Using Physical Modeling to Optimize the Aluminium Refining Process
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04010449
Technology Agency of the Czech Republic
11/020/RGJ22/0089
Silesian University of Technology
11/020/BK_22/0088 (BK-208/RM2/2022)
Silesian University of Technology
PubMed
36295448
PubMed Central
PMC9611159
DOI
10.3390/ma15207385
PII: ma15207385
Knihovny.cz E-zdroje
- Klíčová slova
- aluminium, physical modeling, refining, rotary impeller,
- Publikační typ
- časopisecké články MeSH
Concern for the environment and rational management of resources requires the development of recoverable methods of obtaining metallic materials. This also applies to the production of aluminium and its alloys. The quality requirements of the market drive aluminium producers to use effective refining methods, and one of the most commonly used is blowing an inert gas into liquid aluminium via a rotating impeller. The efficiency and cost of this treatment depends largely on the application of the correct ratios between the basic parameters of the process, which are the flow rate of the inert gas, the speed of the rotor and the duration of the process. Determining these ratios in production conditions is expensive and difficult. This article presents the results of research aimed at determining the optimal ratio of the inert gas flow rate to the rotary impeller speed, using physical modeling techniques for the rotor as used in industrial conditions. The tests were carried out for rotary impeller speeds from 150 to 550 rpm and gas flow rates of 12, 17 and 22 dm3/min. The research was carried out on a 1:1 scale physical model, and the results, in the form of visualization of the degree of gas-bubble dispersion, were assessed on the basis of the five typical dispersion patterns. The removal of oxygen from water was carried out analogously to the process of removing hydrogen from aluminium. The curves of the rate of oxygen removal from the model liquid were determined, showing the course of oxygen reduction during refining with the same inert gas flows and rotor speeds mentioned above.
Zobrazit více v PubMed
Johansen S., Graadahl S., Tetlie P., Rasch B., Myrbostad E. Light Metals. TMS; Warrendale, PA, USA: 1998. Can rotor-based refining units be developed and optimized based on water model experiments? pp. 805–810.
Liu Y., Zhang T., Sano M., Wang Q., Ren X., He J. Mechanical stirring for highly efficient gas injection refining. Trans. Nonferr. Met. Soc. China. 2011;21:1896–1904. doi: 10.1016/S1003-6326(11)60947-3. DOI
Li J.H., Hao Q.T. Develop the degassing and purification equipment of molten aluminium alloys by rotary impeller. Zhuzao/Foundry. 2007;56:731–734.
Mancilla E., Cruz-Mendez W., Garduno I.E., Gonzalez-Rivera C., Ramirez-Argaez M.A., Ascanio G. Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chem. Eng. Res. Des. 2017;118:158–169. doi: 10.1016/j.cherd.2016.11.031. DOI
Saternus M., Merder T. Physical modelling of aluminum refining process conducted in batch reactor with rotary impeller. Metals. 2018;8:726. doi: 10.3390/met8090726. DOI
Engh T.A. Principles of Metal Refining. Oxford University Press; Oxford, UK: 1992.
Liu Y., Sano M., Zhang T., Wang Q., He J. Intensification of bubble disintegration and dispersion by mechanical stirring in gas injection refining. ISIJ Int. 2009;49:17–23. doi: 10.2355/isijinternational.49.17. DOI
Zhang L., Lv X., Torgeson A.T., Long M. Removal of impurity elements from molten aluminum: A review. Miner. Process. Extr. Metall. Rev. 2011;32:150–228. doi: 10.1080/08827508.2010.483396. DOI
Sigworth G.K., Engh T.A. Refining of liquid aluminium—A review of important chemical factors. Scand. J. Met. 1982;11:143–149.
Warke V.S., Tryggvason G., Makhlouf M.M. Mathematical modelling and computer simulation of molten metal cleansing by the rotating impeller degasser Part I. Fluid flow. J. Mater. Process. Technol. 2005;168:112–118. doi: 10.1016/j.jmatprotec.2004.10.017. DOI
Abreu-López D., Amaro-Villeda A., Acosta-González F.A., González-Rivera C., Ramírez-Argáez M.A. Effect of the impeller design on degasification kinetics using the impeller injector technique assisted by mathematical modelling. Metals. 2017;7:132. doi: 10.3390/met7040132. DOI
Laakkonen M., Moilanen P., Alopaeus V., Aittamaa J. Modeling local bubble size distribution in agitated vessels. Chem. Eng. Sci. 2007;62:721–740. doi: 10.1016/j.ces.2006.10.006. DOI
Luo H., Svendsen H.F. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 1996;42:1225–1233. doi: 10.1002/aic.690420505. DOI
Lehr F., Milles M., Mewes D. Bubble-size distributions and flow fields in bubble columns. AIChE J. 2002;48:2426–2443. doi: 10.1002/aic.690481103. DOI
Kálal Z., Jahoda M., Fořt I. Modeling of the bubble size distribution in an aerated stirred tank: Theoretical and numerical comparison of different breakup models. Chem. Process Eng. 2014;35:331–348. doi: 10.2478/cpe-2014-0025. DOI
Van der Hengel E.I.V., Deen N.G., Kuipers J.A.M. Application of coalescence and breakup models in a discrete bubble model for bubble columns. Ind. Eng. Chem. Res. 2005;44:5233–5245. doi: 10.1021/ie0492449. DOI
Stelmach J., Musoski R., Kuncewicz C., Głogowski M. Turbulent Energy dissipation rate and turbulence scales in the blade region of a self-aspirating disk impeller. J. Appl. Fluid Mech. 2019;12:715–728. doi: 10.29252/jafm.12.03.28836. DOI
Liao Y., Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Eng. Sci. 2009;64:3389–3406. doi: 10.1016/j.ces.2009.04.026. DOI
Solsvik J., Jakobsen H.A. Single drop breakup experiments in stirred liquid–liquid tank. Chem. Eng. Sci. 2015;131:219–234. doi: 10.1016/j.ces.2015.03.059. DOI
Hasan B.O. Experimental study on the bubble breakage in a stirred tank. Part 1. Mechanism and effect of operating parameters. Int. J. Multiph. Flow. 2017;97:94–108. doi: 10.1016/j.ijmultiphaseflow.2017.08.006. DOI
La Forgia N., Helno Herø E., Jakobsen H.A. High-speed image processing of fluid particle breakage in turbulent flow. Chem. Eng. Sci. X. 2021;12:100117. doi: 10.1016/j.cesx.2021.100117. DOI
Ashar M., Arlov D., Carlsson F., Innings F., Andersson R. Single droplet breakup in a rotor-stator mixer. Chem. Eng. Sci. 2018;181:186–198. doi: 10.1016/j.ces.2018.02.021. DOI
Gomez E.R., Zenit R., Rivera C.G., Trapaga G., Ramirez-Argazez M.A. Physical modelling of fluid flow in ladles of aluminium equipped with impeller and gas purging for degassing. Metall. Mater. Trans. B. 2013;44:974–983. doi: 10.1007/s11663-013-9845-5. DOI
Camacho-Martinez J.L., Ramirez-Argaez M.A., Zenit-Camacho R., Juarez-Hernandez A., Barceinas-Sanchez J.O., Trapaga-Martinez G. Physical modelling of an aluminium degassing operation with rotating impellers a comparative hydrodynamic analysis. Mater. Manuf. Process. 2010;25:581–591. doi: 10.1080/10426910903367386. DOI
Hernández-Hernández M., Camacho-Martínez J.L., González-Rivera C., Ramírez-Argáez M.A. Impeller design assisted by physical modeling and pilot plant trials. J. Mater. Process. Technol. 2016;236:1–8. doi: 10.1016/j.jmatprotec.2016.04.031. DOI
Yamamoto T., Kato K., Komarov S.V., Ueno Y., Hayashi M. Investigation of melt stirring in aluminium melting furnace through water model. J. Mater. Process. Technol. 2018;259:409–415. doi: 10.1016/j.jmatprotec.2018.04.025. DOI
Oldshue J.Y. Fluid Mixing Technology. McGraw Hill Higher Education; New York, NY, USA: 1983.
Saternus M., Merder T. Physical Modeling of the Impeller Construction Impact on the Aluminum Refining Process. Materials. 2022;15:575. doi: 10.3390/ma15020575. PubMed DOI PMC
Yamamoto T., Suzuki A., Komarova S.V., Ishiwata Y. Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. J. Mater. Process. Technol. 2018;261:164–172. doi: 10.1016/j.jmatprotec.2018.06.012. DOI
Chen J., Zhao J.C., Lacey P.V., Gray T.N.H. Light Metals. TMS; Warrendale, PA, USA: 2001. Flow Pattern in a Melt Treatment Water Model Based on Shaft Power Measurements; pp. 1021–1025.
Johansen S.T., Robertson D.G.C., Woje K., Engh T.A. Fluid dynamic in bubble stirred ladles: Part I. Experimentals. Metall. Mater. Trans. B. 1988;10:745–754. doi: 10.1007/BF02650194. DOI
Hasan B.O. Breakage of drops and bubbles in a stirred tank: A review of experimental studies. Chin. J. Chem. Eng. 2017;25:698–711. doi: 10.1016/j.cjche.2017.03.008. DOI
Martin M., Montes F., Galan M. Influence of impeller type on the bubble breakup process in stirred tanks. Ind. Eng. Chem. Res. 2008;47:6251–6263. doi: 10.1021/ie800063v. DOI
Guofa M., Shouping Q., Xiangyu L., Jitai N. Research on water simulation experiment of the rotating impeller degassing process. Mater Sci. Eng. A. 2009;499:195–199.
Ramos Gomez E., Zenit R., González Rivera C., Trápaga G., Ramírez-Argáez M.A. Mathematical modeling of fluid flow in a water physical model of an aluminum degassing ladle equipped with an impeller-injector. Metall. Mater. Trans. B. 2013;44:423–435. doi: 10.1007/s11663-012-9774-8. DOI
Waz E., Carre J., Le Brun P., Jardy A., Xuereb C., Ablitzer D. Light Metals. TMS; Warrendale, PA, USA: 2003. Physical modelling of the aluminium degassing process: Experimental and mathematical approaches; pp. 901–907.
Ruizhi W., Jun Wang D.S., Baode S., Milin Z. Flow field and gas-bubble size analysis in water model for the process of aluminum melt degassing by particle image velocimetry. Mater. Sci. Forum. 2007;546–549:1087–1092.
Camacho-Martinez J.L., Ramirez-Argaez M.A., Juarez-Hernandez A., Gonzalez-Rivera C., Trapaga-Martinez G. Novel degasification design for aluminium using an impeller degasification water physical model. Mater. Manuf. Process. 2012;27:556–560. doi: 10.1080/10426914.2011.593234. DOI
Michalek K. The Use of Physical Modeling and Numerical Optimization for Metallurgical Processes. Publishing of the VSB; Ostrava, Czech Republic: 2001.
Müller L. Application of Dimensional Analysis in Model Research. Publishing of the PWN; Warszawa, Poland: 1983.