FBXO38 Ubiquitin Ligase Controls Centromere Integrity via ZXDA/B Stability
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
35813202
PubMed Central
PMC9260856
DOI
10.3389/fcell.2022.929288
PII: 929288
Knihovny.cz E-resources
- Keywords
- centromere, cullin, proteasome, protein degradation, ubiquitin ligase, zinc finger protein,
- Publication type
- Journal Article MeSH
Alterations in the gene encoding the E3 ubiquitin ligase substrate receptor FBXO38 have been associated with several diseases, including early-onset motor neuronopathy. However, the cellular processes affected by the enzymatic action of FBXO38 are not yet known. Here, we identify the zinc finger proteins ZXDA/B as its interaction partners. FBXO38 controls the stability of ZXDA/B proteins via ubiquitination and proteasome-dependent degradation. We show that ZXDA/B proteins associate with the centromeric protein CENP-B and that the interaction between ZXDA/B and FBXO38 or CENP-B is mutually exclusive. Functionally, ZXDA/B factors control the protein level of chromatin-associated CENP-B. Furthermore, their inappropriate stabilization leads to upregulation of CENP-A and CENP-B positive centromeric chromatin. Thus we demonstrate a previously unknown role of cullin-dependent protein degradation in the control of centromeric chromatin integrity.
See more in PubMed
Akçimen F., Vural A., Durmuş H., Çakar A., Houlden H., Parman Y. G., et al. (2019). A Novel Homozygous FBXO38 Variant Causes an Early-Onset Distal Hereditary Motor Neuronopathy Type IID. J. Hum. Genet. 64 (11), 1141–1144. 10.1038/s10038-019-0652-y PubMed DOI
Al-Kandari W., Koneni R., Navalgund V., Aleksandrova A., Jambunathan S., Fontes J. D. (2007). The Zinc Finger Proteins ZXDA and ZXDC Form a Complex that Binds CIITA and Regulates MHC II Gene Transcription. J. Mol. Biol. 369 (5), 1175–1187. 10.1016/j.jmb.2007.04.033 PubMed DOI PMC
Aleksandrova A., Galkin O., Koneni R., Fontes J. D. (2010). An N- and C-Terminal Truncated Isoform of Zinc Finger X-Linked Duplicated C Protein Represses MHC Class II Transcription. Mol. Cell Biochem. 337 (1-2), 1–7. 10.1007/s11010-009-0280-5 PubMed DOI PMC
Athwal R. K., Walkiewicz M. P., Baek S., Fu S., Bui M., Camps J., et al. (2015). CENP-A Nucleosomes Localize to Transcription Factor Hotspots and Subtelomeric Sites in Human Cancer Cells. Epigenetics Chromatin 8, 2. 10.1186/1756-8935-8-2 PubMed DOI PMC
Baek K., Krist D. T., Prabu J. R., Hill S., Klügel M., Neumaier L.-M., et al. (2020). NEDD8 Nucleates a Multivalent Cullin-RING-Ube2d Ubiquitin Ligation Assembly. Nature 578 (7795), 461–466. 10.1038/s41586-020-2000-y PubMed DOI PMC
Bodor D. L., Mata J. F., Sergeev M., David A. F., Salimian K. J., Panchenko T., et al. (2014). The Quantitative Architecture of Centromeric Chromatin. Elife 3, e02137. 10.7554/eLife.02137 PubMed DOI PMC
Cai L., Liu L., Li L., Jia L. (2020). SCFFBXO28-mediated Self-Ubiquitination of FBXO28 Promotes its Degradation. Cell. Signal. 65, 109440. 10.1016/j.cellsig.2019.109440 PubMed DOI
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell. Proteomics 13 (9), 2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC
Cunningham F., Achuthan P., Akanni W., Allen J., Amode M. R., Armean I. M., et al. (2019). Ensembl 2019. Nucleic Acids Res. 47 (D1), D745–D751. 10.1093/nar/gky1113 PubMed DOI PMC
Dibus N., Zobalova E., Monleon M. A. M., Korinek V., Filipp D., Petrusova J., et al. (2022). FBXO38 Ubiquitin Ligase Controls Sertoli Cell Maturation. Front. Cell Dev. Biol. 10. 10.3389/fcell.2022.914053 PubMed DOI PMC
Dovat S., Ronni T., Russell D., Ferrini R., Cobb B. S., Smale S. T. (2002). A Common Mechanism for Mitotic Inactivation of C2H2 Zinc Finger DNA-Binding Domains. Genes Dev. 16 (23), 2985–2990. 10.1101/gad.1040502 PubMed DOI PMC
Drané P., Ouararhni K., Depaux A., Shuaib M., Hamiche A. (2010). The Death-Associated Protein DAXX Is a Novel Histone Chaperone Involved in the Replication-independent Deposition of H3.3. Genes Dev. 24 (12), 1253–1265. 10.1101/gad.566910 PubMed DOI PMC
Earnshaw W. C., Rothfield N. (1985). Identification of a Family of Human Centromere Proteins Using Autoimmune Sera from Patients with Scleroderma. Chromosoma 91 (3-4), 313–321. 10.1007/BF00328227 PubMed DOI
Everett R. D., Earnshaw W. C., Findlay J., Lomonte P. (1999). Specific Destruction of Kinetochore Protein CENP-C and Disruption of Cell Division by Herpes Simplex Virus Immediate-Early Protein Vmw110. EMBO J. 18 (6), 1526–1538. 10.1093/emboj/18.6.1526 PubMed DOI PMC
Ewels P., Hammarén R., Peltzer A., Moreno D., Garcia M., Wang C. (2019). Nf-core/rnaseq: Nf-core/rnaseq Version 1.4.2 (Version 1.4.2). Zenodo. 10.5281/zenodo.1400710 DOI
Fachinetti D., Han J. S., McMahon M. A., Ly P., Abdullah A., Wong A. J., et al. (2015). DNA Sequence-specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. Dev. Cell 33 (3), 314–327. 10.1016/j.devcel.2015.03.020 PubMed DOI PMC
Fowler K. J., Hudson D. F., Salamonsen L. A., Edmondson S. R., Earle E., Sibson M. C., et al. (2000). Uterine Dysfunction and Genetic Modifiers in Centromere Protein B-Deficient Mice. Genome Res. 10 (1), 30–41. PubMed PMC
Fowler K. J., Wong L. H., Griffiths B. K., Sibson M. C., Reed S., Choo K. H. A. (2004). Centromere Protein B-Null Mice Display Decreasing Reproductive Performance through Successive Generations of Breeding Due to Diminishing Endometrial Glands. Reproduction 127 (3), 367–377. 10.1530/rep.1.00102 PubMed DOI
Fujita R., Otake K., Arimura Y., Horikoshi N., Miya Y., Shiga T., et al. (2015). Stable Complex Formation of CENP-B with the CENP-A Nucleosome. Nucleic Acids Res. 43 (10), 4909–4922. 10.1093/nar/gkv405 PubMed DOI PMC
Gamba R., Fachinetti D. (2020). From Evolution to Function: Two Sides of the Same CENP-B Coin? Exp. Cell Res. 390 (2), 111959. 10.1016/j.yexcr.2020.111959 PubMed DOI
Georges A., Coyaud E., Marcon E., Greenblatt J., Raught B., Frappier L. (2019). USP7 Regulates Cytokinesis through FBXO38 and KIF20B. Sci. Rep. 9 (1), 2724. 10.1038/s41598-019-39368-y PubMed DOI PMC
Guardavaccaro D., Frescas D., Dorrello N. V., Peschiaroli A., Multani A. S., Cardozo T., et al. (2008). Control of Chromosome Stability by the β-TrCP-REST-Mad2 axis. Nature 452 (7185), 365–369. 10.1038/nature06641 PubMed DOI PMC
Hebert A. S., Richards A. L., Bailey D. J., Ulbrich A., Coughlin E. E., Westphall M. S., et al. (2014). The One Hour Yeast Proteome. Mol. Cell. Proteomics 13 (1), 339–347. 10.1074/mcp.M113.034769 PubMed DOI PMC
Hédouin S., Grillo G., Ivkovic I., Velasco G., Francastel C. (2017). CENP-A Chromatin Disassembly in Stressed and Senescent Murine Cells. Sci. Rep. 7, 42520. 10.1038/srep42520 PubMed DOI PMC
Hemmerich P., Stoyan T., Wieland G., Koch M., Lechner J., Diekmann S. (2000). Interaction of Yeast Kinetochore Proteins with Centromere-Protein/transcription Factor Cbf1. Proc. Natl. Acad. Sci. U.S.A. 97 (23), 12583–12588. 10.1073/pnas.97.23.12583 PubMed DOI PMC
Hoffmann S., Dumont M., Barra V., Ly P., Nechemia-Arbely Y., McMahon M. A., et al. (2016). CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly. Cell Rep. 17 (9), 2394–2404. 10.1016/j.celrep.2016.10.084 PubMed DOI PMC
Horn M., Geisen C., Cermak L., Becker B., Nakamura S., Klein C., et al. (2014). DRE-1/FBXO11-dependent Degradation of BLMP-1/BLIMP-1 Governs C Elegans Developmental Timing and Maturation. Dev. Cell 28 (6), 697–710. 10.1016/j.devcel.2014.01.028 PubMed DOI PMC
Hou H., Kyriacou E., Thadani R., Klutstein M., Chapman J. H., Cooper J. P. (2021). Centromeres Are Dismantled by Foundational Meiotic Proteins Spo11 and Rec8. Nature 591 (7851), 671–676. 10.1038/s41586-021-03279-8 PubMed DOI PMC
Hudson D. F., Fowler K. J., Earle E., Saffery R., Kalitsis P., Trowell H., et al. (1998). Centromere Protein B Null Mice Are Mitotically and Meiotically Normal but Have Lower Body and Testis Weights. J. Cell Biol. 141 (2), 309–319. 10.1083/jcb.141.2.309 PubMed DOI PMC
Jansen L. E. T., Black B. E., Foltz D. R., Cleveland D. W. (2007). Propagation of Centromeric Chromatin Requires Exit from Mitosis. J. Cell Biol. 176 (6), 795–805. 10.1083/jcb.200701066 PubMed DOI PMC
Jeffery D., Gatto A., Podsypanina K., Renaud-Pageot C., Ponce Landete R., Bonneville L., et al. (2021). CENP-A Overexpression Promotes Distinct Fates in Human Cells, Depending on P53 Status. Commun. Biol. 4 (1), 417. 10.1038/s42003-021-01941-5 PubMed DOI PMC
Jin J., Cardozo T., Lovering R. C., Elledge S. J., Pagano M., Harper J. W. (2004). Systematic Analysis and Nomenclature of Mammalian F-Box Proteins. Genes Dev. 18 (21), 2573–2580. 10.1101/gad.1255304 PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. (2021). Highly Accurate Protein Structure Prediction with AlphaFold. Nature 596 (7873), 583–589. 10.1038/s41586-021-03819-2 PubMed DOI PMC
Kapoor M., Montes de Oca Luna R., Liu G., Lozano G., Cummings C., Mancini M., et al. (1998). The cenpB Gene Is Not Essential in Mice. Chromosoma 107 (8), 570–576. 10.1007/s004120050343 PubMed DOI
Kent W. J., Sugnet C. W., Furey T. S., Roskin K. M., Pringle T. H., Zahler A. M., et al. (2002). The Human Genome Browser at UCSC. Genome Res. 12 (6), 996–1006. 10.1101/gr.229102 PubMed DOI PMC
Kim D., Langmead B., Salzberg S. L. (2015). HISAT: a Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 12 (4), 357–360. 10.1038/nmeth.3317 PubMed DOI PMC
Kitagawa K., Skowyra D., Elledge S. J., Harper J. W., Hieter P. (1999). SGT1 Encodes an Essential Component of the Yeast Kinetochore Assembly Pathway and a Novel Subunit of the SCF Ubiquitin Ligase Complex. Mol. Cell 4 (1), 21–33. 10.1016/s1097-2765(00)80184-7 PubMed DOI
Lechner J., Carbon J. (1991). A 240 Kd Multisubunit Protein Complex, CBF3, Is a Major Component of the Budding Yeast Centromere. Cell 64 (4), 717–725. 10.1016/0092-8674(91)90501-o PubMed DOI
Liao Y., Smyth G. K., Shi W. (2014). featureCounts: an Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 30 (7), 923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Lidak T., Baloghova N., Korinek V., Sedlacek R., Balounova J., Kasparek P., et al. (2021). CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase during Spermatogenesis and T Cell Activation. Ijms 22 (10), 5394. 10.3390/ijms22105394 PubMed DOI PMC
Love M. I., Huber W., Anders S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 15 (12), 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Martin E. C., Sukarta O. C. A., Spiridon L., Grigore L. G., Constantinescu V., Tacutu R., et al. (2020). LRRpredictor-A New LRR Motif Detection Method for Irregular Motifs of Plant NLR Proteins Using an Ensemble of Classifiers. Genes 11 (3), 286. 10.3390/genes11030286 PubMed DOI PMC
Masuda T., Tomita M., Ishihama Y. (2008). Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. J. Proteome Res. 7 (2), 731–740. 10.1021/pr700658q PubMed DOI
Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. (1989). A Human Centromere Antigen (CENP-B) Interacts with a Short Specific Sequence in Alphoid DNA, a Human Centromeric Satellite. J. Cell Biol. 109 (5), 1963–1973. 10.1083/jcb.109.5.1963 PubMed DOI PMC
McNulty S. M., Sullivan B. A. (2018). Alpha Satellite DNA Biology: Finding Function in the Recesses of the Genome. Chromosome Res. 26 (3), 115–138. 10.1007/s10577-018-9582-3 PubMed DOI PMC
Meng X., Liu X., Guo X., Jiang S., Chen T., Hu Z., et al. (2018). FBXO38 Mediates PD-1 Ubiquitination and Regulates Anti-tumour Immunity of T Cells. Nature 564 (7734), 130–135. 10.1038/s41586-018-0756-0 PubMed DOI
Morimoto Y., Ono S., Imamura A., Okazaki Y., Kinoshita A., Mishima H., et al. (2017). Deep Sequencing Reveals Variations in Somatic Cell Mosaic Mutations between Monozygotic Twins with Discordant Psychiatric Disease. Hum. Genome Var. 4, 17032. 10.1038/hgv.2017.32 PubMed DOI PMC
Morozov V. M., Giovinazzi S., Ishov A. M. (2017). CENP-B Protects Centromere Chromatin Integrity by Facilitating Histone Deposition via the H3.3-specific Chaperone Daxx. Epigenetics Chromatin 10 (1), 63. 10.1186/s13072-017-0164-y PubMed DOI PMC
Muro Y., Masumoto H., Yoda K., Nozaki N., Ohashi M., Okazaki T. (1992). Centromere Protein B Assembles Human Centromeric Alpha-Satellite DNA at the 17-bp Sequence, CENP-B Box. J. Cell Biol. 116 (3), 585–596. 10.1083/jcb.116.3.585 PubMed DOI PMC
Ohzeki J.-i., Nakano M., Okada T., Masumoto H. (2002). CENP-B Box Is Required for De Novo Centromere Chromatin Assembly on Human Alphoid DNA. J. Cell Biol. 159 (5), 765–775. 10.1083/jcb.200207112 PubMed DOI PMC
Okada T., Ohzeki J.-i., Nakano M., Yoda K., Brinkley W. R., Larionov V., et al. (2007). CENP-B Controls Centromere Formation Depending on the Chromatin Context. Cell 131 (7), 1287–1300. 10.1016/j.cell.2007.10.045 PubMed DOI
Otake K., Ohzeki J.-i., Shono N., Kugou K., Okazaki K., Nagase T., et al. (2020). CENP-B Creates Alternative Epigenetic Chromatin States Permissive for CENP-A or Heterochromatin Assembly. J. Cell Sci. 133 (15). 10.1242/jcs.243303 PubMed DOI PMC
Palmer D., O'Day K., Wener M., Andrews B., Margolis R. (1987). A 17-kD Centromere Protein (CENP-A) Copurifies with Nucleosome Core Particles and with Histones. J. Cell Biol. 104 (4), 805–815. 10.1083/jcb.104.4.805 PubMed DOI PMC
Perez-Castro A. V., Shamanski F. L., Meneses J. J., Lovato T. L., Vogel K. G., Moyzis R. K., et al. (1998). Centromeric Protein B Null Mice Are Viable with No Apparent Abnormalities. Dev. Biol. 201 (2), 135–143. 10.1006/dbio.1998.9005 PubMed DOI
Rappsilber J., Mann M., Ishihama Y. (2007). Protocol for Micro-purification, Enrichment, Pre-fractionation and Storage of Peptides for Proteomics Using StageTips. Nat. Protoc. 2 (8), 1896–1906. 10.1038/nprot.2007.261 PubMed DOI
Rizkallah R., Alexander K. E., Hurt M. M. (2011). Global Mitotic Phosphorylation of C2H2zinc Finger Protein Linker Peptides. Cell Cycle 10 (19), 3327–3336. 10.4161/cc.10.19.17619 PubMed DOI PMC
Sart D. d., Cancilla M. R., Earle E., Mao J.-i., Saffery R., Tainton K. M., et al. (1997). A Functional Neo-Centromere Formed through Activation of a Latent Human Centromere and Consisting of Non-alpha-satellite DNA. Nat. Genet. 16 (2), 144–153. 10.1038/ng0697-144 PubMed DOI
Scott K. C., Sullivan B. A. (2014). Neocentromeres: a Place for Everything and Everything in its Place. Trends Genet. 30 (2), 66–74. 10.1016/j.tig.2013.11.003 PubMed DOI PMC
Senft D., Qi J., Ronai Z. e. A. (2018). Ubiquitin Ligases in Oncogenic Transformation and Cancer Therapy. Nat. Rev. Cancer 18 (2), 69–88. 10.1038/nrc.2017.105 PubMed DOI PMC
Skaar J. R., Pagan J. K., Pagano M. (2013). Mechanisms and Function of Substrate Recruitment by F-Box Proteins. Nat. Rev. Mol. Cell Biol. 14 (6), 369–381. 10.1038/nrm3582 PubMed DOI PMC
Skaar J. R., Pagan J. K., Pagano M. (2014). SCF Ubiquitin Ligase-Targeted Therapies. Nat. Rev. Drug Discov. 13 (12), 889–903. 10.1038/nrd4432 PubMed DOI PMC
Smaldone S., Laub F., Else C., Dragomir C., Ramirez F. (2004). Identification of MoKA, a Novel F-Box Protein that Modulates Kruppel-like Transcription Factor 7 Activity. Mol. Cell Biol. 24 (3), 1058–1069. 10.1128/mcb.24.3.1058-1069.2004 PubMed DOI PMC
Sumner C. J., d’Ydewalle C., Wooley J., Fawcett K. A., Hernandez D., Gardiner A. R., et al. (2013). A Dominant Mutation in FBXO38 Causes Distal Spinal Muscular Atrophy with Calf Predominance. Am. J. Hum. Genet. 93 (5), 976–983. 10.1016/j.ajhg.2013.10.006 PubMed DOI PMC
Thomas-Chollier M., Darbo E., Herrmann C., Defrance M., Thieffry D., van Helden J. (2012). A Complete Workflow for the Analysis of Full-Size ChIP-Seq (And Similar) Data Sets Using Peak-Motifs. Nat. Protoc. 7 (8), 1551–1568. 10.1038/nprot.2012.088 PubMed DOI
Tomonaga T., Matsushita K., Yamaguchi S., Oohashi T., Shimada H., Ochiai T., et al. (2003). Overexpression and Mistargeting of Centromere Protein-A in Human Primary Colorectal Cancer. Cancer Res. 63 (13), 3511–3516. PubMed
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. (2016). The Perseus Computational Platform for Comprehensive Analysis of (Prote)omics Data. Nat. Methods 13 (9), 731–740. 10.1038/nmeth.3901 PubMed DOI
Vasudevan A., Schukken K. M., Sausville E. L., Girish V., Adebambo O. A., Sheltzer J. M. (2021). Aneuploidy as a Promoter and Suppressor of Malignant Growth. Nat. Rev. Cancer 21 (2), 89–103. 10.1038/s41568-020-00321-1 PubMed DOI
Wang D., Horton J. R., Zheng Y., Blumenthal R. M., Zhang X., Cheng X. (2018). Role for First Zinc Finger of WT1 in DNA Sequence Specificity: Denys-Drash Syndrome-Associated WT1 Mutant in ZF1 Enhances Affinity for a Subset of WT1 Binding Sites. Nucleic Acids Res. 46 (8), 3864–3877. 10.1093/nar/gkx1274 PubMed DOI PMC
Wang G. Z., Goff S. P. (2015). Regulation of Yin Yang 1 by Tyrosine Phosphorylation. J. Biol. Chem. 290 (36), 21890–21900. 10.1074/jbc.M115.660621 PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., et al. (2018). SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 46 (W1), W296–W303. 10.1093/nar/gky427 PubMed DOI PMC
Yan K., Zhang Z., Yang J., McLaughlin S. H., Barford D. (2018). Architecture of the CBF3-Centromere Complex of the Budding Yeast Kinetochore. Nat. Struct. Mol. Biol. 25 (12), 1103–1110. 10.1038/s41594-018-0154-1 PubMed DOI PMC
Young M. D., Wakefield M. J., Smyth G. K., Oshlack A. (2010). Gene Ontology Analysis for RNA-Seq: Accounting for Selection Bias. Genome Biol. 11 (2), R14. 10.1186/gb-2010-11-2-r14 PubMed DOI PMC
Yu Z.-K., Gervais J. L. M., Zhang H. (1998). Human CUL-1 Associates with the SKP1/SKP2 Complex and Regulates P21 CIP1/WAF1 and Cyclin D Proteins. Proc. Natl. Acad. Sci. U.S.A. 95 (19), 11324–11329. 10.1073/pnas.95.19.11324 PubMed DOI PMC
Zeitlin S. G., Baker N. M., Chapados B. R., Soutoglou E., Wang J. Y. J., Berns M. W., et al. (2009). Double-strand DNA Breaks Recruit the Centromeric Histone CENP-A. Proc. Natl. Acad. Sci. U.S.A. 106 (37), 15762–15767. 10.1073/pnas.0908233106 PubMed DOI PMC
Zhang M., Botër M., Li K., Kadota Y., Panaretou B., Prodromou C., et al. (2008a). Structural and Functional Coupling of Hsp90- and Sgt1-Centred Multi-Protein Complexes. EMBO J. 27 (20), 2789–2798. 10.1038/emboj.2008.190 PubMed DOI PMC
Zhang W., Mellone B. G., Karpen G. H. (2007). A Specialized Nucleosome Has a "point" to Make. Cell 129 (6), 1047–1049. 10.1016/j.cell.2007.05.054 PubMed DOI PMC
Zhang Y., Liu T., Meyer C. A., Eeckhoute J., Johnson D. S., Bernstein B. E., et al. (2008b). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9 (9), R137. 10.1186/gb-2008-9-9-r137 PubMed DOI PMC
FBXO38 is dispensable for PD-1 regulation