Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition

. 2022 Dec ; 97 (6) : 2023-2038. [epub] 20220710

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35811333

Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707 observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter; and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss (0-20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.

Zobrazit více v PubMed

Ab Hamid, S. & Rawi, C. S. M. (2017). Ephemeroptera, Plecoptera and Trichoptera (Insecta) abundance, diversity and role in leaf litter breakdown in tropical headwater river. Tropical Life Sciences Research 28(2), 89-105.

*Abelho, M. (2008). Effects of leaf litter species on macroinvertebrate colonization during decomposition in a Portuguese stream. International Review of Hydrobiology 93(3), 358-371.

*Abelho, M. (2009). Leaf-litter mixtures affect breakdown and macroinvertebrate colonization rates in a stream ecosystem. International Review of Hydrobiology 94(4), 436-451.

*Abril, M., Muñoz, I. & Menéndez, M. (2016). Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Science of the Total Environment 553, 330-339.

Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3), 439-449.

*Ágoston-Szabó, E., Schöll, K., Kiss, A. & Dinka, M. (2016). Mesh size and site effects on leaf litter decomposition in a side arm of the River Danube on the Gemenc floodplain (Danube-Dráva National Park, Hungary). Hydrobiologia 774(1), 53-68.

*Albariño, R. & Balseiro, E. (2002). Leaf litter breakdown in Patagonian streams: native versus exotic trees and the effect of invertebrate size. Aquatic Conservation: Marine and Freshwater Ecosystems 12(2), 181-192.

*Alvim, E. A., Medeiros, A. O., Rezende, R. S. & Gonçalves, J. F. Jr. (2015). Leaf breakdown in a natural open tropical stream. Journal of Limnology 74(2), 248-260.

Amani, M., Graça, M. A. S. & Ferreira, V. (2019). Effects of elevated atmospheric CO2 concentration and temperature on litter decomposition in streams: a meta-analysis. International Review of Hydrobiology 104(1-2), 14-25.

Angrist, J. D. & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press, Princeton.

*Ardón, M. & Pringle, C. M. (2008). Do secondary compounds inhibit microbial-and insect-mediated leaf breakdown in a tropical rainforest stream, Costa Rica? Oecologia 155(2), 311-323.

*Arroita, M., Aristi, I., Flores, L., Larrañaga, A., Díez, J., Mora, J., Romaní, A. M. & Elosegi, A. (2012). The use of wooden sticks to assess stream ecosystem functioning: comparison with leaf breakdown rates. Science of the Total Environment 440, 115-122.

*Baldy, V., Gobert, V., Guérold, F., Chauvet, E., Lambrigot, D. & Charcosset, J. Y. (2007). Leaf litter breakdown budgets in streams of various trophic status: effects of dissolved inorganic nutrients on microorganisms and invertebrates. Freshwater Biology 52(7), 1322-1335.

Bärlocher, F., Gessner, M. O. & Graça, M. A. S. (2020). Methods to Study Litter Decomposition. Springer, Switzerland.

Bärlocher, F. & Sridhar, K. R. (2014). Association of animals and fungi in leaf decomposition. In Freshwater Fungi and Fungal-like Organisms (eds E. B. G. Jones, K. D. Hyde and K.-L. Pang), pp. 413-442. Walter de Gruyter, Berlin.

Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1), 1-48.

*Benfield, E., Jones, D. & Patterson, M. (1977). Leaf pack processing in a pastureland stream. Oikos 29(1), 99-103.

*Benfield, E. & Webster, J. (1985). Shredder abundance and leaf breakdown in an Appalachian Mountain stream. Freshwater Biology 15(1), 113-120.

*Benstead, J. P. & Huryn, A. D. (2011). Extreme seasonality of litter breakdown in an arctic spring-fed stream is driven by shredder phenology, not temperature. Freshwater Biology 56(10), 2034-2044.

Berg, B. & McClaugherty, C. (2020). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration, 4th Edition (). Springer Nature, Switzerland, Cham.

*Bo, T., Cammarata, M., López-Rodríguez, M. J., de Figueroa, J. M. T., Baltieri, M., Varese, P. & Fenoglio, S. (2014). The influence of water quality and macroinvertebrate colonization on the breakdown process of native and exotic leaf types in sub-alpine stream. Journal of Freshwater Ecology 29(2), 159-169.

Boyero, L., Graça, M. A. S., Tonin, A. M., Pérez, J., Swafford, A. J., Ferreira, V., Landeira-Dabarca, A., Alexandrou, M. A., Gessner, M. O., McKie, B. G., Albariño, R. J., Barmuta, L. A., Callisto, M., Chará, J., Chauvet, E., et al. (2017). Riparian plant litter quality increases with latitude. Scientific Reports 7(1), 1-10.

Boyero, L., López-Rojo, N., Tonin, A. M., Pérez, J., Correa-Araneda, F., Pearson, R. G., Bosch, J., Albariño, R. J., Anbalagan, S., Barmuta, L. A., Basaguren, A., Burdon, F. J., Caliman, A., Callisto, M., Calor, A. R., et al. (2021). Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics. Nature Communications 12(1), 3700.

*Boyero, L., Pearson, R. G. & Camacho, R. (2006). Leaf breakdown in tropical streams: the role of different species in ecosystem functioning. Archiv für Hydrobiologie 166(4), 453-466.

Boyero, L., Pearson, R. G., Dudgeon, D., Graça, M. A. S., Gessner, M. O., Albariño, R. J., Ferreira, V., Yule, C. M., Boulton, A. J., Arunachalam, M., Callisto, M., Chauvet, E., Ramírez, A., Chará, J., Moretti, M. S., et al. (2011a). Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92(9), 1839-1848.

Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., et al. (2011b). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14(3), 289-294.

*Boyero, L., Pearson, R. G., Gessner, M. O., Dudgeon, D., Ramírez, A., Yule, C. M., Callisto, M., Pringle, C. M., Encalada, A. C., Arunachalam, M., Mathooko, M. J., Helson, J. E., Rincón, J., Bruder, A., Cornejo, A., et al. (2015). Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Science 34(2), 759-769.

Boyero, L., Pearson, R. G., Hui, C., Gessner, M. O., Pérez, J., Alexandrou, M. A., Graça, M. A. S., Cardinale, B. J., Albariño, R. J., Arunachalam, M., Barmuta, L. A., Boulton, A. J., Bruder, A., Callisto, M., Chauvet, E., et al. (2016). Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proceedings of the Royal Society B: Biological Sciences 283(1829), 20152664.

*Braatne, J. H., Sullivan, S. M. P. & Chamberlain, E. (2007). Leaf decomposition and stream macroinvertebrate colonisation of Japanese knotweed, an invasive plant species. International Review of Hydrobiology 92(6), 656-665.

Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. (2016). Understanding the dominant controls on litter decomposition. Journal of Ecology 104(1), 229-238.

Bradford, M. A., Veen, G. C., Bonis, A., Bradford, E. M., Classen, A. T., Cornelissen, J. H. C., Crowther, T. W., Jonathan, R., Freschet, G. T. & Kardol, P. (2017). A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution 1(12), 1836-1845.

*Bruder, A., Schindler, M. H., Moretti, M. S. & Gessner, M. O. (2014). Litter decomposition in a temperate and a tropical stream: the effects of species mixing, litter quality and shredders. Freshwater Biology 59(3), 438-449.

*Bunn, S. E. (1988). Processing of leaf litter in a northern jarrah forest stream, Western Australia: I. Seasonal differences. Hydrobiologia 162(3), 201-210.

Calcagno, V. & de Mazancourt, C. (2010). glmulti: an R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software 34(12), 1-29.

Canhoto, C. & Graça, M. A. S. (2008). Interactions between fungi and stream invertebrates: back to the future. In Novel Techniques and Ideas in Mycology Fungal Diversity (Volume 20, eds K. R. Sridhar, F. Bärlocher and K. D. Hyde), pp. 305-325. Hong Kong Unviersity Press, Hong Kong.

*Carter, C. D. & Marks, J. C. (2007). Influences of travertine dam formation on leaf litter decomposition and algal accrual. Hydrobiologia 575(1), 329-341.

*Casotti, C. G., Kiffer, W. P. Jr., Costa, L. C., Rangel, J. V., Casagrande, L. C. & Moretti, M. S. (2015). Assessing the importance of riparian zones conservation for leaf decomposition in streams. Natureza & Conservação 13(2), 178-182.

*Castela, J., Ferreira, V. & Graça, M. A. S. (2008). Evaluation of stream ecological integrity using litter decomposition and benthic invertebrates. Environmental Pollution 153(2), 440-449.

*Chadwick, M. A. & Huryn, A. D. (2003). Effect of a whole-catchment N addition on stream detritus processing. Journal of the North American Benthological Society 22(2), 194-206.

*Chara, J., Baird, D., Telfer, T. & Giraldo, L. (2007). A comparative study of leaf breakdown of three native tree species in a slowly-flowing headwater stream in the Colombian Andes. International Review of Hydrobiology 92(2), 183-198.

*Charcosset, D. L., Bracht, B. & Chauvet, E. (2006). Assessment of functional integrity of eutrophic streams using litter breakdown and benthic macroinvertebrates. Archiv für Hydrobiologie 165(1), 105-126.

Chauvet, E., Ferreira, V., Giller, P. S., McKie, B. G., Tiegs, S. D., Woodward, G., Elosegi, A., Dobson, M., Fleituch, T. & Graça, M. A. S. (2016). Litter decomposition as an indicator of stream ecosystem functioning at local-to-continental scales: insights from the European RivFunction project. Advances in Ecological Research 55, 99-182.

*Chauvet, E., Giani, N. & Gessner, M. O. (1993). Breakdown and invertebrate colonization of leaf litter in two contrasting streams, significance of oligochaetes in a large river. Canadian Journal of Fisheries and Aquatic Sciences 50(3), 488-495.

*Chunmei, K., Manhong, L., Linggang, W. & Hongxian, Y. (2013). Relationship between decomposition rates of two leaves and colonization benthic macroinvertebrate in the stream of Yabuli Mountain. Journal of Northeast Forestry University 41(9), 103-112.

*Clapcott, J. E. & Bunn, S. E. (2003). Can C4 plants contribute to aquatic food webs of subtropical streams? Freshwater Biology 48(6), 1105-1116.

*Classen-Rodríguez, L., Gutiérrez-Fonseca, P. E. & Ramírez, A. (2019). Leaf litter decomposition and macroinvertebrate assemblages along an urban stream gradient in Puerto Rico. Biotropica 51(5), 641-651.

Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A. & Middelburg, J. J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1), 172-185.

*Collen, P., Keay, E. & Morrison, B. (2004). Processing of pine (Pinus sylvestris) and birch (Betula pubescens) leaf material in a small river system in the northern Cairngorms, Scotland. Hydrology and Earth System Sciences 8(3), 567-577.

*Collier, K. & Winterbourn, M. (1986). Processing of willow leaves in two suburban streams in Chrisrtchurch, New Zealand. New Zealand Journal of Marine and Freshwater Research 20(4), 575-582.

*Cornut, J., Elger, A., Lambrigot, D., Marmonier, P. & Chauvet, E. (2010). Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biology 55(12), 2541-2556.

Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H. & Pérez-Harguindeguy, N. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11(10), 1065-1071.

*Corti, R., Datry, T., Drummond, L. & Larned, S. (2011). Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in a temporary river. Aquatic Sciences 73(4), 537-550.

*Curry, J., Kelly, M. & Bolger, T. (1985). Role of invertebrates in the decomposition of Salix litter in reclaimed cutover peat. In Ecological Interactions in Soil: Plants, Microbes and Animals (eds A. Fitter, D. Atkinson, D. Read and M. Usher), pp. 355-365. Blackwell Scientific Publications, Oxford.

*Davis, S. & Winterbourn, M. (1977). Breakdown and colonization of Nothofagus leaves in a New Zealand stream. Oikos 28(2/3), 250-255.

De Schrijver, A., De Frenne, P., Staelens, J., Verstraeten, G., Muys, B., Vesterdal, L., Wuyts, K., Van Nevel, L., Schelfhout, S., De Neve, S. & Verheyen, K. (2012). Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Global Change Biology 18(3), 1127-1140.

*de Zozaya, I. Y. B. & Neiff, J. J. (1991). Decomposition and colonization by invertebrates of Typha latifolia L. litter in Chaco cattail swamp (Argentina). Aquatic Botany 40(2), 185-193.

*Dunck, B., Lima-Fernandes, E., Cássio, F., Cunha, A., Rodrigues, L. & Pascoal, C. (2015). Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication. Environmental Pollution 202, 32-40.

Duval, S. & Tweedie, R. (2000). Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2), 455-463.

Egger, M., Smith, G. D., Schneider, M. & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315(7109), 629-634.

*Eggert, S. L. & Wallace, J. B. (2003). Litter breakdown and invertebrate detritivores in a resource-depleted Appalachian stream. Archiv für Hydrobiologie 156(3), 315-338.

*Encalada, A. C., Calles, J., Ferreira, V., Canhoto, C. M. & Graça, M. A. S. (2010). Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55(8), 1719-1733.

*Fan, H., Jinmeng, K., Yizhi, Z., Jing, L., Yong, L., Xue, D. & Manhong, L. (2016). Effects of benthic macroinvertebrate on breakdown of two leaves in Maoer Mountain stream. Journal of Northeast Forestry University 44(1), 85-89.

Ferreira, V. & Canhoto, C. (2015). Future increase in temperature may stimulate litter decomposition in temperate mountain streams: evidence from a stream manipulation experiment. Freshwater Biology 60(5), 881-892.

Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E. & Graça, M. A. S. (2015a). A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews 90(3), 669-688.

*Ferreira, V., Chauvet, E. & Canhoto, C. (2015b). Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences 72(2), 206-216.

*Ferreira, V., Encalada, A. C. & Graça, M. A. S. (2012). Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31(3), 945-962.

*Ferreira, V. & Guérold, F. (2017). Leaf litter decomposition as a bioassessment tool of acidification effects in streams: evidence from a field study and meta-analysis. Ecological Indicators 79, 382-390.

Ferreira, V., Gulis, V. & Graça, M. A. S. (2006). Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149(4), 718-729.

*Ferreira, V., Larrañaga, A., Gulis, V., Basaguren, A., Elosegi, A., Graça, M. A. S. & Pozo, J. (2015c). The effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams. Forest Ecology and Management 335, 129-138.

*Ferreira, V., Raposeiro, P. M., Pereira, A., Cruz, A. M., Costa, A. C., Graça, M. A. S. & Gonçalves, V. (2016). Leaf litter decomposition in remote oceanic Island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology 61(5), 783-799.

*Flores, L., Larranaga, A., Diez, J. & Elosegi, A. (2011). Experimental wood addition in streams: effects on organic matter storage and breakdown. Freshwater Biology 56(10), 2156-2167.

Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J., Manning, D. W., Rosemond, A. D., Sinsabaugh, R. L., Swan, C. M., Webster, J. R., et al. (2017). Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology 23(8), 3064-3075.

Frainer, A., McKie, B. G. & Malmqvist, B. (2014). When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. Journal of Animal Ecology 83(2), 460-469.

*Gama, M., Gonçalves, A. L., Ferreira, V., Graça, M. A. S. & Canhoto, C. (2007). Decomposition of fire exposed eucalyptus leaves in a Portuguese lowland stream. International Review of Hydrobiology 92(3), 229-241.

García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16(8), 1045-1053.

García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. (2016). Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters 19(5), 554-563.

Gessner, M. O., Chauvet, E. & Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos 85(2), 377-384.

*Gessner, M. O., Meyer, E. & Schwoerbel, J. (1991). Rapid processing of fresh leaf litter in an upland stream. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen 24(3), 1846-1850.

Gomes, P. P., Ferreira, V., Tonin, A. M., Medeiros, A. O. & Gonçalves, F. G. Jr. (2018). Combined effects of dissolved nutrients and oxygen on plant litter decomposition and associated fungal communities. Microbial Ecology 75(4), 854-862.

*Gonçalves, J. F. Jr., Couceiro, S. R., Rezende, R. S., Martins, R. T., Ottoni-Boldrini, B. M., Campos, C. M., Silva, J. O. & Hamada, N. (2017). Factors controlling leaf litter breakdown in Amazonian streams. Hydrobiologia 792(1), 195-207.

*Gonçalves, J. F. Jr., Graça, M. A. S. & Callisto, M. (2006). Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society 25(2), 344-355.

*Gonçalves, J. F. Jr., Graça, M. A. S. & Callisto, M. (2007). Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology 52(8), 1440-1451.

Gonçalves, J. F. Jr., Rezende, R. S., Martins, N. M. & Gregorio, R. S. (2012). Leaf breakdown in an Atlantic rain forest stream. Austral Ecology 37(7), 807-815.

Graça, M. A. S. (2001). The role of invertebrates on leaf litter decomposition in streams-a review. International Review of Hydrobiology 86(4-5), 383-393.

Graça, M. A. S., Ferreira, R. & Coimbra, C. (2001). Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of the North American Benthological Society 20(3), 408-420.

Graça, M. A. S., Ferreira, V., Canhoto, C., Encalada, A. C., Guerrero-Bolaño, F., Wantzen, K. M. & Boyero, L. (2015). A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100(1), 1-12.

Griffiths, H. M., Ashton, L. A., Parr, C. L. & Eggleton, P. (2021). The impact of invertebrate decomposers on plants and soil. New Phytologist 231(6), 2142-2149.

*Gulis, V., Ferreira, V. & Graça, M. A. S. (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51(9), 1655-1669.

*Haapala, A., Muotka, T. & Markkola, A. (2001). Breakdown and macroinvertebrate and fungal colonization of alder, birch, and willow leaves in a boreal forest stream. Journal of the North American Benthological Society 20(3), 395-407.

*Hagen, E., Webster, J. & Benfield, E. (2006). Are leaf breakdown rates a useful measure of stream integrity along an agricultural landuse gradient? Journal of the North American Benthological Society 25(2), 330-343.

Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M. O., Jabiol, J. & Makkonen, M. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature 509(7499), 218-221.

*Hieber, M. & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83(4), 1026-1038.

*Hisabae, M., Sone, S. & Inoue, M. (2011). Breakdown and macroinvertebrate colonization of needle and leaf litter in conifer plantation streams in Shikoku, southwestern Japan. Journal of Forest Research 16(2), 108-115.

*Hladyz, S., Tiegs, S. D., Gessner, M. O., Giller, P. S., Rîşnoveanu, G., Preda, E., Nistorescu, M., Schindler, M. & Woodward, G. (2010). Leaf-litter breakdown in pasture and deciduous woodland streams: a comparison among three European regions. Freshwater Biology 55(9), 1916-1929.

*Hogsden, K. L. & Harding, J. S. (2013). Leaf breakdown, detrital resources, and food webs in streams affected by mine drainage. Hydrobiologia 716(1), 59-73.

*Hutchens, J. J. Jr. & Wallace, J. B. (2002). Ecosystem linkages between southern Appalachian headwater streams and their banks: leaf litter breakdown and invertebrate assemblages. Ecosystems 5(1), 80-91.

*Imbert, J. B. & Pozo, J. (1989). Breakdown of four leaf litter species and associated fauna in a Basque Country forested stream. Hydrobiologia 182(1), 1-14.

*Iñiguez-Armijos, C., Rausche, S., Cueva, A., Sánchez-Rodríguez, A., Espinosa, C. & Breuer, L. (2016). Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams. Ecology and Evolution 6(14), 4849-4865.

*Jabiol, J. & Chauvet, E. (2015). Biodiversity and litter decomposition: a case study in a Mediterranean stream. Freshwater Science 34(2), 423-430.

*Jesús Casas, J., Gessner, M. O., Lopez, D. & Descals, E. (2011). Leaf-litter colonisation and breakdown in relation to stream typology: insights from Mediterranean low-order streams. Freshwater Biology 56(12), 2594-2608.

*Jiang, L., Wang, B., Chen, A. & Lan, C. (2009). Effects of benthic macro-invertebrate on decomposition of Acer buergerianum leaf litter in streams. Chinese Journal of Applied Ecology 20(5), 1184-1189.

Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S. & Medlyn, B. E. (2019). Towards a more physiological representation of vegetation phosphorus processes in land surface models. New Phytologist 222(3), 1223-1229.

*Jinggut, T. & Yule, C. M. (2015). Leaf-litter breakdown in streams of East Malaysia (Borneo) along an altitudinal gradient: initial nitrogen content of litter limits shredder feeding. Freshwater Science 34(2), 691-701.

*Kobayashi, S. & Kagaya, T. (2005). Hot spots of leaf breakdown within a headwater stream reach: comparing breakdown rates among litter patch types with different macroinvertebrate assemblages. Freshwater Biology 50(6), 921-929.

*Koetsier, P., Krause, T. R. & Tuckett, Q. M. (2010). Present effects of past wildfires on leaf litter breakdown in stream ecosystems. Western North American Naturalist 70, 164-174.

*Kominoski, J. S. & Pringle, C. M. (2009). Resource-consumer diversity: testing the effects of leaf litter species diversity on stream macroinvertebrate communities. Freshwater Biology 54(7), 1461-1473.

*König, R., Hepp, L. U. & Santos, S. (2014). Colonisation of low-and high-quality detritus by benthic macroinvertebrates during leaf breakdown in a subtropical stream. Limnologica 45, 61-68.

*Kovács, K., Selmeczy, G. B., Kucserka, T., Abdel-Hameid, N.-A. H. & Padisák, J. (2011). The effect of stream bed morphology on shredder abundance and leaf-litter decomposition in Hungarian midland streams. Polish Journal of Environmental Studies 20(6), 1547-1556.

*Krenz, R. J. III, Schoenholtz, S. H. & Zipper, C. E. (2016). Riparian subsidies and hierarchical effects of ecosystem structure on leaf breakdown in Appalachian coalfield constructed streams. Ecological Engineering 97, 389-399.

*Kreutzweiser, D., Nisbet, D., Sibley, P. & Scarr, T. (2019). Loss of ash trees in riparian forests from emerald ash borer infestations has implications for aquatic invertebrate leaf-litter consumers. Canadian Journal of Forest Research 49(2), 134-144.

*Kreutzweiser, D. P., Good, K. P., Capell, S. S. & Holmes, S. B. (2008). Leaf-litter decomposition and macroinvertebrate communities in boreal forest streams linked to upland logging disturbance. Journal of the North American Benthological Society 27(1), 1-15.

*Langhans, S. D. & Tockner, K. (2006). The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147(3), 501-509.

Lecerf, A. & Richardson, J. S. (2011). Assessing the functional importance of large-bodied invertebrates in experimental headwater streams. Oikos 120(6), 950-960.

*Leite-Rossi, L. A., Saito, V. S., Cunha-Santino, M. B. & Trivinho-Strixino, S. (2016). How does leaf litter chemistry influence its decomposition and colonization by shredder Chironomidae (Diptera) larvae in a tropical stream? Hydrobiologia 771(1), 119-130.

Leroy, C. J. & Marks, J. C. (2006). Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51(4), 605-617.

*Li, A. O., Ng, L. C. & Dudgeon, D. (2009). Effects of leaf toughness and nitrogen content on litter breakdown and macroinvertebrates in a tropical stream. Aquatic Sciences 71(1), 80-93.

*Li, L. (2018). Effects of habitat types on leaf litter decomposition and macroinvertebrates colonization in a headwater stream of Changbai Mountain in winter. Northeast Normal University (China).

*Lidman, J. (2015). Decomposition of leaf litter in headwater streams: effects of changes in the environment and contribution of microbial and shredder activity on litter decomposition. Umeå University.

Lidman, J., Jonsson, M., Burrows, R. M., Bundschuh, M. & Sponseller, R. A. (2017). Composition of riparian litter input regulates organic matter decomposition: implications for headwater stream functioning in a managed forest landscape. Ecology and Evolution 7(4), 1068-1077.

*Löhr, A. J., Noordijk, J., Lrianto, K., Van Gestel, C. A. & Van Straalen, N. M. (2006). Leaf decomposition in an extremely acidic river of volcanic origin in Indonesia. Hydrobiologia 560(1), 51-61.

Loladze, I. (2014). Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3, e02245.

*Lu, D., Zhang, Y., Liu, D. & Wang, B. (2012). Leaf litter breakdown of Phyllostachys heterocycla, Lithocarpus glabra and Lindera glauca in a headwater stream of Xitiaoxi watershed, upper reaches of Taihu Basin, China. Chinese Journal of Lake Sciences 24(3), 371-377.

*Magali, B., Sylvain, L. & Eric, C. (2016). Litter breakdown for ecosystem integrity assessment also applies to streams affected by pesticides. Hydrobiologia 773(1), 87-102.

*Maloney, D. C. & Lamberti, G. A. (1995). Rapid decomposition of summer-input leaves in a northern Michigan stream. American Midland Naturalist 133(1), 184-195.

*Martínez, A., Monroy, S., Pérez, J., Larrañaga, A., Basaguren, A., Molinero, J. & Pozo, J. (2016). In-stream litter decomposition along an altitudinal gradient: does substrate quality matter? Hydrobiologia 766(1), 17-28.

*Martins, R. T., da Silveira, L. S., Lopes, M. P. & Alves, R. G. (2017). Invertebrates, fungal biomass, and leaf breakdown in pools and riffles of neotropical streams. Journal of Insect Science 17(1), 1-11.

*Mathuriau, C. & Chauvet, E. (2002). Breakdown of leaf litter in a neotropical stream. Journal of the North American Benthological Society 21(3), 384-396.

*Meegan, S. K., Perry, S. A. & Perry, W. B. (1996). Detrital processing in streams exposed to acidic precipitation in the central Appalachian Mountains. Hydrobiologia 339(1), 101-110.

*Menéndez, M., Descals, E., Riera, T. & Moya, O. (2011). Leaf litter breakdown in Mediterranean streams: effect of dissolved inorganic nutrients. Hydrobiologia 669(1), 143-155.

*Menéndez, M., Hernández, O. & Comín, F. A. (2003). Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability. Hydrobiologia 495(1), 159-169.

*Menéndez, M., Martinez, M., Hernández, O. & Comín, F. A. (2001). Comparison of leaf decomposition in two Mediterranean rivers: a large eutrophic river and an oligotrophic stream (Catalonia, NE Spain). International Review of Hydrobiology 86(4-5), 475-486.

*Meyer, J. L. & Johnson, C. (1983). The influence of elevated nitrate concentration on rate of leaf decomposition in a stream. Freshwater Biology 13(2), 177-183.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 6(7), e1000097.

*Mollá, S., Casas, J. J., Menéndez, M., Basaguren, A., Casado, C., Descals, E., González, J. M., Larranaga, A., Lusi, M. & Martínez, A. (2017). Leaf-litter breakdown as an indicator of the impacts by flow regulation in headwater streams: responses across climatic regions. Ecological Indicators 73, 11-22.

*Monroy, S., Martínez, A., López-Rojo, N., Pérez-Calpe, A. V., Basaguren, A. & Pozo, J. (2017). Structural and functional recovery of macroinvertebrate communities and leaf litter decomposition after a marked drought: does vegetation type matter? Science of the Total Environment 599, 1241-1250.

*Monroy, S., Menéndez, M., Basaguren, A., Pérez, J., Elosegi, A. & Pozo, J. (2016). Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain). Science of the Total Environment 573, 1450-1459.

*Mora-Gómez, J., Elosegi, A., Mas-Martí, E. & Romaní, A. M. (2015). Factors controlling seasonality in leaf-litter breakdown in a Mediterranean stream. Freshwater Science 34(4), 1245-1258.

*Mosele Tonin, A., Ubiratan Hepp, L. & Gonçalves, J. F. Jr. (2018). Spatial variability of plant litter decomposition in stream networks: from litter bags to watersheds. Ecosystems 21(3), 567-581.

*Mutch, R. A. & Davies, R. W. (1984). Processing of willow leaves in two Alberta Rocky Mountain streams. Ecography 7(2), 171-176.

*Muto, E. A., Kreutzweiser, D. P. & Sibley, P. K. (2011). Over-winter decomposition and associated macroinvertebrate communities of three deciduous leaf species in forest streams on the Canadian boreal shield. Hydrobiologia 658(1), 111-126.

Nakagawa, S. & Poulin, R. (2012). Meta-analytic insights into evolutionary ecology: an introduction and synthesis. Evolutionary Ecology 26(5), 1085-1099.

*Neatrour, M. A., Fuller, R. L., Crossett, J. & Lynch, M. (2011). Influence of episodic acidification on leaf breakdown in neighboring streams of the western Adirondacks, USA. Journal of Freshwater Ecology 26(3), 365-379.

*Nelson, S. M. & Andersen, D. C. (2007). Variable role of aquatic macroinvertebrates in initial breakdown of seasonal leaf litter inputs to a cold-desert river. The Southwestern Naturalist 52(2), 219-228.

Nessel, M. P., Konnovitch, T., Romero, G. Q. & González, A. L. (2021). Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis. Biological Reviews 96, 2617-2637.

*Newbold, J. D., Elwood, J. W., Schulze, M., Stark, R. W. & Barmeier, J. C. (1983). Continuous ammonium enrichment of a woodland stream: uptake kinetics, leaf decomposition, and nitrification. Freshwater Biology 13, 193-204.

*Niyogi, D. K., Lewis, W. M. Jr. & McKnight, D. M. (2001). Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecological Applications 11(2), 506-516.

*Oliveira, V. C., Gonçalves, E. A. & Alves, R. G. (2014). Colonisation of leaf litter by aquatic invertebrates in an Atlantic Forest stream. Brazilian Journal of Biology 74, 267-273.

Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2), 322-331.

Ostrofsky, M. (1997). Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16(4), 750-759.

*Pascoal, C., Cássio, F. & Gomes, P. (2001). Leaf breakdown rates: a measure of water quality? International Review of Hydrobiology 86(4-5), 407-416.

*Pascoal, C., Cássio, F., Marcotegui, A., Sanz, B. & Gomes, P. (2005). Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. Journal of the North American Benthological Society 24(4), 784-797.

Patoine, G., Thakur, M. P., Friese, J., Nock, C., Hönig, L., Haase, J., Scherer-Lorenzen, M. & Eisenhauer, N. (2017). Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia 65, 29-42.

*Paul, M. J., Meyer, J. L. & Couch, C. A. (2006). Leaf breakdown in streams differing in catchment land use. Freshwater Biology 51(9), 1684-1695.

Peguero, G., Sardans, J., Asensio, D., Fernández-Martínez, M., Gargallo-Garriga, A., Grau, O., Llusià, J., Margalef, O., Márquez, L. & Ogaya, R. (2019). Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests. Proceedings of the Royal Society B 286(1910), 20191300.

*Pereira, A., Trabulo, J., Fernandes, I., Pascoal, C., Cássio, F. & Duarte, S. (2017). Spring stimulates leaf decomposition in moderately eutrophic streams. Aquatic Sciences 79(1), 197-207.

*Pereira, A. M. N. (2011). Effects of plant-litter quality on litter decomposition by benthic invertebrates along a gradient of eutrophication. Universidade do Minho (Portugal).

*Pérez, J., Basaguren, A., Descals, E., Larrañaga, A. & Pozo, J. (2013). Leaf-litter processing in headwater streams of northern Iberian Peninsula: moderate levels of eutrophication do not explain breakdown rates. Hydrobiologia 718(1), 41-57.

Pettit, N. E., Davies, T., Fellman, J. B., Grierson, P. F., Warfe, D. M. & Davies, P. M. (2012). Leaf litter chemistry, decomposition and assimilation by macroinvertebrates in two tropical streams. Hydrobiologia 680(1), 63-77.

*Pidgeon, R. & Cairns, S. (1981). Decomposition and colonisation by invertebrates of native and exotic leaf material in a small stream in New England (Australia). Hydrobiologia 77(2), 113-127.

*Pozo, J., Basaguren, A., Elosegui, A., Molinero, J., Fabre, E. & Chauvet, E. (1998). Afforestation with Eucalyptus globulus and leaf litter decomposition in streams of northern Spain. Hydrobiologia 373, 101-110.

Ramos, S. M., Graça, M. A. S. & Ferreira, V. (2021). A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquatic Ecology 55(3), 925-940.

*Ramseyer, U. & Marchese Garello, M. R. (2009). Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the middle Paraná River. Limnetica 28(1), 1-10.

Raposeiro, P. M., Ferreira, V., Gea, G. & Gonçalves, V. (2018). Contribution of aquatic shredders to leaf litter decomposition in Atlantic Island streams depends on shredder density and litter quality. Marine and Freshwater Research 69(9), 1432-1439.

*Richardson, J. S., Shaughnessy, C. R. & Harrison, P. G. (2004). Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream. Archiv für Hydrobiologie 159(3), 309-326.

*Rincón, J. & Santelloco, R. (2009). Aquatic fungi associated with decomposing Ficus sp. leaf litter in a neotropical stream. Journal of the North American Benthological Society 28(2), 416-425.

*Robinson, C. & Jolidon, C. (2005). Leaf breakdown and the ecosystem functioning of alpine streams. Journal of the North American Benthological Society 24(3), 495-507.

*Robinson, C. T. & Gessner, M. O. (2000). Nutrient addition accelerates leaf breakdown in an alpine Springbrook. Oecologia 122(2), 258-263.

Rodrigues, A. P. & Graça, M. A. S. (1997). Enzymatic analysis of leaf decomposition in fresh-water by selected aquatic hyphomycetes and terrestrial fungi. Sydowia 49, 160-173.

*Roon, D. A., Wipfli, M. S. & Wurtz, T. L. (2014). Effects of invasive European bird cherry (Prunus padus) on leaf litter processing by aquatic invertebrate shredder communities in urban Alaskan streams. Hydrobiologia 736(1), 17-30.

*Rothenbuecher, C. (2016). Effects of stream degradation on ecosystem function are mediated by local microbial and macroinvertebrate leaf litter processing. Murray State University (Kentucky).

*Rueda-Delgado, G., Wantzen, K. M. & Tolosa, M. B. (2006). Leaf-litter decomposition in an Amazonian floodplain stream: effects of seasonal hydrological changes. Journal of the North American Benthological Society 25(1), 233-249.

Sales, M. A., Gonçalves, J. F. Jr., Dahora, J. S. & Medeiros, A. O. (2015). Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microbial Ecology 69(1), 84-94.

*Sanpera-Calbet, I., Lecerf, A. & Chauvet, E. (2009). Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshwater Biology 54(8), 1671-1682.

*Schindler, M. H. & Gessner, M. O. (2009). Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90(6), 1641-1649.

*Schlief, J. & Mutz, M. (2009). Effect of sudden flow reduction on the decomposition of alder leaves (Alnus glutinosa [L.] Gaertn.) in a temperate lowland stream: a mesocosm study. Hydrobiologia 624(1), 205-217.

*Schwarz, A. & Schwoerbel, J. (1997). The aquatic processing of sclerophyllous and malacophyllous leaves on a Mediterranean Island (Corsica): spatial and temporal pattern. International Journal of Limnology 33(2), 107-119.

Shi, Z., Li, K., Zhu, X. & Wang, F. (2020). The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology 43, 100877.

*Short, R. A., Canton, S. P. & Ward, J. V. (1980). Detrital processing and associated macroinvertebrates in a Colorado mountain stream. Ecology 61(4), 727-732.

*Sponseller, R. & Benfield, E. (2001). Influences of land use on leaf breakdown in southern Appalachian headwater streams: a multiple-scale analysis. Journal of the North American Benthological Society 20(1), 44-59.

Swan, C. M., Boyero, L. & Canhoto, C. (2021). The ecology of plant litter decomposition in stream ecosystems: an overview. In The Ecology of Plant Litter Decomposition in Stream Ecosystems (eds C. M. Swan, L. Boyero and C. Canhoto), pp. 3-5. Springer, Cham.

*Swan, C. M., Healey, B. & Richardson, D. C. (2008). The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience 15(1), 27-35.

Swan, C. M. & Palmer, M. A. (2006). Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia 147(3), 469-478.

Swift, M., Heal, O. & Anderson, J. (1979). Decomposition in Terrestial Ecosystems. University of California Press, Berkely.

*Tate, C. M. & Gurtz, M. E. (1986). Comparison of mass loss, nutrients, and invertebrates associated with elm leaf litter decomposition in perennial and intermittent reaches of tallgrass prairie streams. The Southwestern Naturalist 31(4), 511-520.

Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353(6294), 72-74.

Tiegs, S. D., Costello, D. M., Isken, M. W., Woodward, G., McIntyre, P. B., Gessner, M. O., Chauvet, E., Griffiths, N. A., Flecker, A. S., Acuña, V., Albariño, R., Allen, D. C., Alonso, C., Andino, P., Arango, C., et al. (2019). Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science. Advances 5(1), eaav0486.

*Tiegs, S. D., Peter, F. D., Robinson, C. T., Uehlinger, U. & Gessner, M. O. (2008). Leaf decomposition and invertebrate colonization responses to manipulated litter quantity in streams. Journal of the North American Benthological Society 27(2), 321-331.

*Tillman, D. C., Moerke, A. H., Ziehl, C. L. & Lamberti, G. A. (2003). Subsurface hydrology and degree of burial affect mass loss and invertebrate colonisation of leaves in a woodland stream. Freshwater Biology 48(1), 98-107.

*Tong, X., Yan, L., Zhao, Y., Lin, C., Han, C., Liu, R. & Liu, L. (2006). The breakdown of leaf litter in a stream impacted by acid mine drainage. Acta Ecologica Sinica 26(12), 4033-4038.

*Tonin, A. M., Restello, R. M. & Hepp, L. U. (2014). Chemical change of leaves during breakdown affects associated invertebrates in a subtropical stream. Acta Limnologica Brasiliensia 26(3), 235-244.

*Tornwall, B. M. & Creed, R. P. (2016). Shifts in shredder communities and leaf breakdown along a disrupted stream continuum. Freshwater Science 35(4), 1312-1320.

*Tuchman, N. C., Wahtera, K. A., Wetzel, R. G. & Teeri, J. A. (2003). Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495(1), 203-211.

*Uieda, V. & Carvalho, E. (2015). Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream. Brazilian Journal of Biology 75, 405-413.

*Ulloa, E., Anderson, C. B., Ardón, M., Murcia, S. & Valenzuela, A. E. (2012). Organic matter characterization and decomposition dynamics in sub-Antarctic streams impacted by invasive beavers. Latin American Journal of Aquatic Research 40(4), 881-892.

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37(1), 130-137.

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36(3), 1-48.

*Vought, L. M., Kullberg, A. & Petersen, R. C. (1998). Effect of riparian structure, temperature and channel morphometry on detritus processing in channelized and natural woodland streams in southern Sweden. Aquatic Conservation: Marine and Freshwater Ecosystems 8(2), 273-285.

Wallace, J. B., Eggert, S., Meyer, J. L. & Webster, J. (1999). Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69(4), 409-442.

Wallace, J. B., Eggert, S. L., Meyer, J. L. & Webster, J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277(5322), 102-104.

*Wallace, J. B., Webster, J. R. & Cuffney, T. F. (1982). Stream detritus dynamics: regulation by invertebrate consumers. Oecologia 53(2), 197-200.

*Walpola, H., Leichtfried, M., Amarasinghe, M. & Füreder, L. (2011). Leaf litter decomposition of three riparian tree species and associated macroinvertebrates of Eswathu Oya, a low order tropical stream in Sri Lanka. International Review of Hydrobiology 96(1), 90-104.

Wang, F., Lin, D., Li, W., Dou, P., Han, L., Huang, M., Qian, S. & Yao, J. (2020). Meiofauna promotes litter decomposition in stream ecosystems depending on leaf species. Ecology and Evolution 10(17), 9257-9270.

*Wang, L., Yang, H. J., Li, L., Nan, X. F., Zhang, Z. X. & Li, K. (2017). Relationship between leaf litter decomposition and colonization of benthic macroinvertebrates during early frost period in a headwater stream in the Changbai Mountains, Northeast China. Chinese Journal of Applied Ecology 28(11), 3775-3783.

*Whiles, M. R. & Wallace, J. B. (1997). Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments. Hydrobiologia 353(1), 107-119.

*Wright, M. S. & Covich, A. P. (2005). The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream. Biotropica 37(3), 403-408.

*Yan, L., Zhao, Y., Han, C. & Tong, X. (2007). Litter decomposition and associated macro-invertebrate functional feeding groups in a third-order stream of northern Guangdong. Chinese Journal of Applied Ecology 18(11), 2573-2579.

Yue, K., García-Palacios, P., Parsons, S. A., Yang, W., Peng, Y., Tan, B., Huang, C. & Wu, F. (2018). Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest. Functional Ecology 32(10), 2464-2475.

Zhang, M., Cheng, X., Geng, Q., Shi, Z., Luo, Y. & Xu, X. (2019). Leaf litter traits predominantly control litter decomposition in streams worldwide. Global Ecology and Biogeography 28(10), 1469-1486.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...