Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi

. 2022 Jul 15 ; 25 (7) : 104636. [epub] 20220618

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35800760
Odkazy

PubMed 35800760
PubMed Central PMC9254352
DOI 10.1016/j.isci.2022.104636
PII: S2589-0042(22)00908-7
Knihovny.cz E-zdroje

Microbial inoculants containing arbuscular mycorrhizal (AM) fungi are potential tools in increasing the sustainability of our food production systems. Given the demand for sustainable agriculture, the production of such inoculants has potential economic value and has resulted in a variety of commercial inoculants currently being advertised. However, their use is limited by inconsistent product efficacy and lack of consumer confidence. Here, we propose a framework that can be used to assess the quality and reliability of AM inoculants. First, we set out a range of basic quality criteria which are required to achieve reliable inoculants. This is followed by a standardized bioassay which can be used to test inoculum viability and efficacy under controlled conditions. Implementation of these measurements would contribute to the adoption of AM inoculants by producers with the potential to increase sustainability in food production systems.

Beijing Advanced Innovation Center for Tree Breeding by Molecular Design Beijing Forestry University 100083 Beijing China

Department of Environmental Science Policy and Management University of California Berkeley Berkeley CA 94720 USA

Department of Plant and Microbial Biology University of Zurich Zürich 8008 Switzerland

Global Centre for Land Based Innovation Hawkesbury Institute for the Environment Western Sydney University Penrith SA 2747 Australia

Graduate School of Agriculture Hokkaido University Sapporo Hokkaido 060 8589 Japan

INOQ GmbH Schnega 29465 Germany

Iwate University Morioka Iwate 020 8550 Japan

Key Laboratory of Urban Environment and Health Institute of Urban Environment Chinese Academy of Sciences 1799 Jimei Road Xiamen 361021 China

Laboratory of Mycology Earth and Life Institute Université catholique de Louvain Croix du Sud 3 1348 Louvain la Neuve Belgium

Plant Soil Interaction Group Institute for Sustainability Science Agroscope Zürich 8046 Switzerland

State Key Laboratory of Mycology Institute of Microbiology Chinese Academy of Sciences No 3 1st Beichen West Rd Chaoyang District Beijing 100101 China

The Institute of Botany Czech Academy of Sciences Zamek 1 25243 Pruhonice Czech Republic

The Waite Research Institute and The School of Agriculture Food and Wine The University of Adelaide Waite Campus PMB1 Glen Osmond SA 5064 Australia

Université de Lorraine INRAE UMR Interactions Arbres Microorganismes Centre INRAE Grand Est Nancy Champenoux France

University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China

University of Missouri Division of Plant Sciences Columbia MO 65211 USA

UWA School of Agriculture and Environment and UWA Institute of Agriculture The University of Western Australia Perth WA Australia

Zobrazit více v PubMed

Abbott L.K., Macdonald L.M., Wong M.T.F., Webb M.J., Jenkins S.N., Farrell M. Potential roles of biological amendments for profitable grain production – a review. Agric. Ecosyst. Environ. 2018;256:34–50. doi: 10.1016/j.agee.2017.12.021. DOI

Aguilera P., Cumming J., Oehl F., Cornejo P., Borie F. In: Aluminum Stress Adaptation in Plants, Signaling and Communication in Plants. Panda S.K., Baluška F., editors. Springer International Publishing; 2015. Diversity of arbuscular mycorrhizal fungi in acidic soils and their contribution to aluminum phytotoxicity alleviation; pp. 203–228.

Augé R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 2001;11:3–42. doi: 10.1007/s005720100097. DOI

Baligar V.C., Fageria N.K., He Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001;32:921–950. doi: 10.1081/CSS-100104098. DOI

Barea J.M., Azcón R., Azcón-Aguilar C. Mycorrhizosphere interactions to improve plant fitness and soil quality. Int. J. Gen. Mol. Microbiol. 2002;81:343–351. doi: 10.1023/A:1020588701325. PubMed DOI

Basiru S., Mwanza H.P., Hijri M. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms. 2020;9:81. doi: 10.3390/microorganisms9010081. PubMed DOI PMC

Benami M., Isack Y., Grotsky D., Levy D., Kofman Y. In: Grand Challenges in Fungal Biotechnology. Nevalainen H., editor. Springer International Publishing; 2020. The economic potential of arbuscular mycorrhizal fungi in agriculture; pp. 239–279.

Bender S.F., Plantenga F., Neftel A., Jocher M., Oberholzer H.-R., Köhl L., Giles M., Daniell T.J., van der Heijden M.G.A. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J. 2014;8:1336–1345. doi: 10.1038/ismej.2013.224. PubMed DOI PMC

Bender S.F., Schlaeppi K., Held A., Van der Heijden M.G.A. Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agric. Ecosyst. Environ. 2019;273:13–24. doi: 10.1016/j.agee.2018.12.003. DOI

Berruti A., Lumini E., Balestrini R., Bianciotto V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016;6:1559. doi: 10.3389/fmicb.2015.01559. PubMed DOI PMC

Bitterlich M., Mercy L., Arato M., Franken P. In: Biostimulants for Sustainable Crop Production. Rouphael Y., du Jardin P., Brown P., De Pascale S., Colla G., editors. Burleigh Dodds Science Publishing Limited; 2020. Arbuscular mycorrhizal fungi as biostimulants for sustainable crop production.

Bowles T.M., Jackson L.E., Loeher M., Cavagnaro T.R. Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 2017;54:1785–1793. doi: 10.1111/1365-2664.12815. DOI

Carvalho M., Brito I., Alho L., Goss M.J. Assessing the progress of colonization by arbuscular mycorrhiza of four plant species under different temperature regimes. J. Plant Nutr. Soil Sci. 2015;178:515–522. doi: 10.1002/jpln.201400303. DOI

Cassidy E.S., West P.C., Gerber J.S., Foley J.A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 2013;8:034015. doi: 10.1088/1748-9326/8/3/034015. DOI

Cavagnaro T.R., Bender S.F., Asghari H.R., Heijden M.G.A. van der. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015;20:283–290. doi: 10.1016/j.tplants.2015.03.004. PubMed DOI

Cheng Y., Ishimoto K., Kuriyama Y., Osaki M., Ezawa T. Ninety-year, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant Soil. 2013;365:397–407. doi: 10.1007/s11104-012-1398-x. DOI

D’Hondt K., Kostic T., McDowell R., Eudes F., Singh B.K., Sarkar S., Markakis M., Schelkle B., Maguin E., Sessitsch A. Microbiome innovations for a sustainable future. Nat. Microbiol. 2021;6:138–142. doi: 10.1038/s41564-020-00857-w. PubMed DOI

de Santana A.S., Cavalcante U.M.T., de Sa Barreto Sampaio E.V., Costa Maia L. Production, storage and costs of inoculum of arbuscular mycorrhizal fungi (AMF) Braz. J. Bot. 2014;37:159–165. doi: 10.1007/s40415-014-0056-3. DOI

Declerck, S., Fortin, J.A., Strullu, D.-G. (Eds.), (2005). In Vitro Culture of Mycorrhizas, Soil Biology. Springer Berlin Heidelberg, Berlin, Heidelberg. 10.1007/b138925. DOI

Dietrich P., Roscher C., Clark A.T., Eisenhauer N., Schmid B., Wagg C. Diverse plant mixtures sustain a greater arbuscular mycorrhizal fungi spore viability than monocultures after 12 years. J. Plant Ecol. 2020;13:478–488. doi: 10.1093/jpe/rtaa037. DOI

Evelin H., Devi T.S., Gupta S., Kapoor R. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front. Plant Sci. 2019;10:470. doi: 10.3389/fpls.2019.00470. PubMed DOI PMC

Faye A., Dalpé Y., Ndung’u-Magiroi K., Jefwa J., Ndoye I., Diouf M., Lesueur D. Evaluation of commercial arbuscular mycorrhizal inoculants. Can. J. Plant Sci. 2013;93:1201–1208. doi: 10.4141/cjps2013-326. DOI

Fileccia V., Ruisi P., Ingraffia R., Giambalvo D., Frenda A.S., Martinelli F. Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS One. 2017;12:e0184158. doi: 10.1371/journal.pone.0184158. PubMed DOI PMC

Fones H.N., Bebber D.P., Chaloner T.M., Kay W.T., Steinberg G., Gurr S.J. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food. 2020;1:332–342. doi: 10.1038/s43016-020-0075-0. PubMed DOI

Gamalero E., Lingua G., Berta G., Glick B.R. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol. 2009;55:501–514. doi: 10.1139/W09-010. PubMed DOI

Gargouri M., Bates P.D., Declerck S. Combinatorial reprogramming of lipid metabolism in plants: a way towards mass-production of bio-fortified arbuscular mycorrhizal fungi inoculants. Microb. Biotechnol. 2021;14:31–34. doi: 10.1111/1751-7915.13684. PubMed DOI PMC

Giovannini L., Palla M., Agnolucci M., Avio L., Sbrana C., Turrini A., Giovannetti M. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: research strategies for the selection of the best performing inocula. Agronomy. 2020;10:106. doi: 10.3390/agronomy10010106. DOI

Gould F., Brown Z.S., Kuzma J. Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science. 2018;360:728–732. doi: 10.1126/science.aar3780. PubMed DOI

Gryndler M., Jansa J., Hršelová H., Chvátalová I., Vosátka M. Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2003;22:283–287. doi: 10.1016/s0929-1393(02)00154-3. DOI

Harrier L.A., Watson C.A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci. 2004;60:149–157. doi: 10.1002/ps.820. PubMed DOI

Hart M.M., Antunes P.M., Abbott L.K. Unknown risks to soil biodiversity from commercial fungal inoculants. Nat. Ecol. Evol. 2017;1:0115. doi: 10.1038/s41559-017-0115. PubMed DOI

Hijri M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza. 2016:209–214. doi: 10.1007/s00572-015-0661-4. PubMed DOI

Howieson J., Dilworth M. ACIAR; 2016. Working with Rhizobia.

Ijdo M., Cranenbrouck S., Declerck S. Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza. 2011;21:1–16. doi: 10.1007/s00572-010-0337-z. PubMed DOI

Jung S.C., Martinez-Medina A., Lopez-Raez J.A., Pozo M.J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 2012;38:651–664. doi: 10.1007/s10886-012-0134-6. PubMed DOI

Kafle A., Garcia K., Wang X., Pfeffer P.E., Strahan G.D., Bücking H. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula. Plant Cell Environ. 2019;42:270–284. doi: 10.1111/pce.13359. PubMed DOI

Kokkoris V., Hart M.M. The role of in vitro cultivation on symbiotic trait and function variation in a single species of arbuscular mycorrhizal fungus. Fungal Biol. 2019;123:732–744. doi: 10.1016/j.funbio.2019.06.009. PubMed DOI

Lenoir I., Fontaine J., Lounès-Hadj Sahraoui A. Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry. 2016;123:4–15. doi: 10.1016/j.phytochem.2016.01.002. PubMed DOI

Liu Y., Pan X., Li J. A 1961–2010 record of fertilizer use, pesticide application and cereal yields: a review. Agron. Sustain. Dev. 2015;35:83–93. doi: 10.1007/s13593-014-0259-9. DOI

Lobell D.B., Schlenker W., Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333:616–620. doi: 10.1126/science.1204531. PubMed DOI

Maia L.C., Yano-Melo A.M. Germination and germ tube growth of the arbuscular mycorrhizal fungi Gigaspora albida in different substrates. Braz. J. Microbiol. 2001;32:281–285. doi: 10.1590/S1517-83822001000400005. DOI

Malusá E., Vassilev N. A contribution to set a legal framework for biofertilisers. Appl. Microbiol. Biotechnol. 2014;98:6599–6607. doi: 10.1007/s00253-014-5828-y. PubMed DOI PMC

Meier R., Charvat I. Reassessment of tetrazolium bromide as a viability stain for spores of vesicular-arbuscular mycorrhizal fungi. Am. J. Bot. 1993;80:1007–1015. doi: 10.1002/j.1537-2197.1993.tb15327.x. DOI

Niwa R., Koyama T., Sato T., Adachi K., Tawaraya K., Sato S., Hirakawa H., Yoshida S., Ezawa T. Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses. Sci. Rep. 2018;8:7419. doi: 10.1038/s41598-018-25701-4. PubMed DOI PMC

Ophel-Keller K., McKay A., Hartley D., Curran J., Curran J. Development of a routine DNA-based testing service for soilborne diseases in Australia. Australas. Plant Pathol. 2008;37:243–253. doi: 10.1071/ap08029. DOI

Öpik M., Moora M., Liira J., Zobel M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 2006;94:778–790. doi: 10.1111/j.1365-2745.2006.01136.x. DOI

Owen D., Williams A.P., Griffith G.W., Withers P.J.A. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol. 2015;86:41–54. doi: 10.1016/j.apsoil.2014.09.012. DOI

Pieterse C.M.J., Zimmermann S.D., Wang J., Aroca R., Van Wees S.C.M., Bakker P.A.H.M. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014;52:347–375. doi: 10.1146/annurev-phyto-082712-102340. PubMed DOI

Plouznikoff K., Declerck S., Calonne-Salmon M. Belowground Defence Strategies in Plants. Springer; 2016. Mitigating abiotic stresses in crop plants by arbuscular mycorrhizal fungi; pp. 341–400.

Porter W.M. The “most probable number” method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Soil Res. 1979;17:515–519. doi: 10.1071/sr9790515. DOI

Püschel D., Janoušková M., Voříšková A., Gryndlerová H., Vosátka M., Vosátka M., Jansa J. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front. Plant Sci. 2017;8:390. doi: 10.3389/fpls.2017.00390. PubMed DOI PMC

Rana J., Paul J. Consumer behavior and purchase intention for organic food: a review and research agenda. J. Retail. Consum. Serv. 2017;38:157–165. doi: 10.1016/j.jretconser.2017.06.004. DOI

Ray D.K., Mueller N.D., West P.C., Foley J.A. Yield trends are insufficient to double global crop production by 2050. PLoS One. 2013;8:e66428. doi: 10.1371/journal.pone.0066428. PubMed DOI PMC

Rillig M.C., Mummey D.L. Mycorrhizas and soil structure. New Phytol. 2006;171:41–53. doi: 10.1111/j.1469-8137.2006.01750.x. PubMed DOI

Rocha I., Duarte I., Ma Y., Souza-Alonso P., Látr A., Vosátka M., Freitas H., Oliveira R.S. Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy. 2019;9:471. doi: 10.3390/agronomy9080471. DOI

Rocha I., Ma Y., Carvalho M.F., Magalhães C., Janoušková M., Vosátka M., Freitas H., Oliveira R.S. Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Arch. Agron Soil Sci. 2019;65:31–43. doi: 10.1080/03650340.2018.1479061. DOI

Ruiz-Lozano J.M., Azcón R. Viability and infectivity of mycorrhizal spores after long term storage in soils with different water potentials. Appl. Soil Ecol. 1996;3:183–186. doi: 10.1016/0929-1393(95)00076-3. DOI

Saito M., Marumoto T. In: Diversity and Integration in Mycorrhizas. Smith F.A., Smith S.E., editors. Springer; 2002. Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects; pp. 273–279.

Salomon M.J., Demarmels R., Watts-Williams S.J., McLaughlin M.J., Kafle A., Ketelsen C., Soupir A., Bücking H., Cavagnaro T.R., van der Heijden M.G.A. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 2022;169:104225. doi: 10.1016/j.apsoil.2021.104225. DOI

Sashidhar P., Kochar M., Singh B., Gupta M., Cahill D., Adholeya A., Dubey M. Biochar for delivery of agri-inputs: current status and future perspectives. Sci. Total Environ. 2020;703:134892. doi: 10.1016/j.scitotenv.2019.134892. PubMed DOI

Singh B.K., Trivedi P. Microbiome and the future for food and nutrient security. Microb. Biotechnol. 2017;10:50–53. doi: 10.1111/1751-7915.12592. PubMed DOI PMC

Singh B.K., Trivedi P., Egidi E., Macdonald C.A., Delgado-Baquerizo M. Crop microbiome and sustainable agriculture. Nat. Rev. Microbiol. 2020:601–602. doi: 10.1038/s41579-020-00446-y. PubMed DOI

Smith S.E., Read D.J. Academic press; 2008. Mycorrhizal Symbiosis.

Steffen W., Richardson K., Rockström J., Cornell S.E., Fetzer I., Bennett E.M., Biggs R., Carpenter S.R., de Vries W., de Wit C.A., et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science. 2015;347:1259855. doi: 10.1126/science.1259855. PubMed DOI

Stratistics Market Research Consulting Agricultural microbials - global market outlook 2017-2026. 2018. https://www.premiummarketinsights.com/reports-smrc/agricultural-microbials-global-market-outlook-2017-2026

Sugiura Y., Akiyama R., Tanaka S., Yano K., Kameoka H., Marui S., Saito M., Kawaguchi M., Akiyama K., Saito K. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proc. Natl. Acad. Sci. U S A. 2020;13:25779–25788. doi: 10.1073/pnas.2006948117. PubMed DOI PMC

Tanaka S., Hashimoto K., Kobayashi Y., Yano K., Maeda T., Kameoka H., Ezawa T., Saito K., Akiyama K., Kawaguchi M. Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Communications Biology. 2022;5(43):1–9. doi: 10.1038/s42003-021-02967-5. PubMed DOI PMC

Tarbell T.J., Koske R.E. Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza. 2007;18:51–56. doi: 10.1007/s00572-007-0152-3. PubMed DOI

Tran B.T.T., Watts-Williams S.J., Cavagnaro T.R. Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species. Funct. Plant Biol. 2019;46:732. doi: 10.1071/FP18327. PubMed DOI

United Nations World population prospects 2019: Highlights. Dep. Econ. Soc. Aff. 2019

van Der Heijden M.G.A., Horton T.R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 2009;97:1139–1150. doi: 10.1111/j.1365-2745.2009.01570.x. DOI

van der Heijden M.G.A., Martin F.M., Selosse M.-A., Sanders I.R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–1423. doi: 10.1111/nph.13288. PubMed DOI

van der Heyde M., Ohsowski B., Abbott L.K., Hart M. Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza. 2017;27:431–440. doi: 10.1007/s00572-016-0759-3. PubMed DOI

Vassilev N., Nikolaeva I., Vassileva M. Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev. Environ. Sci. Biotechnol. 2005;4:235–243. doi: 10.1007/s11157-005-2098-2. DOI

Verbruggen E., Röling W.F.M., Gamper H.A., Kowalchuk G.A., Verhoef H.A., van der Heijden M.G.A. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol. 2010;186:968–979. doi: 10.1111/j.1469-8137.2010.03230.x. PubMed DOI

Vermeulen S.J., Campbell B.M., Ingram J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012;37:195–222. doi: 10.1146/annurev-environ-020411-130608. DOI

von Alten H., Blal B., Dodd J.C., Feldmann F., Vosatka M. In: Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Gianinazzi S., Schüepp H., Barea J.M., Haselwandter K., editors. Birkhäuser Basel; 2002. Quality control of arbuscular mycorrhizal fungi inoculum in Europe; pp. 281–296.

Vosátka M., Albrechtová J., Patten R. In: Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. Varma A., editor. Springer Berlin Heidelberg; 2008. The international market development for mycorrhizal technology; pp. 419–438.

Watts-Williams S.J., Patti A.F., Cavagnaro T.R. Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil. 2013;371:299–312. doi: 10.1007/s11104-013-1670-8. DOI

Wilson G.W.T., Rice C.W., Rillig M.C., Springer A., Hartnett D.C. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol. Lett. 2009;12:452–461. doi: 10.1111/j.1461-0248.2009.01303.x. PubMed DOI

Woods J., Williams A., Hughes J.K., Black M., Murphy R. Energy and the food system. Philos. Trans. R. Soc. Lond. 2010;365:2991–3006. doi: 10.1098/rstb.2010.0172. PubMed DOI PMC

Wu S., Cao Z., Li Z., Cheung K., Wong M.H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma. 2005;125:155–166. doi: 10.1016/j.geoderma.2004.07.003. DOI

Zeng Y., Guo L.P., Chen B.D., Hao Z.P., Wang J.Y., Huang L.Q., Yang G., Cui X.M., Yang L., Wu Z.X., et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza. 2013;23:253–265. doi: 10.1007/s00572-013-0484-0. PubMed DOI

Zhang S., Lehmann A., Zheng W., You Z., Rillig M.C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 2019;222:543–555. doi: 10.1111/nph.15570. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...