From Western Asia to the Mediterranean Basin: Diversification of the Widespread Euphorbia nicaeensis Alliance (Euphorbiaceae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35812903
PubMed Central
PMC9262032
DOI
10.3389/fpls.2022.815379
Knihovny.cz E-zdroje
- Klíčová slova
- Eurasian steppes, Irano-Turanian region, Mediterranean Basin, RAD sequencing, morphometry, phylogeny, polyploidy, taxonomy,
- Publikační typ
- časopisecké články MeSH
The Mediterranean Basin is an important biodiversity hotspot and one of the richest areas in the world in terms of plant diversity. Its flora parallels in several aspects that of the Eurasian steppes and the adjacent Irano-Turanian floristic region. The Euphorbia nicaeensis alliance spans this immense area from the western Mediterranean to Central Asia. Using an array of complementary methods, ranging from phylogenomic and phylogenetic data through relative genome size (RGS) estimation to morphometry, we explored relationships and biogeographic connections among taxa of this group. We identified the main evolutionary lineages, which mostly correspond to described taxa. However, despite the use of highly resolving Restriction Site Associated DNA (RAD) sequencing data, relationships among the main lineages remain ambiguous. This is likely due to hybridisation, lineage sorting triggered by rapid range expansion, and polyploidisation. The phylogenomic data identified cryptic diversity in the Mediterranean, which is also correlated with RGS and, partly, also, morphological divergence, rendering the description of a new species necessary. Biogeographic analyses suggest that Western Asia is the source area for the colonisation of the Mediterranean by this plant group and highlight the important contribution of the Irano-Turanian region to the high diversity in the Mediterranean Basin. The diversification of the E. nicaeensis alliance in the Mediterranean was triggered by vicariance in isolated Pleistocene refugia, morphological adaptation to divergent ecological conditions, and, to a lesser extent, by polyploidisation.
Department of Biology Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Department of Botany University of Innsbruck Innsbruck Austria
Institute of Botany of the Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Abràmoff M. D., Magalhães P. J., Ram S. J. (2004). Image processing with image. J. Biophotonics 11 36–41.
Barina Z. (2017). Distribution Atlas of Vascular Plants in Albania. Budapest: Hungarian Natural History Museum.
Beck-Mannagetta G. (1920). Flora Bosne, Hercegovine i bivšeg Sandžaka Novog Pazara 2. Glas. Zem. Muz. Bosne Herceg. 32 395–410.
Bilton D. T., Mirol P. M., Mascheretti S., Fredga K., Zima J., Searle J. B. (1998). Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. Royal Soc. B Biol. Sci. 265:1402. 10.1098/rspb.1998.0423 PubMed DOI PMC
Blondel J., Aronson J. (1999). Biology and Wildlife of the Mediterranean Region. New York, NY: Oxford University Press.
Blondel J., Aronson J., Bodiou J.-Y., Boeuf G. (2010). The Mediterranean Basin – Biological Diversity in Space and Time. Oxford: Oxford University Press.
Boissier P. (1867). Flora Orientalis. Geneva: Basel: H. Georg.
Bouckaert R. R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10:e1003537. 10.1371/journal.pcbi.1003537 PubMed DOI PMC
Bryant D., Bouckaert R. R., Felsenstein J., Rosenberg N. A., Choudhury R. A. (2012). Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29 1917–1932. 10.1093/molbev/mss086 PubMed DOI PMC
Bucci G., Gonzalez-Martinez S. C., Le Provost G., Plomion C., Ribeiro M. M., Sebastiani F., et al. (2007). Range-wide phylogeography and gene zones in Pinus pinaster Ait. Revealed by chloroplast microsatellite markers. Mol. Ecol. 16:10. 10.1111/j.1365-294X.2007.03275.x PubMed DOI
Cai L., Xi Z., Moriarty Lemmon E., Lemmon A. R., Mast A., Buddenhagen C. E., et al. (2021). The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient Angiosperm clade. Malpighiales. Syst. Biol. 70 491–507. 10.1093/sysbio/syaa083 PubMed DOI
Caković D., Cresti L., Stešević D., Schönswetter P., Frajman B. (2021). High genetic and morphological diversification of the Euphorbia verrucosa alliance (Euphorbiaceae) in the Balkan and Iberian peninsulas. Taxon 70 286–307. 10.1002/tax.12427 DOI
Catchen J. M., Amores A., Hohenlohe P., Cresko W., Postlethwait J. H. (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3 1 171–182. 10.1534/g3.111.000240 PubMed DOI PMC
Catchen J. M., Hohenlohe P., Bassham S., Amores A., Cresko W. (2013). Stacks: an analysis tool set for population genomics. Mol. Ecol. 22 3124–3140. 10.1111/mec.12354 PubMed DOI PMC
Chariat-Panahi M. S., Lessani H., Cartier D. (1982). Etude caryologique de quelques espc̀ces de la flore l’Iran. Rev. Cytol. Biol. Veg. Bot. 5 189–197.
Coupland R. T. (1993). “Overview of the grasslands of Europa and Asia,” in Ecosystems of the world: Eastern Hemisphere and résumé, Vol. 8B ed. Coupland R. T. (Amsterdam: Elsevier; ), 1–2.
Cresti L., Schönswetter P., Peruzzi L., Barfuss M. H. J., Frajman B. (2019). Pleistocene survival in three Mediterranean refugia: origin and diversification of the Italian endemic Euphorbia gasparrinii from the E. verrucosa alliance (Euphorbiaceae). Bot. J. Linn. Soc. 189 262–280. 10.1093/botlinnean/boy082 DOI
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. (2011). The variant call format and VCFtools. Bioinformatics 27 2156–2158. 10.1093/bioinformatics/btr330 PubMed DOI PMC
Davis P. H. (1971). “Distribution patterns in Anatolia with particular reference to endemism,” in In Plant Life of South-West Asia, ed. Davis P. H. (Edinburgh: Royal Botanic Garden; ), 15–27.
Davis P. H., Hedge I. C. (1975). The flora of Turkey: past, present and future. Candollea 30 331–351.
Drummond A. J., Rambaut A. (2007). BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214. PubMed PMC
Du Pasquier P.-E., Jeanmonod D., Naciri Y. (2017). Morphological convergence in the recently diversified Silene gigantea complex (Caryophyllaceae) in the Balkan Peninsula and south-western Turkey, with the description of a new subspecies. Bot. J. Linn. Soc. 183 474–493.
Ðurović S., Schönswetter P., Niketić M., Tomović G., Frajman B. (2017). Disentangling relationships among the members of the Silene saxifraga alliance (Caryophyllaceae): phylogenetic structure is geographically rather than taxonomically segregated. Taxon 66 343–364.
Falch M., Schönswetter P., Frajman B. (2019). Both vicariance and dispersal have shaped the genetic structure of Eastern Mediterranean Euphorbia myrsinites (Euphorbiaceae). Perspect. Plant Ecol. Evol. Syst. 39:125459. 10.1016/j.ppees.2019.125459 DOI
Fasihi J., Zarre S., Azani N., Salmaki Y. (2016). Karyotype analysis and new chromosome numbers of some species of Euphorbia L. (Euphorbiaceae) in Iran. Iran. J. Bot. 22 65–71.
Fenu G., Bacchetta G., Bernardo L., Calvia G., Citterio S., Foggi B., et al. (2016). Global and regional IUCN red list assessments: 2. Ital. Bot. 2 93–115. 10.3897/italianbotanist.2.10975 DOI
Font Garcia J., Vilar Sais L., Villar Pérez L., Castroviejo S., Vargas P., Frost-Olsen P., et al. (1997). Notulae taxinomicae, chorologicae, nomenclaturales, bibliographicae aut philologicae in opus “Flora iberica” intendentes. Anales Jardín Bot. Madrid 55 189–200.
Frajman B., Oxelman B. (2007). Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 43 140–155. 10.1016/j.ympev.2006.11.003 PubMed DOI
Frajman B., Schönswetter P. (2011). Giants and dwarfs: molecular phylogenies reveal multiple origins of annual spurges within Euphorbia subg. Esula. Mol. Phylogenet. Evol 61 413–424. 10.1016/j.ympev.2011.06.011 PubMed DOI
Frajman B., Schönswetter P. (2017). Amphi-adriatic distributions in plants revisited: pleistocene trans-Adriatic dispersal in the Euphorbia barrelieri group (Euphorbiaceae). Bot. J. Linn. Soc. 185 240–252.
Frajman B., Záveská E., Gamisch A., Moser T., The Steppe Consortium. Schönswetter P. (2019). Integrating phylogenomics, phylogenetics, morphometrics, relative genome size and ecological niche modelling disentangles the diversification of Eurasian Euphorbia segueriana s. l. (Euphorbiaceae). Mol. Phylogenet. Evol. 134 238–252. 10.1016/j.ympev.2018.10.046 PubMed DOI
Gehrke B., Kandziora M., Pirie M. D. (2016). The evolution of dwarf shrubs in alpine environments: a case study of Alchemilla in Africa. Ann Bot. 117 121–131. 10.1093/aob/mcv159 PubMed DOI PMC
Geltman D. V. (2006). Lectotypificatio nominum specierum et taxorum intraspecificorum nonnullorum in genere Euphorbia L. (Euphorbiaceae). Novosti Sist. Vyssh. Rast. 38 162–164.
Geltman D. V. (2009). Spurges (Euphorbia L., Euphorbiaceae) of the boreal Eurasia. I. Section Paralias Dumort [In Russian with English summary]. Novosti Sist. Vyssh. Rast. 41 166–191.
Geltman D. V. (2015). Typification of some specific and infraspecific names in Euphorbia (Euphorbiaceae). Novosti Sist. Vyssh. Rast. 46 126–133.
Geltman D. V. (2020). A synopsis of Euphorbia (Euphobiaceae) for the Caucasus. Novosti Sist. Vyssh. Rast. 51 43–78.
Genç I., Kültür Ş. (2020). Karyological analysis of twelve Euphorbiaspecies from Turkey. Caryologia 73 13–19.
Govaerts R., Frodin D. G., Radcliffe-Smith A. (2000). Checklist and bibliography of Euphorbiaceae 2. Kew: Royal Botanic Gardens.
Greilhuber J., Ebert I. (1994). Genome size variation in Pisum sativum. Genome 37 646–655. 10.1139/g94-092 PubMed DOI
Greuter W. (1991). Botanical diversity, endemism, rarity and extinction in the Mediterranean area: an analysis based on the published volumes of Med - Checklist. Bot. Chron. 10 63–79.
Greuter W., Burdet H. M., Long G. (1986). Med-Checklist 3. Geneve: Med-Checklist trust of OPTIMA.
Hamasha H. N., von Hagen B., Röser M. (2012). Stipa (Poaceae) and allies in the Old World: molecular phylogenetics realigns genus circumscription and gives evidence on the origin of American and Australian lineages. Plant Syst. Evol. 298 351–367.
Hayek A. (1924). Prodromus florae peninsulae Balcanicae. Repert. Spec. Nov. Regni Veg. 30 1–160.
Hedge I. C., Wendelbo P. (1978). Patterns of distribution and endemism in Iran. Notes R. Bot. Gard. Edinb. 36 441–464.
Hegi G. (1966). Illustrierte Flora von Mitteleuropa 5.1: Linaceae-Violaceae. 2. Hamburg: Paul Parey Verlag.
Hewitt G. M. (1999). Postglacial re-colonisation of European biota. Biol. J. Linn. Soc. 68 87–112. 10.1186/1471-2148-11-215 PubMed DOI PMC
Hewitt G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature 405 907–913. 10.1038/35016000 PubMed DOI
Hewitt G. M. (2011). “Mediterranean peninsulas: the evolution of hotspots,” in Biodiversity Hotspots, eds Zachos F. E., Habel J. C. (Berlin: Springer; ), 123–147.
Hilpold A., Vilatersana R., Susanna A., Meseguer A. S., Boršić I., Constantinidis T., et al. (2014). Phylogeny of the Centaurea group (Centaurea, Compositae) – Geography is a better predictor than morphology. Molec. Phylogen. Evol. 77 195–215. 10.1016/j.ympev.2014.04.022 PubMed DOI
Horn J. W., Xi Z., Riina R., Peirson J. A., Yang Y., Dorsey B. L., et al. (2014). Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68 3485–3504. 10.1111/evo.12534 PubMed DOI
Hühn P., Dillenberger M. S., Gerschwitz-Eidt M., Hörandl E., Los J. A., Messerschmid T. F. E., et al. (2022). How challenging RADseq data turned out to favor coalescent-based species tree inference, a case study in Aichryson (Crassulaceae). Mol. Phylogenet. Evol. 167:107342. 10.1016/j.ympev.2021.107342 PubMed DOI
Huson D. H., Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23 254–267. 10.1093/molbev/msj030 PubMed DOI
Janković M., Nikolić V. (1972). “Euphorbia L,” in Flore de la Republique Socialiste de Serbie 3, ed. Josifović M. (Beograd: Srpska Akademija nauka i umetnosti; ), 538–567.
Khan M. S. (1964). Taxonomic revision of Euphorbia in Turkey. Notes Royal Bot. Gard. Edinburgh 25 71–161.
Kirschner P., Záveská E., Gamisch A., Hilpold A., Trucchi E., Paun O., et al. (2020). Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11:1968. 10.1038/s41467-020-15620-2 PubMed DOI PMC
Koch M. A., Möbus J., Klöcker C. A., Lippert S., Ruppert L., Kiefer C. (2020). The Quaternary evolutionary history of Bristol rock cress (Arabis scabra, Brassicaceae), a Mediterranean element with an outpost in the north-western Atlantic region. Ann. Bot. 126:1. 10.1093/aob/mcaa053 PubMed DOI PMC
Körner C. (2012). Alpine Treelines. New York, NY: Springer.
Krijgsman W. (2002). The Mediterranean: mare Nostrum of the earth sciences. Earth Planet. Sci. Lett. 205 1–12.
Kuzmanov B. (1979). “Euphorbia,” in Flora Reipublicae popularis Bulgaricae 7, ed. Kuzmanov B. (Sofia: Academia scientiarum Bulgaricae; ), 118–177.
Kuzmanov B. A. (1963). Taksonomično proučavanje na vidovite ot rod Euphorbia L., rasprostraneni v Balgarija. Bull. Inst. Botan. Sofia 12 101–186.
Lal R. (2004). Carbon sequestration in soils of Central Asia. Land Degrad. Dev. 15 563–572.
Landis M., Matzke N., Mooer B., Huelsenbeck J. (2013). Bayesian analysis of biogeography when the number of area is large. Syst. Biol. 62 789–804. 10.1093/sysbio/syt040 PubMed DOI PMC
Larcher W., Kainmüller C., Wagner J. (2010). Survival types of high mountain plants under extreme temperatures. Flora 205 3–18.
Lavrenko E. M., Karamysheva Z. V. (1993). “Steppes of the former Soviet Union and Mongolia,” in Ecosystems of the world 8B: natural grasslands: Eastern Hemisphere and résumé, ed. Coupland R. T. (Amsterdam: Elsevier; ), 3–59.
Leaché A. D., Banbury B. L., Felsenstein J., De Oca A. N. M., Stamatakis A. (2015). Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64 1032–1047. 10.1093/sysbio/syv053 PubMed DOI PMC
Lemmon E. M., Lemmon A. R. (2013). High-throughput genomic data in systematics and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44 99–121. 10.1146/annurev-ecolsys-110512-135822 DOI
Lessani H., Chariat-Panahi S. (1979). In IOPB chromosome number reports LXV. Taxon 28 635–636.
Löve A. (1978). IOPB Chromosome Number Reports LXII. Taxon 27 519–535.
Magri D., Fineschi S., Bellarosa R., Buonamici A., Sebastiani F., Schirone B., et al. (2007). The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol. Ecol. 16:24. 10.1111/j.1365-294X.2007.03587.x PubMed DOI
Mahmoudi Shamsabad M., Moharrek F., Assadi M., Nieto Feliner G. (2021). Biogeographic history and diversification patterns in the Irano-Turanian genus Acanthophyllum s.l. (Caryophyllaceae). Plant Biosyst. 155 425–435.
Manafzadeh S., Salvo G., Conti E. (2014). A tale of migrations from east to west: the Irano-Turanian floristic region as a source of Mediterranean xerophytes. J. Biogeogr. 41 366–379.
Manafzadeh S., Staedler Y. M., Conti E. (2017). Visions of the past and dreams of the future in the Orient: the Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. 92 1365–1388. 10.1111/brv.12287 PubMed DOI
Mansion G., Selvi F., Guggisberg A., Conti E., Vegetale B. (2009). Origin of Mediterranean insular endemics in the Boraginales: integrative evidence from molecular dating and ancestral area reconstruction. J. Biogeogr. 36 1282–1296.
Matzke N. J. (2013). Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5:242–248. 10.21425/F5FBG19694 DOI
McCormack J. E., Hird S. M., Zellmer A. J., Carstens B. C., Brumfield R. T. (2013). Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 66, 526–538. 10.1016/j.ympev.2011.12.007 PubMed DOI
Micevski K. (1998). Flora na Republika Makedonija (The flora of the Republic of Macedonia). Skopje: Macedonian Academy of Sciences and Arts.
Myers N., Mittermeier R. A., Mittermeier C. G., de Fonseca G. A. B., Kent J. (2000). Biodiversity hotspots for conservation priorities. Nature 403 853–858. PubMed
Nieto Feliner G. (2014). Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspect. Plant Ecol. Evol. Syst. 16 265–278.
Noroozi J., Zare G., Sherafati M., Mahmoodi M., Moser D., Asgarpour Z., et al. (2019). Patterns of endemism in Turkey, the meeting point of three global biodiversity hotspots, based on three diverse families of vascular plants. Front. Ecol. Evol. 7:159. 10.3389/fevo.2019.00159 DOI
Noss R. F. (2012). Forgotten Grasslands of the South: Natural History and Conservation. Washington, DC: Island Press.
Nylander J. A. A. (2004). MrAIC. pl. 1.4. 3. Program Distributed by the Author.
Ortiz E. M. (2019). vcf2phylip v2.0: Convert a VCF Matrix Into Several Matrix Formats for Phylogenetic Analysis. 10.5281/zenodo.2540861 DOI
Pattengale N. D., Alipour M., Bininda-Emonds O. R., Moret B. M., Stamatakis A. (2010). How many bootstrap replicates are necessary? J. Comput. Biol. 17 337–354. 10.1089/cmb.2009.0179 PubMed DOI
Paun O., Turner B., Trucchi E., Munzinger J., Chase M. W., Samuel R. (2015). Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 65 212–227. 10.1093/sysbio/syv076 PubMed DOI PMC
Peart B. (2008). Life in a Working Landscape: Towards a Conservation Strategy for The World’s Temperate Grasslands: Compendium of Regional Templates on the Status of Temperate Grasslands. Conservation and Protection. Vancouver, BC: IUCN/WCPA.
Peel M. C., Finlayson B. L., McMahon T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11 1633–1644. 10.5194/hess-11-1633-2007 DOI
Pellicer J., Hidalgo O., Dodsworth S., Leitch I. J. (2018). Genome size diversity and its impact on the evolution of land plants. Genes 9:88. 10.3390/genes9020088 PubMed DOI PMC
Perry B. A. (1943). Chromosome numbers and phylogenetic relationships in the Euphorbiaceae. Am. J. Bot. 30 527–543.
Petit R. J., Aguinagalde I., De Beaulieu J. L., Bittkau C., Brewer S., Cheddadi R., et al. (2003). Glacial Refugia: hotspots but not melting pots of genetic diversity. Science 300 1563–1565. 10.1126/science.1083264 PubMed DOI
Piegu B., Guyot R., Picault N., Roulin A., Saniyal A., Kim H., et al. (2006). Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 16 1262–1269. 10.1101/gr.5290206 PubMed DOI PMC
Poldini L. (1969). Kritische Bemerkungen über die Euphorbia saxatilis-triflora-kerneri Verwandschaft. Acta Bot. Croat. 28 317–328. PubMed
Prokhanov Y. I. (1949). “Genus 856. Euphorbia L,” in Flora SSSR, eds Shishkin B. K., Bobrov E. G. (Moskva-Leningrad: Akademii Nauk SSSR; ), 233–378.
Quézel P. (1985). “Definition of the Mediterranean region and the origin of its flora,” in Plant Conservation in the Mediterranean Area, ed. Gomez-Campo C. (Dordrecht: W. Junk; ), 9–24.
Radcliffe-Smith A. (1982). “Euphorbia L,” in Flora of Turkey, Vol. 7 ed. Davis P. H. (Edinburgh: Edinburgh University Press; ), 571–630.
Radcliffe-Smith A., Tutin T. G. (1968). “Euphorbia L,” in Flora Europaea 2, eds Tutin T. G., Heywood V. H., Moore D. M., Valentine D. H., Walters S. M., Webb D. A. (Cambridge: Cambridge University Press; ), 213–226.
Raj A., Stephens M., Pritchard J. K. (2014). fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197 573–589. 10.1534/genetics.114.164350 PubMed DOI PMC
Rambaut A., Suchard M. A., Xie D., Drummond A. J. (2014). Tracer v1.6. Available online at: http://beast.bio.ed.ac.uk/tracer (accessed October 12, 2021).
Ree R. K., Sanmartin I. (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749. 10.1111/jbi.13173 DOI
Ree R. H., Moore B. R., Webb C. O., Donoghue M. J. (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59 2299–2311. 10.1111/j.0014-3820.2005.tb00940.x PubMed DOI
Ree R. H., Smith S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57 4–14. 10.1080/10635150701883881 PubMed DOI
Rice A., Glick L., Abadi S., Einhorn M., Kopelman N. M., Salman-Minkov A., et al. (2015). The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 206 19–26. 10.1111/nph.13191 PubMed DOI
Riina R., Peirson J. A., Geltman D. V., Molero J., Frajman B., Pahlevani A., et al. (2013). A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae). Taxon 62 316–342.
Ronquist F. (1996). DIVA ver. 1.1. Computer Manual. Uppsala: Uppsala University.
Ronquist F. (1997). Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46 195–203. 10.1093/sysbio/46.1.195 DOI
Ronquist F., Teslenko M., Van Der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Roquet C., Sanmartín I., Garcia-Jacas N., Sáez L., Susanna A., Wikström N., et al. (2009). Reconstructing the history of Campanulaceae with a Bayesian approach to molecular dating and dispersal-vicariance analyses. Mol. Phylogenet. Evol. 52 575–587. 10.1016/j.ympev.2009.05.014 PubMed DOI
Rose J. P., Toledo C. A. P., Moriarty Lemmon E., Lemmon A. R., Sytsma K. J. (2021). Out of sight, out of mind: widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst. Biol. 70 162–180. 10.1093/sysbio/syaa049 PubMed DOI
RStudio Team (2019). RStudio: Integrated Development for R. Boston, MA: RStudio Inc. Available online: http://www.rstudio.com/ (accessed April 20, 2021).
Schönswetter P., Suda J., Popp M., Weiss-Schneeweiss H., Brochmann C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol. 42 92–103. 10.1016/j.ympev.2006.06.016 PubMed DOI
Ståhls G., Vujić A., Petanidou T., Cardoso P., Radenković S., Ačanski J., et al. (2016). Phylogeographic patterns of Merodon hoverflies in the Eastern Mediterranean region: revealing connections and barriers. Ecol. Evol. 6 2226–2245. 10.1002/ece3.2021 PubMed DOI PMC
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Stange M., Sánchez-Villagra M. R., Salzburger W., Matschiner M. (2018). Bayesian divergence-time estimation with genome-wide single-nucleotide polymorphism data of sea catfishes (Ariidae) supports Miocene closure of the Panamanian Isthmus. Syst. Biol. 67 681–699. 10.1093/sysbio/syy006 PubMed DOI PMC
Stevanoski I., Kuzmanović N., Dolenc Koce J., Schönswetter P., Frajman B. (2020). Disentangling relationships between amphi-Adriatic Euphorbia spinosa and Balkan endemic E. glabriflora (Euphorbiaceae). Bot. J. Linn. Soc. 194 358–374. 10.1093/botlinnean/boaa032 DOI
Suda J., Trávníček P. (2006). Estimation of relative nuclear DNA content in dehydrated plant tissues by flow cytometry. Curr. Protoc. Cytom. Chapter 7:Unit7.30. 10.1002/0471142956.cy0730s38 PubMed DOI
Swofford D. L. (2002). Phylogenetic Analysis Using Parsimony. Sunderland, MA: Sinauer Associate.
Takhtajan A. (1986). Floristic Regions of the World. Berkeley, CA: University of California Press.
Tenore M. (1830). Flora Napolitana 2. Napoli: Stamperia Francese.
Thompson J. D. (2005). Plant Evolution in the Mediterranean. Oxford: Oxford University Press.
Trinajstić I. (2007). Nomenklaturno-taksonomska i korološka razmatranja o vrsti Euphorbia hercegovina G. Beck. Hrvatska Misao (Sarajevo) 30 82–88.
Vilatersana R., Bernal M. (1992). Mediterranean chromosome number reports – 2. Flora Mediterr. 2 249–255.
Wagner N. D., He L., Hörandl E. (2020). Phylogenomic relationships and evolution of polyploid Salix species revealed by RAD sequencing data. Front. Plant Sci. 11:1077. 10.3389/fpls.2020.01077 PubMed DOI PMC
Ware S. (1990). Adaptation to substrate – and lack of it – in rock outcrop plants: sedum and Arenaria. Amer. J. Bot. 77:8. 10.2307/2444581 DOI
Wesche K., Ambarlý D., Kamp J., Török P., Treiber J., Dengler J. (2016). The Palearctic steppe biome: a new synthesis. Biodivers. Conserv. 25 2197–2231.
Wilson J. B., Peet R. K., Dengler J., Pärtel M. (2012). Plant species richness: the world records. J. Veg. Sci. 23 796–802.
Záveská E., Maylandt C., Paun O., Bertel C., Frajman B. The Steppe Consortium et al. (2019). Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. 139:106572. 10.1016/j.ympev.2019.106572 PubMed DOI
Zohary M. (1973). Geobotanical Foundations of the Middle East (Volume I and II). Amsterdam: Gustav Fischer Verlag, Stuttgart and Swets & Zeitlinger.