Assessment of refining efficiency during the refining cycle in a foundry degassing unit in industrial conditions

. 2024 Jan 16 ; 14 (1) : 1415. [epub] 20240116

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38228720

Grantová podpora
TH04010449 Technology Agency of the Czech Republic
07SVV2325 Ministry of Education, Youth and Sports
11/020/BK_23/0104 Silesian University of Technology
11/020/RGJ23/0107 Silesian University of Technology

Odkazy

PubMed 38228720
PubMed Central PMC10791990
DOI 10.1038/s41598-024-51914-x
PII: 10.1038/s41598-024-51914-x
Knihovny.cz E-zdroje

The article focuses on the issue of improving the efficiency of a Foundry Degassing Unit (FDU) via operational testing of aluminium alloys during casting at MOTOR JIKOV Slévárna a.s.. As part of the research, the efficiency of the refining process in the FDU was assessed. The main emphasis was placed on determining the moment of the greatest decrease in the hydrogen content in the melt and whether it is possible to shorten the refining cycle. The values of the Dichte Index were determined, on the basis of which the degassing curve was plotted and the progress of the melt degassing was assessed. To ensure the required quality of castings, the maximum allowable value of the Dichte Index ranged from 3 to 4%. During the process, the temperature drop during the refining cycle was also determined. The total temperature drop from pouring the melt into the ladle to the end of refining ranged from 26 to 32 °C, which is within the acceptable limits of the foundry. Based on the knowledge resulting from the operational experiments, recommendations were formulated to optimize the refining technology at the FDU for the MOTOR JIKOV Slévárna a.s. foundry.

Zobrazit více v PubMed

Schmitz Ch. Handbook of Aluminium Recycling. Essen: Vulkan-Verlag GmbH; 2006.

Österreicher JA, Papenberg NP, Kumar M, Ma D, Schwarz S, Schlögl CM. Quantitative prediction of the mechanical properties of precipitation-hardened alloys with special application to Al-Mg-Si. Mater. Sci. Eng. A. 2017;703:380–385. doi: 10.1016/j.msea.2017.07.080. DOI

Jawalkar CS, Kant S, Kaushik Y. A review on use of aluminium alloys in aircraft components. i-Manager’s J. Mater. Sci. 2015;3:33–38.

Samuel AM, Samuel E, Songmene V, Samuel FH. A review on porosity formation in aluminum-based alloys. Materials (Basel). 2023;16(5):2047. doi: 10.3390/ma16052047. PubMed DOI PMC

Liu L, Samuel AM, Samuel FH, Doty HW, Valtierra S. Influence of oxides on porosity formation in Sr-treated Al-Si casting alloys. J. Mater. Sci. 2003;38:1255–1267. doi: 10.1023/A:1022870006721. DOI

Anyalebechi PN. Hydrogen-induced gas porosity formation in Al–4.5 wt% Cu–1.4 wt% Mg alloy. J. Mater. Sci. 2013;48:5342–5353. doi: 10.1007/s10853-013-7329-2. DOI

Miresmaeili SM, Shabestari SG, Boutorabi SMA. The effect of sr-modification treatment on porosity formation of reduced pressure 319 Al alloy castings. Can. Metall. Q. 2003;42:245–252. doi: 10.1179/cmq.2003.42.2.245. DOI

Lee PD, Hunt JD. Hydrogen porosity in directionally solidified aluminium–copper alloys: A mathematical model. Acta Mater. 2001;49(8):1383–1398. doi: 10.1016/S1359-6454(01)00043-X. DOI

Zhang Y, Xue C, Wang J, Yang X, Li Q, Wang S, Su H, Li X, Miao Y, Dou R. Quantifying the effects of hydrogen concentration and cooling rates on porosity formation in Al–Li alloys. J. Mater. Res. Technol. 2023;26:1938–1954. doi: 10.1016/j.jmrt.2023.08.017. DOI

Zhang L, Lv X, Torgeson AT, Long M. Removal of impurity elements from molten aluminum: A review. Mineral Process. Extract. Metall. Rev. 2011;32:150–228. doi: 10.1080/08827508.2010.483396. DOI

Liu Y, Zhang T, Sano M, Wang Q, Ren X, He J. Mechanical stirring for highly efficient gas injection refining. Trans. Nonferrous Metals Soc. China. 2011;21:1896–1904. doi: 10.1016/S1003-6326(11)60947-3. DOI

Liu Y, Sano M, Zhang T, Wang Q, He J. Intensification of bubble disintegration and dispersion by mechanical stirring in gas injection refining. ISIJ Int. 2009;49:17–23. doi: 10.2355/isijinternational.49.17. DOI

Li Q, He K, Wu N, Zeng J. Purification of aluminum melt in crucibles by bubble flotation. Procedia Manuf. 2019;37:438–445. doi: 10.1016/j.promfg.2019.12.071. DOI

Tovio DO, Mugica GW, González AC, Cuyás JC. Formation and size of bubbles in degassing system of aluminum. AFS Trans. 2000;108:457–462.

Saternus M, Merder T. Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller. Metals. 2018;8:726. doi: 10.3390/met8090726. DOI

Yamamoto T, Suzuki A, Komarova SV, Ishiwata Y. Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. J. Mater. Processing Technol. 2018;261:164–172. doi: 10.1016/j.jmatprotec.2018.06.012. DOI

Waz, E., Carre, J.; Le Brun, P.; Jardy, A.; Xuereb, C.; Ablitzer, D. Physical modelling of the aluminium degassing process: Experimental and mathematical approaches. In: Light Metals; TMS: Warrendale, PA, USA, 2003, pp. 901–907.

Prášil T, Socha L, Gryc K, Svizelová J, Saternus M, Merder T, Pieprzyca J, Gráf M. Impact of rotor material wear on the aluminum refining process. Materials. 2022;15:4425. doi: 10.3390/ma15134425. PubMed DOI PMC

Laakkonen M, Moilanen P, Alopaeus V, Aittamaa J. Modeling local bubble size distribution in agitated vessels. Chem. Eng. Sci. 2007;62:721–740. doi: 10.1016/j.ces.2006.10.006. DOI

Oldshue JY. Fluid Mixing Technology. New York: McGraw Hill Higher Education; 1983.

Saternus M, Merder T. Physical modeling of the impeller construction impact on the aluminum refining process. Materials. 2022;15:575. doi: 10.3390/ma15020575. PubMed DOI PMC

Prášil T, Socha L, Gryc K, Svizelová J, Saternus M, Merder T, Pieprzyca J, Gráf M. Using physical modeling to optimize the aluminium refining process. Materials. 2022;15:7385. doi: 10.3390/ma15207385. PubMed DOI PMC

Abreu-López D, Amaro-Villeda A, Acosta-González FA, González-Rivera C, Ramírez-Argáez MA. Effect of the impeller design on degasification kinetics using the impeller injector technique assisted by mathematical modelling. Metals. 2017;7(132):1–14. doi: 10.3390/met7040132. DOI

Sigworth GK, Engh TA. Refining of liquid aluminium – a review of important chemical factors. Scand. J. Met. 1982;11:143–149.

Mi G, Liu X, Wang K, Qi S, Wang H, Niu JT. Analyses of the influencing factors of rotating impeller degassing process and water simulation experiment. J. Mater. Sci. Forum. 2008;575:1258–1265. doi: 10.4028/www.scientific.net/MSF.575-578.1258. DOI

Warke VS, Tryggvason G, Makhlouf MM. Mathematical modelling and computer simulation of molten metal cleansing by the rotating impeller degasser Part I Fluid flow. J. Mat. Proc. Tech. 2005;168:112–118. doi: 10.1016/j.jmatprotec.2004.10.017. DOI

Johansen, S., Graadahl, S., Tetlie, P., Rasch, B., & Myrbostad, E. Can rotor-based refining units be developed and optimized based on water model experiments? In: Light Metals; TMS: Warrendale, PA, USA, 1998; pp. 805–810.

Mancilla E, Cruz-Mendez W, Garduno IE, Gonzalez-Rivera C, Ramirez-Argaez MA, Ascanio G. Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chem. Eng. Res. Des. 2017;118:158–169. doi: 10.1016/j.cherd.2016.11.031. DOI

Gomez ER, Zenit R, Rivera CG, Trapaga G, Ramirez-Argazez MA. Physical modelling of fluid flow in ladles of aluminium equipped with impeller and gas purging for degassing. Metall. Mater. Trans. B. 2013;44:974–983. doi: 10.1007/s11663-013-9845-5. DOI

Yamamoto T, Kato K, Komarov SV, Ueno Y, Hayashi M. Investigation of melt stirring in aluminium melting furnace through water model. J. Mater. Process. Technol. 2018;259:409–415. doi: 10.1016/j.jmatprotec.2018.04.025. DOI

Camacho-Martinez JL, Ramirez-Argaez MA, Zenit-Camacho R, Juarez-Hernandez A, Barceinas-Sanchez JO, Trapaga-Martinez G. Physical modelling of an aluminium degassing operation with rotating impellers a comparative hydrodynamic analysis. Mater. Manuf. Process. 2010;25:581–591. doi: 10.1080/10426910903367386. DOI

Hernández-Hernández M, Camacho-Martínez JL, González-Rivera C, Ramírez-Argáez MA. Impeller design assisted by physical modeling and pilot plant trials. J. Mater. Process. Technol. 2016;236:1–8. doi: 10.1016/j.jmatprotec.2016.04.031. DOI

Wan B, Chen W, Mao M, Fu Z, Zhu D. Numerical simulation of a stirring purifying technology for aluminum melt. J. Mater. Process. Tech. 2018;251:330–342. doi: 10.1016/j.jmatprotec.2017.09.001. DOI

Hernández-Hernández M, Cruz-Mendez WF, Gonzalez-Rivera C, et al. Mathematical modeling of aluminum degassing by the impeller injector technique validated by a physical modeling. MRS Online Proc. Library. 2014;1611:49–54. doi: 10.1557/opl.2014.757. DOI

Ramos Gomez E, Zenit R, González Rivera C, Trápaga G, Ramírez-Argáez MA. Mathematical modeling of fluid flow in a water physical model of an aluminum degassing ladle equipped with an impeller-injector. Metall. Mater. Trans. B. 2013;44B:423–435. doi: 10.1007/s11663-012-9774-8. DOI

Zhang L, Lv X, Torgerson AT, Long M. Removal of impurity elements from molten aluminum: A review. Mineral Process. Extractive Metall. Rev. 2001;32:150–228. doi: 10.1080/08827508.2010.483396. DOI

Podaril M, Prášil T, Majernik J, Kampf R, Socha L, Gryc K, Gráf M. Aluminum melt degassing process evaluation depending on the design and the degree of the FDU unit graphite rotor wear. Materials. 2022;15:4924. doi: 10.3390/ma15144924. PubMed DOI PMC

Taylor MB. Molten metal fluxing/treatment: How best achieve the desired quality requirements. Aluminum. 2003;79:44–50.

Prášil T, Socha L, Gryc K, Svizelová J, Saternus M, Merder T, Pieprzyca J, Gráf M. Impact of rotor design on its wear and work efficiency of the aluminum refining process. Metals. 1803;2022:12. doi: 10.3390/met12111803. PubMed DOI PMC

https://lenaal.com.pl/en/wp-content/uploads/sites/2/2017/03/Alloy-properties-1.pdf; Accessed 11 July 2023.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace