Genome Wide Identification and Annotation of NGATHA Transcription Factor Family in Crop Plants
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35806066
PubMed Central
PMC9266525
DOI
10.3390/ijms23137063
PII: ijms23137063
Knihovny.cz E-resources
- Keywords
- NGATHA (NGA), evolution, phylogenetic analysis, plant development, transcription factor,
- MeSH
- Arabidopsis * genetics metabolism MeSH
- Brachypodium * genetics MeSH
- Phylogeny MeSH
- Genome, Plant MeSH
- Multigene Family MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Oryza * genetics metabolism MeSH
- Transcription Factors genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Plant Proteins MeSH
- Transcription Factors MeSH
The NGATHA (NGA) transcription factor (TF) belongs to the ABI3/VP1 (RAV) transcriptional subfamily, a subgroup of the B3 superfamily, which is relatively well-studied in Arabidopsis. However, limited data are available on the contributions of NGA TF in other plant species. In this study, 207 NGA gene family members were identified from a genome-wide search against Arabidopsis thaliana in the genome data of 18 dicots and seven monocots. The phylogenetic and sequence alignment analyses divided NGA genes into different clusters and revealed that the numbers of genes varied depending on the species. The phylogeny was followed by the characterization of the Solanaceae (tomato, potato, capsicum, tobacco) and Poaceae (Brachypodium distachyon, Oryza sativa L. japonica, and Sorghum bicolor) family members in comparison with A. thaliana. The gene and protein structures revealed a similar pattern for NGA and NGA-like sequences, suggesting that both are conserved during evolution. Promoter cis-element analysis showed that phytohormones such as abscisic acid, auxin, and gibberellins play a crucial role in regulating the NGA gene family. Gene ontology analysis revealed that the NGA gene family participates in diverse biological processes such as flower development, leaf morphogenesis, and the regulation of transcription. The gene duplication analysis indicates that most of the genes are evolved due to segmental duplications and have undergone purifying selection pressure. Finally, the gene expression analysis implicated that the NGA genes are abundantly expressed in lateral organs and flowers. This analysis has presented a detailed and comprehensive study of the NGA gene family, providing basic knowledge of the gene, protein structure, function, and evolution. These results will lay the foundation for further understanding of the role of the NGA gene family in various plant developmental processes.
See more in PubMed
Omidbakhshfard M.A., Proost S., Fujikura U., Mueller-Roeber B. Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. Mol. Plant. 2015;8:998–1010. doi: 10.1016/j.molp.2015.01.013. PubMed DOI
Schwechheimer C., Bevan M. The regulation of transcription factor activity in plants. Trends Plant Sci. 1998;3:378–383. doi: 10.1016/S1360-1385(98)01302-8. DOI
Riaño-Pachón D.M., Ruzicic S., Dreyer I., Mueller-Roeber B. PlnTFDB: An integrative plant transcription factor database. BMC Bioinform. 2007;8:42. doi: 10.1186/1471-2105-8-42. PubMed DOI PMC
Swaminathan K., Peterson K., Jack T. The plant B3 superfamily. Trends Plant Sci. 2008;13:647–655. doi: 10.1016/j.tplants.2008.09.006. PubMed DOI
Romanel E.A.C., Schrago C.G., Couñago R.M., Russo C.A.M., Alves-Ferreira M. Evolution of the B3 DNA Binding Superfamily: New Insights into REM Family Gene Diversification. PLoS ONE. 2009;4:e5791. doi: 10.1371/journal.pone.0005791. PubMed DOI PMC
Alvarez J.P., Goldshmidt A., Efroni I., Bowman J.L., Eshed Y. The NGATHA distal organ development genes are essential for style specification in Arabidopsis. Plant Cell. 2009;21:1373–1393. doi: 10.1105/tpc.109.065482. PubMed DOI PMC
Fourquin C., Ferrándiz C. The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytol. 2014;202:1001–1013. doi: 10.1111/nph.12703. PubMed DOI
Lee B.H., Kwon S.H., Lee S.-J., Park S.K., Song J.T., Lee S., Lee M.M., Hwang Y.-S., Kim J.H. The Arabidopsis thaliana NGATHA transcription factors negatively regulate cell proliferation of lateral organs. Plant Mol. Biol. 2015;89:529–538. doi: 10.1007/s11103-015-0386-y. PubMed DOI
Lee B.H., Mai T.T., Song J.T., Kim J.H. The Arabidopsis thaliana NGATHA1 transcription factor acts as a promoter of a general differentiation program and a carpel identity factor. J. Plant Biol. 2017;60:352–357. doi: 10.1007/s12374-017-0078-z. DOI
Sato H., Takasaki H., Takahashi F., Suzuki T., Iuchi S., Mitsuda N., Ohme-Takagi M., Ikeda M., Seo M., Yamaguchi-Shinozaki K. Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress. Proc. Natl. Acad. Sci. USA. 2018;115:E11178–E11187. doi: 10.1073/pnas.1811491115. PubMed DOI PMC
Shao J., Meng J., Wang F., Shou B., Chen Y., Xue H., Zhao J., Qi Y., An L., Yu F., et al. NGATHA-LIKEs Control Leaf Margin Development by Repressing CUP-SHAPED COTYLEDON2 Transcription. Plant Physiol. 2020;184:345–358. doi: 10.1104/pp.19.01598. PubMed DOI PMC
Trigueros M., Navarrete-Gómez M., Sato S., Christensen S.K., Pelaz S., Weigel D., Yanofsky M.F., Ferrándiz C. The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell. 2009;21:1394–1409. doi: 10.1105/tpc.109.065508. PubMed DOI PMC
Alvarez J.P., Furumizu C., Efroni I., Eshed Y., Bowman J.L. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife. 2016;5:e15023. doi: 10.7554/eLife.15023. PubMed DOI PMC
Ballester P., Martínez-Godoy M.A., Ezquerro M., Navarrete-Gómez M., Trigueros M., Rodríguez-Concepción M., Ferrándiz C. A transcriptional complex of NGATHA and bHLH transcription factors directs stigma development in Arabidopsis. Plant Cell. 2021;33:3645–3657. doi: 10.1093/plcell/koab236. PubMed DOI PMC
Li N., Li Y. Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 2016;33:23–32. doi: 10.1016/j.pbi.2016.05.008. PubMed DOI
Martínez-Fernández I., Sanchís S., Marini N., Balanzá V., Ballester P., Navarrete-GóMez M., Oliveira A.C., Colombo L., Ferrándiz C. The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Front. Plant Sci. 2014;5:210. doi: 10.3389/fpls.2014.00210. PubMed DOI PMC
Nicolas A., Maugarny-Calès A., Adroher B., Chelysheva L., Li Y., Burguet J., Bågman A.-M., Smit M.E., Brady S.M., Li Y. De novo stem cell establishment in meristems requires repression of organ boundary cell fate. bioRxiv. 2022;1:1. PubMed PMC
Zhang Y., Du L., Xu R., Cui R., Hao J., Sun C., Li Y. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. Plant Cell. 2015;27:620–632. doi: 10.1105/tpc.114.135368. PubMed DOI PMC
Alvarez J.P., Pekker I., Goldshmidt A., Blum E., Amsellem Z., Eshed Y. Endogenous and Synthetic MicroRNAs Stimulate Simultaneous, Efficient, and Localized Regulation of Multiple Targets in Diverse Species. Plant Cell. 2006;18:1134–1151. doi: 10.1105/tpc.105.040725. PubMed DOI PMC
Sohlberg J.J., Myrenås M., Kuusk S., Lagercrantz U., Kowalczyk M., Sandberg G., Sundberg E. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J. 2006;47:112–123. doi: 10.1111/j.1365-313X.2006.02775.x. PubMed DOI
Kwon S.H., Lee B.H., Kim E.Y., Seo Y.S., Lee S., Kim W.T., Song J.T., Kim J.H. Overexpression of a Brassica rapa NGATHA Gene in Arabidopsis thaliana Negatively Affects Cell Proliferation During Lateral Organ and Root Growth. Plant Cell Physiol. 2009;50:2162–2173. doi: 10.1093/pcp/pcp150. PubMed DOI
Guo T., Wang S., Li Y., Yuan J., Xu L., Zhang T., Chao Y., Han L. Expression of a NGATHA1 Gene from Medicago truncatula Delays Flowering Time and Enhances Stress Tolerance. Int. J. Mol. Sci. 2020;21:2384. doi: 10.3390/ijms21072384. PubMed DOI PMC
Pfannebecker K.C., Lange M., Rupp O., Becker A. Seed plant specific gene lineages involved in carpel development. Mol. Biol. Evol. 2017;34:925–942. doi: 10.1093/molbev/msw297. PubMed DOI
Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L.L., Tosatto S.C.E., Paladin L., Raj S., Richardson L.J., et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. doi: 10.1093/nar/gkaa913. PubMed DOI PMC
Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Hu B., Jin J., Guo A.-Y., Zhang H., Luo J., Gao G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–1297. doi: 10.1093/bioinformatics/btu817. PubMed DOI PMC
Bailey T.L., Johnson J., Grant C.E., Noble W.S. The MEME Suite. Nucleic Acids Res. 2015;43:W39–W49. doi: 10.1093/nar/gkv416. PubMed DOI PMC
Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC
Horton P., Park K.-J., Obayashi T., Fujita N., Harada H., Adams-Collier C.J., Nakai K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007;35:W585–W587. doi: 10.1093/nar/gkm259. PubMed DOI PMC
Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002;18:298–305. doi: 10.1093/bioinformatics/18.2.298. PubMed DOI
Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouzé P., Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30:325–327. doi: 10.1093/nar/30.1.325. PubMed DOI PMC
Chow C.-N., Lee T.-Y., Hung Y.-C., Li G.-Z., Tseng K.-C., Liu Y.-H., Kuo P.-L., Zheng H.-Q., Chang W.-C. PlantPAN3. 0: A new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res. 2019;47:D1155–D1163. doi: 10.1093/nar/gky1081. PubMed DOI PMC
Wang Y., Tang H., DeBarry J.D., Tan X., Li J., Wang X., Lee T.-H., Jin H., Marler B., Guo H., et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC
Chen C., Chen H., Zhang Y., Thomas H.R., Frank M.H., He Y., Xia R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant. 2020;13:1194–1202. doi: 10.1016/j.molp.2020.06.009. PubMed DOI
Wang D., Zhang Y., Zhang Z., Zhu J., Yu J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genom. Proteom. Bioinform. 2010;8:77–80. doi: 10.1016/S1672-0229(10)60008-3. PubMed DOI PMC
Conesa A., Götz S. Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. Int. J. Plant Genom. 2008;2008:619832. doi: 10.1155/2008/619832. PubMed DOI PMC
Ikeda M., Mitsuda N., Ohme-Takagi M. Arabidopsis HsfB1 and HsfB2b Act as Repressors of the Expression of Heat-Inducible Hsfs but Positively Regulate the Acquired Thermotolerance. Plant Physiol. 2011;157:1243–1254. doi: 10.1104/pp.111.179036. PubMed DOI PMC
Ikeda M., Ohme-Takagi M. A Novel Group of Transcriptional Repressors in Arabidopsis. Plant Cell Physiol. 2009;50:970–975. doi: 10.1093/pcp/pcp048. PubMed DOI
Bharti K., von Koskull-Döring P., Bharti S., Kumar P., Tintschl-Korbitzer A., Treuter E., Nover L. Tomato Heat Stress Transcription Factor HsfB1 Represents a Novel Type of General Transcription Coactivator with a Histone-Like Motif Interacting with the Plant CREB Binding Protein Ortholog HAC1. Plant Cell. 2004;16:1521–1535. doi: 10.1105/tpc.019927. PubMed DOI PMC
Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Wei Y., Wan H., Wu Z., Wang R., Ruan M., Ye Q., Li Z., Zhou G., Yao Z., Yang Y. A Comprehensive Analysis of Carotenoid Cleavage Dioxygenases Genes in Solanum Lycopersicum. Plant Mol. Biol. Rep. 2015;34:512–523. doi: 10.1007/s11105-015-0943-1. DOI
Eklund D.M., Cierlik I., Ståldal V., Claes A.R., Vestman D., Chandler J., Sundberg E. Expression of Arabidopsis SHORT INTERNODES/STYLISH family genes in auxin biosynthesis zones of aerial organs is dependent on a GCC box-like regulatory element. Plant Physiol. 2011;157:2069–2080. doi: 10.1104/pp.111.182253. PubMed DOI PMC
Eklund D.M., Ståldal V., Valsecchi I., Cierlik I., Eriksson C., Hiratsu K., Ohme-Takagi M., Sundström J.F., Thelander M., Ezcurra I. The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell. 2010;22:349–363. doi: 10.1105/tpc.108.064816. PubMed DOI PMC
Ståldal V., Cierlik I., Chen S., Landberg K., Baylis T., Myrenås M., Sundström J.F., Eklund D.M., Ljung K., Sundberg E. The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Mol. Biol. 2012;78:545–559. doi: 10.1007/s11103-012-9888-z. PubMed DOI
Ding P., Ding Y. Stories of Salicylic Acid: A Plant Defense Hormone. Trends Plant Sci. 2020;25:549–565. doi: 10.1016/j.tplants.2020.01.004. PubMed DOI
Shah J. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 2003;6:365–371. doi: 10.1016/S1369-5266(03)00058-X. PubMed DOI
Chen K., Li G.J., Bressan R.A., Song C.P., Zhu J.K., Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020;62:25–54. doi: 10.1111/jipb.12899. PubMed DOI
Fitzpatrick A.H., Shrestha N., Bhandari J., Crowell D.N. Roles for farnesol and ABA in Arabidopsis flower development. Plant Signal. Behav. 2011;6:1189–1191. doi: 10.4161/psb.6.8.15772. PubMed DOI PMC
Kai W., Fu Y., Wang J., Liang B., Li Q., Leng P. Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.) Sci. Rep. 2019;9:16943. doi: 10.1038/s41598-019-52948-2. PubMed DOI PMC
Cannon S.B., Mitra A., Baumgarten A., Young N.D., May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4:10. doi: 10.1186/1471-2229-4-10. PubMed DOI PMC
Verma S., Bhatia S. A comprehensive analysis of the B3 superfamily identifies tissue-specific and stress-responsive genes in chickpea (Cicer arietinum L.) 3 Biotech. 2019;9:346. doi: 10.1007/s13205-019-1875-5. PubMed DOI PMC
Sironi M., Cagliani R., Forni D., Clerici M. Evolutionary insights into host–pathogen interactions from mammalian sequence data. Nat. Rev. Genet. 2015;16:224–236. doi: 10.1038/nrg3905. PubMed DOI PMC
Zhou T., Gu W., Wilke C.O. Detecting Positive and Purifying Selection at Synonymous Sites in Yeast and Worm. Mol. Biol. Evol. 2010;27:1912–1922. doi: 10.1093/molbev/msq077. PubMed DOI PMC
Osnato M. Making the connection: Gene regulatory networks reveal a new regulator for graft formation. Plant Cell. 2021;33:3604–3605. doi: 10.1093/plcell/koab244. PubMed DOI PMC
Shao J., Liu X., Wang R., Zhang G., Yu F. The Over-Expression of an Arabidopsis B3 Transcription Factor, ABS2/NGAL1, Leads to the Loss of Flower Petals. PLoS ONE. 2012;7:e49861. doi: 10.1371/journal.pone.0049861. PubMed DOI PMC