Orthology Prediction and Phylogenetic Analysis Methods in Plants

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35817996

In this chapter, we outline a pipeline for ortholog prediction and phylogenetic analysis in plants. This computational pipeline uses algorithms from different software to enable bioinformatic-beginner biologists to predict orthologs that can be shared with many distinct plant nonmodel and model species and identify gene loss events. Prediction of orthologs allows (1) investigation of the evolutionary relationships of plant genomes, (2) discovery of their origin, function, and (3) the impact of their adaptability to the environment.We developed a pipeline to fit, not only eukaryote but also prokaryote organisms, with small or large genomes. All results acquired from the orthologs predication will enable phylogenetic tree construction, using gene and species (phylogenomic) phylogeny approaches.

Zobrazit více v PubMed

Rokas A, Williams BI, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798. https://doi.org/10.1038/nature02053

Gee H (2003) Ending incongruence. Nature 425:782

Hipp AL, Eaton DAR, Cavender-Bares J et al (2014) A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS One 9:e93975. https://doi.org/10.1371/journal.pone.0093975

Widhelm TJ, Grewe F, Huang J-P et al (2019) Multiple historical processes obscure phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota). Sci Rep 9:8968. https://doi.org/10.1038/s41598-019-45455-x

Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43:W78. https://doi.org/10.1093/nar/gkv487

Kapli P, Yang Z, Telford MJ (2020) Phylogenetic tree building in the genomic age. Nat Rev Genet 21:428–444. https://doi.org/10.1038/s41576-020-0233-0

Dalquen DA, Dessimoz C (2013) Bidirectional best hits miss many orthologs in duplication-rich clades such as plants and animals. Genome Biol Evol 5:1800. https://doi.org/10.1093/gbe/evt132

Salomaki ED, Eme L, Brown MW, Kolisko M (2020) Releasing uncurated datasets is essential for reproducible phylogenomics. Nat Ecol Evol 4:1435

Rotterová J, Salomaki E, Pánek T et al (2020) Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr Biol 30:2037. https://doi.org/10.1016/j.cub.2020.03.064

Lax G, Eglit Y, Eme L et al (2018) Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564:410. https://doi.org/10.1038/s41586-018-0708-8

Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H (2010) Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5:301–312. https://doi.org/10.4161/epi.5.4.11608

Chen DH, Qiu HL, Huang Y et al (2020) Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC Plant Biol 20:1–19. https://doi.org/10.1186/s12870-020-2244-6

Burki F, Pawlowski J (2006) Monophyly of rhizaria and multigene phylogeny of unicellular bikonts. Mol Biol Evol 23:1922. https://doi.org/10.1093/molbev/msl055

Torruella G, Derelle R, Paps J et al (2012) Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol 29:531. https://doi.org/10.1093/molbev/msr185

Saunders GW, Jackson C, Salomaki ED (2018) Phylogenetic analyses of transcriptome data resolve familial assignments for genera of the red-algal Acrochaetiales-Palmariales Complex (Nemaliophycidae). Mol Phylogenet Evol 119:151. https://doi.org/10.1016/j.ympev.2017.11.002

Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309. https://doi.org/10.1093/nar/gky1085

Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/s13059-019-1832-y

Panzetta A (2016) A new similarity measure for phylogenetic trees. Ca’ Foscari University

Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087. https://doi.org/10.1063/1.1699114

Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547. https://doi.org/10.1093/molbev/msy096

Sharaf G, Jiroutová O (2019) Characterization of aminoacyl-tRNA synthetases in chromerids. Genes (Basel) 10:582. https://doi.org/10.3390/genes10080582

Hall BG (2005) Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol Biol Evol 22:792–802. https://doi.org/10.1093/molbev/msi066

Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11:431. https://doi.org/10.1186/1471-2105-11-431

Kriventseva EV, Kuznetsov D, Tegenfeldt F et al (2019) OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res 47:D807–D811. https://doi.org/10.1093/nar/gky1053

Scornavacca C, Galtier N (2016) Incomplete lineage sorting in mammalian phylogenomics. Syst Biol 66:syw082. https://doi.org/10.1093/sysbio/syw082

Sonnhammer ELL, Gabaldon T, Sousa da Silva AW et al (2014) Big data and other challenges in the quest for orthologs. Bioinformatics 30:2993–2998. https://doi.org/10.1093/bioinformatics/btu492

Forslund SK, Kaduk M, Sonnhammer ELL (2019) Evolution of protein domain architectures. In: Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 469–504

Taylor TC, Andersson I (1997) The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate. J Mol Biol 265:432–444. https://doi.org/10.1006/jmbi.1996.0738

Mohr G, Perlman PS, Lambowitz AM (1993) Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res 21:4991–4997. https://doi.org/10.1093/nar/21.22.4991

El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427. https://doi.org/10.1093/nar/gky995

Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493. https://doi.org/10.1093/nar/gkx922

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

Sardaraz M, Tahir M, Aziz Ikram T, Bajwa H (2012) Applications and algorithms for inference of huge phylogenetic trees: a review. Am J Bioinformatics Res 2:21–26. https://doi.org/10.5923/j.bioinformatics.20120201.04

Nesnidal MP, Helmkampf M, Bruchhaus I, Hausdorf B (2010) Compositional heterogeneity and phylogenomic inference of metazoan relationships. Mol Biol Evol 27:2095–2104. https://doi.org/10.1093/molbev/msq097

Rabiee M, Sayyari E, Mirarab S (2019) Multi-allele species reconstruction using ASTRAL. Mol Phylogenet Evol 130:286–296. https://doi.org/10.1016/j.ympev.2018.10.033

Seppey M, Manni M, Zdobnov EM (2019) BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 1962:227–245. https://doi.org/10.1007/978-1-4939-9173-0_14

Sharaf A, Vijayanathan M, Oborník M, Mozgová I (2022) Phylogenetic profiling resolves early emergence of PRC2 and illuminates its functional core. Life Science Alliance 5(7) e202101271. https://doi.org/10.26508/lsa.202101271

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...