al. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021;20(8):671-684.
Terzaghi M, Toscano G, Casoni F, et al. Assessment of cognitive profile as a prodromal marker of the evolution of rapid eye movement sleep behavior disorder. Sleep 2019;42:zsz103
Génier Marchand D, Postuma RB, Escudier F, et al. How does dementia with Lewy bodies start? Prodromal cognitive changes in REM sleep behavior disorder. Ann Neurol 2018;83:1016-1026.
Ferini-Strambi L, Fasiello E, Sforza M, Salsone M, Galbiati A. Neuropsychological, electrophysiological, and neuroimaging biomarkers for REM behavior disorder. Expert Rev Neurother 2019;19:1069-1087.
Litvan I, Goldman JG, Tröster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society task force guidelines. Mov Disord 2012;27(3):349-356.
Boschi V, Catricalà E, Consonni M, Chesi C, Moro A, Cappa SF. Connected speech in neurodegenerative language disorders: a review. Front Psychol 2017;8:269
Lee J. Time course of lexicalization during sentence production in Parkinson. J Speech Lang Hear Res 2017;60:924-936.
Copland DA. Meaning selection and the subcortex: evidence of reduced lexical ambiguity repetition effects following subcortical lesions. J Psycholinguist Res 2006;35:51-66.
Zaykovskiy D, Minker W. Speech Recognition for Mobile Phones. New York: Springer-Verlag; 2015.
Neustein A, Markowitz JA. Mobile Speech and Advanced Natural Language Solutions. New York: Springer Science & Business Media; 2013.
Métais E, Meziane F, Horacek H, Kapetanios E. Natural Language Processing and Information Systems. Switzerland: Springer; 2021.
MacDonald RL, Jiang P-P, Cattiau J, et al. Disordered speech data collection: lessons learned at 1 million utterances from project Euphonia. Proc. Interspeech 2021, pp. 4833-4837.
Drummond C, Coutinho G, Fonseca RP, et al. Deficits in narrative discourse elicited by visual stimuli are already present in patients with mild cognitive impairment. Front Aging Neurosci 2015;7:1-11.
Kim BS, Kim YB, Kim H. Discourse measures to differentiate between mild cognitive impairment and healthy aging. Front Aging Neurosci 2019;11:1-18.
American Academy of Sleep Medicine. International Classification of Sleep Disorders, Third Edition: Diagnostic and Coding Manual. Westchester, IL: American Academy of Sleep Medicine; 2014.
Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 2015;30:1591-1601.
Goetz CG, Fahn S, Martinez-Martin P, et al. Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord 2007;22:41-47.
Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695-699.
Visser M, Marinus J, Stiggelbout A, Van Hilten JJV. Assessment of autonomic dysfunction in Parkinson's disease: the SCOPA-AUT. Mov Disord 2004;19:1306-1312.
Strunk KK, Lane FC. The Beck depression inventory, second edition (BDI-II): a cross-sample structural analysis. Meas Eval Couns Dev 2016;50:3-17.
Ciharova M, Cígler H, Dostálová V, Šivicová G, Bezdicek O. Beck depression inventory, second edition, Czech version: demographic correlates, factor structure and comparison with foreign data. Int J Psychiatry Clin Pract 2020;24(4):371-379.
Spielberger C. Manual for the State-Trait Anxiety Inventory. rev. ed. Palo Alto (CA): Consulting Psychologists Press; 1983.
Darcourt J, Booij J, Tatsch K, et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging 2010;37:443-450.
Dusek P, Ibarburu V, Bezdicek O, et al. Relations of non-motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci Rep 2019;9:15463
Calvini P, Rodriguez G, Inguglia F, Mignone A, Guerra UP, Nobili F. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur J Nucl Med Mol Imaging 2007;34:1240-1253.
Mazancova AF, Růžička E, Jech R, Bezdicek O. Test the best: classification accuracies of four cognitive rating scales for Parkinson's disease mild cognitive impairment. Arch Clin Neuropsychol 2020;35:1069-1077.
Kopecek M, Stepankova H, Lukavsky J, Ripova D, Nikolai T, Bezdicek O. Montreal cognitive assessment (MoCA): normative data for old and very old Czech adults. Appl Neuropsychol Adult 2017;24(1):23-29.
Calzà L, Gagliardi G, Rossini Favretti R, Tamburini F. Linguistic features and automatic classifiers for identifying mild cognitive impairment and dementia. Comp Speech Lang 2021;65:101113
Straka M, Straková J. MorphoDiTa: Morphological Dictionary and Tagger, LINDAT/CLARIN Digital Library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, 2014. http://hdl.handle.net/11858/00-097C-0000-0023-43CD-0.
Straka M, Straková J. Czech Models (MorfFlex CZ 161115 + PDT 3.0) for MorphoDiTa 161115, LINDAT/CLARIAH-CZ Digital Library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, 2016. http://hdl.handle.net/11234/1-1836.
Filippidou F, Moussiades L. Α benchmarking of IBM, Google and wit automatic speech recognition systems. IFIP advances in information and communication. Dent Tech 2020;583:73-82.
Speech-to-Text: Automatic Speech Recognition | Google Cloud [Internet]. [cited 2022 Jan 26]. https://cloud.google.com/speech-to-text.
Orimaye SO, Wong JS-M, Golden KJ, Wong CP, Soyiri IN. Predicting probable Alzheimer's disease using linguistic deficits and biomarkers. BMC Bioinformatics 2017;18:1-13.
Beltrami D, Gagliardi G, Rossini Favretti R, Ghidoni E, Tamburini F, Calzà L. Speech analysis by natural language processing techniques: a possible tool for very early detection of cognitive decline? Front Aging Neurosci 2018;10:1-13.
Covington MA, McFall JD. Cutting the Gordian knot: the moving-average type-token ratio (MATTR). J Quantit Ling 2010;17:94-100.
Vogel AP, Rosen KM, Morgan AT, Reilly S. Comparability of modern recording devices for speech analysis: smartphone, landline, laptop, and hard disc recorder. Folia Phoniatr Logop 2014;66:244-250.
Romenets SR, Gagnon JF, Latreille V, et al. Rapid eye movement sleep behaviour disorder and subtypes of Parkinson's disease. Mov Disord 2012;27:996-1003.
Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression. Brain 2017;140:1959-1976.
Jozwiak N, Postuma RB, Montplaisir J, et al. REM Sleep Behavior Disorder and Cognitive Impairment in Parkinson's Disease. Sleep 2017;40:zsx101.
Iranzo A, Fernandez-Arcos A, Tolosa E, et al. Neurodegenerative disorder risk in idiopathic REM sleep behaviour disorder: study in 174 patients. PLoS ONE 2014;9:e89741
Ash S, McMillan C, Gross RG, et al. The organization of narrative discourse in Lewy body spectrum disorder. Brain Lang 2011;119:30-41.
Ash S, McMillan C, Gross RG, et al. Impairments of speech fluency in Lewy body spectrum disorder. Brain Lang 2012;120:290-302.
Smirnov DS, Galasko D, Edland SD, Filoteo JV, Hansen LA, Salmon DP. Cognitive decline profiles differ in Parkinson disease dementia and dementia with Lewy bodies. Neurology 2020;94(20):e2076-e2087.
Coughlin DG, Hurtig HI, Irwin DJ. Pathological influences on clinical heterogeneity in Lewy body diseases. Mov Disord 2020;35(1):5-19.
Irwin DJ, Grossman M, Weintraub D, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol 2017;16(1):55-65.
Halliday GM, McCann H. The progression of pathology in Parkinson's disease. Ann N Y Acad Sci 2010;1184:188-195.
Siepel FJ, Rongve A, Buter TC, Beyer MK, Ballard CG, Booij J, Aarsland D. (123I)FP-CIT SPECT in suspected dementia with Lewy bodies: a longitudinal case study. BMJ Open 2013;3(4):e002642
McKeith I, O'Brien J, Walker Z, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007;6(4):305-313.
Small JA, Kemper S, Lyons K. Sentence comprehension in Alzheimer. Psychol Aging 1997;12:3-11.
Konig A, Satt A, Sorin A, Hoory R, Derreumaux A, David R, Robert PH. Use of speech analyses within a Mobile application for the assessment of cognitive impairment in elderly people. Curr Alzheimer Res 2018;15(2):120-129.
Trotti LM. REM Sleep Behaviour Disorder in Older Individuals. Drug Aging 2010;27:457-470.