Assessment of refining efficiency during the refining cycle in a foundry degassing unit in industrial conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04010449
Technology Agency of the Czech Republic
07SVV2325
Ministry of Education, Youth and Sports
11/020/BK_23/0104
Silesian University of Technology
11/020/RGJ23/0107
Silesian University of Technology
PubMed
38228720
PubMed Central
PMC10791990
DOI
10.1038/s41598-024-51914-x
PII: 10.1038/s41598-024-51914-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The article focuses on the issue of improving the efficiency of a Foundry Degassing Unit (FDU) via operational testing of aluminium alloys during casting at MOTOR JIKOV Slévárna a.s.. As part of the research, the efficiency of the refining process in the FDU was assessed. The main emphasis was placed on determining the moment of the greatest decrease in the hydrogen content in the melt and whether it is possible to shorten the refining cycle. The values of the Dichte Index were determined, on the basis of which the degassing curve was plotted and the progress of the melt degassing was assessed. To ensure the required quality of castings, the maximum allowable value of the Dichte Index ranged from 3 to 4%. During the process, the temperature drop during the refining cycle was also determined. The total temperature drop from pouring the melt into the ladle to the end of refining ranged from 26 to 32 °C, which is within the acceptable limits of the foundry. Based on the knowledge resulting from the operational experiments, recommendations were formulated to optimize the refining technology at the FDU for the MOTOR JIKOV Slévárna a.s. foundry.
Zobrazit více v PubMed
Schmitz Ch. Handbook of Aluminium Recycling. Essen: Vulkan-Verlag GmbH; 2006.
Österreicher JA, Papenberg NP, Kumar M, Ma D, Schwarz S, Schlögl CM. Quantitative prediction of the mechanical properties of precipitation-hardened alloys with special application to Al-Mg-Si. Mater. Sci. Eng. A. 2017;703:380–385. doi: 10.1016/j.msea.2017.07.080. DOI
Jawalkar CS, Kant S, Kaushik Y. A review on use of aluminium alloys in aircraft components. i-Manager’s J. Mater. Sci. 2015;3:33–38.
Samuel AM, Samuel E, Songmene V, Samuel FH. A review on porosity formation in aluminum-based alloys. Materials (Basel). 2023;16(5):2047. doi: 10.3390/ma16052047. PubMed DOI PMC
Liu L, Samuel AM, Samuel FH, Doty HW, Valtierra S. Influence of oxides on porosity formation in Sr-treated Al-Si casting alloys. J. Mater. Sci. 2003;38:1255–1267. doi: 10.1023/A:1022870006721. DOI
Anyalebechi PN. Hydrogen-induced gas porosity formation in Al–4.5 wt% Cu–1.4 wt% Mg alloy. J. Mater. Sci. 2013;48:5342–5353. doi: 10.1007/s10853-013-7329-2. DOI
Miresmaeili SM, Shabestari SG, Boutorabi SMA. The effect of sr-modification treatment on porosity formation of reduced pressure 319 Al alloy castings. Can. Metall. Q. 2003;42:245–252. doi: 10.1179/cmq.2003.42.2.245. DOI
Lee PD, Hunt JD. Hydrogen porosity in directionally solidified aluminium–copper alloys: A mathematical model. Acta Mater. 2001;49(8):1383–1398. doi: 10.1016/S1359-6454(01)00043-X. DOI
Zhang Y, Xue C, Wang J, Yang X, Li Q, Wang S, Su H, Li X, Miao Y, Dou R. Quantifying the effects of hydrogen concentration and cooling rates on porosity formation in Al–Li alloys. J. Mater. Res. Technol. 2023;26:1938–1954. doi: 10.1016/j.jmrt.2023.08.017. DOI
Zhang L, Lv X, Torgeson AT, Long M. Removal of impurity elements from molten aluminum: A review. Mineral Process. Extract. Metall. Rev. 2011;32:150–228. doi: 10.1080/08827508.2010.483396. DOI
Liu Y, Zhang T, Sano M, Wang Q, Ren X, He J. Mechanical stirring for highly efficient gas injection refining. Trans. Nonferrous Metals Soc. China. 2011;21:1896–1904. doi: 10.1016/S1003-6326(11)60947-3. DOI
Liu Y, Sano M, Zhang T, Wang Q, He J. Intensification of bubble disintegration and dispersion by mechanical stirring in gas injection refining. ISIJ Int. 2009;49:17–23. doi: 10.2355/isijinternational.49.17. DOI
Li Q, He K, Wu N, Zeng J. Purification of aluminum melt in crucibles by bubble flotation. Procedia Manuf. 2019;37:438–445. doi: 10.1016/j.promfg.2019.12.071. DOI
Tovio DO, Mugica GW, González AC, Cuyás JC. Formation and size of bubbles in degassing system of aluminum. AFS Trans. 2000;108:457–462.
Saternus M, Merder T. Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller. Metals. 2018;8:726. doi: 10.3390/met8090726. DOI
Yamamoto T, Suzuki A, Komarova SV, Ishiwata Y. Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. J. Mater. Processing Technol. 2018;261:164–172. doi: 10.1016/j.jmatprotec.2018.06.012. DOI
Waz, E., Carre, J.; Le Brun, P.; Jardy, A.; Xuereb, C.; Ablitzer, D. Physical modelling of the aluminium degassing process: Experimental and mathematical approaches. In: Light Metals; TMS: Warrendale, PA, USA, 2003, pp. 901–907.
Prášil T, Socha L, Gryc K, Svizelová J, Saternus M, Merder T, Pieprzyca J, Gráf M. Impact of rotor material wear on the aluminum refining process. Materials. 2022;15:4425. doi: 10.3390/ma15134425. PubMed DOI PMC
Laakkonen M, Moilanen P, Alopaeus V, Aittamaa J. Modeling local bubble size distribution in agitated vessels. Chem. Eng. Sci. 2007;62:721–740. doi: 10.1016/j.ces.2006.10.006. DOI
Oldshue JY. Fluid Mixing Technology. New York: McGraw Hill Higher Education; 1983.
Saternus M, Merder T. Physical modeling of the impeller construction impact on the aluminum refining process. Materials. 2022;15:575. doi: 10.3390/ma15020575. PubMed DOI PMC
Prášil T, Socha L, Gryc K, Svizelová J, Saternus M, Merder T, Pieprzyca J, Gráf M. Using physical modeling to optimize the aluminium refining process. Materials. 2022;15:7385. doi: 10.3390/ma15207385. PubMed DOI PMC
Abreu-López D, Amaro-Villeda A, Acosta-González FA, González-Rivera C, Ramírez-Argáez MA. Effect of the impeller design on degasification kinetics using the impeller injector technique assisted by mathematical modelling. Metals. 2017;7(132):1–14. doi: 10.3390/met7040132. DOI
Sigworth GK, Engh TA. Refining of liquid aluminium – a review of important chemical factors. Scand. J. Met. 1982;11:143–149.
Mi G, Liu X, Wang K, Qi S, Wang H, Niu JT. Analyses of the influencing factors of rotating impeller degassing process and water simulation experiment. J. Mater. Sci. Forum. 2008;575:1258–1265. doi: 10.4028/www.scientific.net/MSF.575-578.1258. DOI
Warke VS, Tryggvason G, Makhlouf MM. Mathematical modelling and computer simulation of molten metal cleansing by the rotating impeller degasser Part I Fluid flow. J. Mat. Proc. Tech. 2005;168:112–118. doi: 10.1016/j.jmatprotec.2004.10.017. DOI
Johansen, S., Graadahl, S., Tetlie, P., Rasch, B., & Myrbostad, E. Can rotor-based refining units be developed and optimized based on water model experiments? In: Light Metals; TMS: Warrendale, PA, USA, 1998; pp. 805–810.
Mancilla E, Cruz-Mendez W, Garduno IE, Gonzalez-Rivera C, Ramirez-Argaez MA, Ascanio G. Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chem. Eng. Res. Des. 2017;118:158–169. doi: 10.1016/j.cherd.2016.11.031. DOI
Gomez ER, Zenit R, Rivera CG, Trapaga G, Ramirez-Argazez MA. Physical modelling of fluid flow in ladles of aluminium equipped with impeller and gas purging for degassing. Metall. Mater. Trans. B. 2013;44:974–983. doi: 10.1007/s11663-013-9845-5. DOI
Yamamoto T, Kato K, Komarov SV, Ueno Y, Hayashi M. Investigation of melt stirring in aluminium melting furnace through water model. J. Mater. Process. Technol. 2018;259:409–415. doi: 10.1016/j.jmatprotec.2018.04.025. DOI
Camacho-Martinez JL, Ramirez-Argaez MA, Zenit-Camacho R, Juarez-Hernandez A, Barceinas-Sanchez JO, Trapaga-Martinez G. Physical modelling of an aluminium degassing operation with rotating impellers a comparative hydrodynamic analysis. Mater. Manuf. Process. 2010;25:581–591. doi: 10.1080/10426910903367386. DOI
Hernández-Hernández M, Camacho-Martínez JL, González-Rivera C, Ramírez-Argáez MA. Impeller design assisted by physical modeling and pilot plant trials. J. Mater. Process. Technol. 2016;236:1–8. doi: 10.1016/j.jmatprotec.2016.04.031. DOI
Wan B, Chen W, Mao M, Fu Z, Zhu D. Numerical simulation of a stirring purifying technology for aluminum melt. J. Mater. Process. Tech. 2018;251:330–342. doi: 10.1016/j.jmatprotec.2017.09.001. DOI
Hernández-Hernández M, Cruz-Mendez WF, Gonzalez-Rivera C, et al. Mathematical modeling of aluminum degassing by the impeller injector technique validated by a physical modeling. MRS Online Proc. Library. 2014;1611:49–54. doi: 10.1557/opl.2014.757. DOI
Ramos Gomez E, Zenit R, González Rivera C, Trápaga G, Ramírez-Argáez MA. Mathematical modeling of fluid flow in a water physical model of an aluminum degassing ladle equipped with an impeller-injector. Metall. Mater. Trans. B. 2013;44B:423–435. doi: 10.1007/s11663-012-9774-8. DOI
Zhang L, Lv X, Torgerson AT, Long M. Removal of impurity elements from molten aluminum: A review. Mineral Process. Extractive Metall. Rev. 2001;32:150–228. doi: 10.1080/08827508.2010.483396. DOI
Podaril M, Prášil T, Majernik J, Kampf R, Socha L, Gryc K, Gráf M. Aluminum melt degassing process evaluation depending on the design and the degree of the FDU unit graphite rotor wear. Materials. 2022;15:4924. doi: 10.3390/ma15144924. PubMed DOI PMC
Taylor MB. Molten metal fluxing/treatment: How best achieve the desired quality requirements. Aluminum. 2003;79:44–50.
Prášil T, Socha L, Gryc K, Svizelová J, Saternus M, Merder T, Pieprzyca J, Gráf M. Impact of rotor design on its wear and work efficiency of the aluminum refining process. Metals. 1803;2022:12. doi: 10.3390/met12111803. PubMed DOI PMC
https://lenaal.com.pl/en/wp-content/uploads/sites/2/2017/03/Alloy-properties-1.pdf; Accessed 11 July 2023.