Impact of Rotor Material Wear on the Aluminum Refining Process

. 2022 Jun 23 ; 15 (13) : . [epub] 20220623

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35806550

Grantová podpora
TH04010449 Czech Ministry of Industry and Trade
11/020/RGJ22/0089 Silesian University of Technology
11/020/BK_22/0088 Silesian University of Technology

The paper presents the results of tests carried out during the refining of the AlSi9Cu3(Fe) alloy in industrial conditions at the FDU stand. In the tests, three different rotors made of classical graphite, fine-grained graphite and classical graphite with SiC spraying were tested for the degree of wear. A series of tests was conducted for five cases-0% to 100% of consumption every 25%-corresponding to the cycles of the refining process. The number of cycles corresponding to 100% wear of each rotor was determined as 1112. The results of the rotor wear profile for all types of graphite after the assumed cycles are presented. Comparison of CAD models of new rotors and 3D scans of rotors in the final stage of operation revealed material losses during operational tests. The study assessed the efficiency of the rotor in terms of its service life as well as work efficiency. It was estimated on the basis of the calculated values of the Dichte Index (DI) and the density of the samples solidified in the vacuum. The structure of samples before and after refining at various stages of rotor wear is also presented, and the results are discussed.

Zobrazit více v PubMed

Sigworth G.K. A scientific basis for degassing aluminum. AFS Trans. 1987;95:73–78.

Siemensen C.J., Berg G. A survey of inclussions in aluminium. Aluminum. 1980;56:335–340.

Zhang L., Lv X., Torgeson A.T., Long M. Removal of impurity elements from molten aluminum: A review. Miner. Process. Extr. Metall. Rev. 2011;32:150–228. doi: 10.1080/08827508.2010.483396. DOI

Taylor M.B. Molten metal fluxing/treatment: How best achieve the desired quality requirements. Aluminum. 2003;79:44–50.

Chateau J.M. Latest trends in molten metal in-line treatment. Alum. Times. 2003;4:34–35.

Diaz M.C., Komarov S.V., Sano M. Bubble behaviour and absorption rate in gas injection through rotary lances. ISIJ Int. 1997;37:1–8. doi: 10.2355/isijinternational.37.1. DOI

Johansen S., Graadahl S., Tetlie P., Rasch B., Myrbostad E. Light Metals. TMS; Warrendale, PA, USA: 1998. Can rotor-based refining units be developed and optimized based on water model experiments? pp. 805–810.

Tovio D.O., Mugica G.W., González A.C., Cuyás J.C. Formation and size of bubbles in degassing system of aluminum. AFS Trans. 2000;108:457–462.

Hernández-Hernández M., Camacho-Martínez J.L., González-Rivera C., Ramírez-Argáez M.A. Impeller design assisted by physical modeling and pilot plant trials. J. Mater. Process. Technol. 2016;236:1–8. doi: 10.1016/j.jmatprotec.2016.04.031. DOI

Michalek K., Socha L., Gryc K., Tkadleckova M., Saternus M., Pieprzyca J., Merder T. Modelling of technological parameters of aluminium melt refining in the ladle by blowing of inert gas through the rotating impeller. Arch. Metall. Mater. 2018;63:987–992.

Ramos Gomez E., Zenit R., González Rivera C., Trápaga G., Ramírez-Argáez M.A. Mathematical modeling of fluid flow in a water physical model of an aluminum degassing ladle equipped with an impeller-injector. Metall. Mater. Trans. B. 2013;44B:423–435. doi: 10.1007/s11663-012-9774-8. DOI

Yamamoto T., Kato K., Komarov S.V., Ueno Y., Hayashi M. Investigation of melt stirring in aluminum melting furnace through water model. J. Mater. Process. Technol. 2018;259:409–415. doi: 10.1016/j.jmatprotec.2018.04.025. DOI

Mi G.F., Liu X.Y., Wang K.F., Qi S.P., Wang H.W., Niu J.T. Analyses of the influencing factors of rotating impeller degassing process and water simulation experiment. J. Mater. Sci. Forum. 2008;575–578:1258–1265. doi: 10.4028/www.scientific.net/MSF.575-578.1258. DOI

Camacho-Martínez J.L., Ramírez-Argáez M.A., Zenit-Camacho R., Juárez-Hernández A., Berceinas-Sanchez J.O., Trápaga-Martánez G. Physical modelling of an aluminium degassing operation with rotating impellers—A comparative hydrodynamic analysis. Mater. Manuf. Process. 2010;25:581–591. doi: 10.1080/10426910903367386. DOI

Chen J., Zhao J. Light Metals. TMS; Warrendale, PA, USA: 1995. Bubble distribution in a melt treatment water model; pp. 1227–1231.

Saternus M., Merder T. Numerical and physical modelling of aluminium refining process conducted in URO-200 reactor. Solid State Phenom. 2012;191:3–12. doi: 10.4028/www.scientific.net/SSP.191.3. DOI

Laux H., Bech K. CFD modeling of bubble-driven flow. Int. J. Appl. Mech. Eng. 2002;7:329–359.

Ruizhi W., Jun Wang D.S., Baode S., Milin Z. Flow field and gas-bubble size analysis in water model for the process of aluminum melt degassing by particle image velocimetry. Mater. Sci. Forum. 2007;546–549:1087–1092.

Warke V.S., Shankar S., Makhlouf M.M. Mathematical modeling and computer simulation of molten aluminum cleansing by the rotating impeller degasser, Part II. Removal of hydrogen gas and solid particles. J. Mater. Process. Technol. 2005;168:119–126. doi: 10.1016/j.jmatprotec.2004.10.016. DOI

Wana B., Chena W., Mao M., Fu Z., Zhu D. Numerical simulation of a stirring purifying technology for aluminum melt. J. Mater. Process. Technol. 2018;251:330–342. doi: 10.1016/j.jmatprotec.2017.09.001. DOI

Camacho-Martínez J., Ramírez-Argáez M., Juárez-Hernández A., González-Rivera C., Trápaga-Martínez G. Novel degasification design for aluminum using an impeller degasification water physical model. Mater. Manuf. Process. 2012;27:556–560. doi: 10.1080/10426914.2011.593234. DOI

Yamamoto T., Suzuki A., Komarova S.V., Ishiwata Y. Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. J. Mater. Process. Technol. 2018;261:164–172. doi: 10.1016/j.jmatprotec.2018.06.012. DOI

Mancilla E., Cruz-Mendez W., Garduno I.E., Gonzalez-Rivera C., Ramirez-Argaez M.A., Ascanio G. Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chem. Eng. Res. Des. 2017;118:158–169. doi: 10.1016/j.cherd.2016.11.031. DOI

Saternus M., Merder T. Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller. Metals. 2018;8:726. doi: 10.3390/met8090726. DOI

Saternus M. Physical Modelling of Phenomena Occurring during Refining Process of Fe and Al Solutions by Means of Inert Gases. Silesian University of Technology; Gliwice, Poland: 2020.

González-Ciordia B., Fernández B., Artola G., Muro M., Sanz Á., López de Lacalle L.N. Failure-Analysis Based Redesign of Furnace Conveyor System Components: A Case Study. Metals. 2019;9:816. doi: 10.3390/met9080816. DOI

Fernández B., González B., Artola G., López de Lacalle N., Angulo C. A Quick Cycle Time Sensitivity Analysis of Boron Steel Hot Stamping. Metals. 2019;9:235. doi: 10.3390/met9020235. DOI

Gaitonde V.N., Karnik S.R., Davim J.P. Taguchi multiple-performance characteristics optimization in drilling of medium density fibreboard (MDF) to minimize delamination using utility concept. J. Mater. Process. Technol. 2008;196:73–78. doi: 10.1016/j.jmatprotec.2007.05.003. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace