Small-scale spontaneous dynamics in temperate beech stands as an importance driver for beetle species richness

. 2022 Jul 13 ; 12 (1) : 11974. [epub] 20220713

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35831430
Odkazy

PubMed 35831430
PubMed Central PMC9279280
DOI 10.1038/s41598-022-16352-7
PII: 10.1038/s41598-022-16352-7
Knihovny.cz E-zdroje

Natural dynamics in forests play an important role in the lives of many species. In the landscape of managed forests, natural disturbances are reduced by management activities. This usually has a significant effect on insect diversity. The effect of small-scale natural dynamics of protected beech stands on the richness of saproxylic and non-saproxylic beetles was investigated. Sampling was carried out by using flight interception traps in the framework of comparing different developmental stages: optimum, disintegration, and growing up, each utilizing 10 samples. We recorded 290 species in total, of which 61% were saproxylic. The results showed that the highest species richness and thus abundance was in the disintegration stage. In each developmental stage, species variation was explained differently depending on the variable. Deadwood, microhabitats, and canopy openness were the main attributes in the later stages of development for saproxylic beetles. For non-saproxylics, variability was mostly explained by plant cover and canopy openness. Small-scale disturbances, undiminished by management activities, are an important element for biodiversity. They create more structurally diverse stands with a high supply of feeding and living habitats. In forestry practice, these conclusions can be imitated to the creation of small-scale silvicultural systems with active creation or retention of high stumps or lying logs.

Zobrazit více v PubMed

Lindenmayer DB, Cunningham RB, Donnelly CF, Lesslie R. On the use of landscape surrogates as ecological indicators in fragmented forests. For. Ecol. Manag. 2002;159(3):203–216. doi: 10.1016/S0378-1127(01)00433-9. DOI

Hannah L, Carr JL, Lankerani A. Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers. Conserv. 1995;4(2):128–155. doi: 10.1007/BF00137781. DOI

Sabatini FM, Burrascano S, Keeton WS, et al. Where are europe’s last primary forests? Divers. Distrib. 2018;24(10):1426–1439. doi: 10.1111/ddi.12778. DOI

Mikoláš M, Ujházy K, Jasík M, Wiezik M, et al. Primary forest distribution and representation in a central european landscape: results of a large-scale field-based census. For. Ecol. Manag. 2019 doi: 10.1016/j.foreco.2019.117466. DOI

Hilmers T, Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J, Butt N. Biodiversity along temperate forest succession. J. Appl. Ecol. 2018;55(6):2756–2766. doi: 10.1111/1365-2664.13238. DOI

Nagel TA, Svoboda M, Diaci J. Regeneration patterns after intermediate wind disturbance in an old-growth fagus-abies forest in southeastern Slovenia. For. Ecol. Manag. 2006;226(1–3):268–278. doi: 10.1016/j.foreco.2006.01.039. DOI

Thorn S, Chao A, Georgiev KB, et al. Estimating retention benchmarks for salvage logging to protect biodiversity. Nat. Commun. 2020;11:4762. doi: 10.1038/s41467-020-18612-4. PubMed DOI PMC

Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017 doi: 10.1371/journal.pone.0185809. PubMed DOI PMC

Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 2019;232:8–27. doi: 10.1016/j.biocon.2019.01.020. DOI

Seibold S, Gossner MM, Simons NK, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019;574:671–674. doi: 10.1038/s41586-019-1684-3. PubMed DOI

Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, et al. Experimental studies of dead-wood biodiversity — a review identifying global gaps in knowledge. Biol. Conserv. 2015;191:139–149. doi: 10.1016/j.biocon.2015.06.006. DOI

Paillet Y, Berges L, Hjältén J, et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 2010;24(1):101–112. doi: 10.1111/j.1523-1739.2009.01399.x. PubMed DOI

Cálix, M., Alexander, K. N. A., Nieto, A., Dodelin, B. et al. European Red List of Saproxylic Beetles (IUCN. 19 s, Brussels, Belgium, 2018). Available at: http://www.iucnredlist.org/initiatives/europe/publications

Schiegg K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience. 2016;7(3):290–298. doi: 10.1080/11956860.2000.11682598. DOI

Müller J, Brunet J, Brin A, Bouget Ch, et al. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of european beech forests. Insect Conserv. Divers. 2013;6(2):162–169. doi: 10.1111/j.1752-4598.2012.00200.x. DOI

Schneider A, Blick T, Köhler F, Pauls SU, et al. Animal diversity in beech forests – an analysis of 30 years of intense faunistic research in hessian strict forest reserves. For. Ecol. Manag. 2021 doi: 10.1016/j.foreco.2021.119564. DOI

Brunet J, Fritz Ö, Richnau G. Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol. Bull. 2010;53:77–94.

Bilek L, Remes J, Zahradnik D. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development central Bohemia. For. Syst. 2011;20(1):122–138. doi: 10.5424/fs/2011201-10243. DOI

Müller J, Bußler H, Kneib T. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. J. Insect Conserv. 2008;12(2):107–124. doi: 10.1007/s10841-006-9065-2. DOI

Doerfler I, Müller J, Gossner MM, Hofner B, Weisser WW. Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. For. Ecol. Manag. 2017;400:607–620. doi: 10.1016/j.foreco.2017.06.013. DOI

Doerfler I, Gossner MM, Müller J, Seibold S, Weisser WW. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 2018;228:70–78. doi: 10.1016/j.biocon.2018.10.013. DOI

Doerfler I, Cadotte MW, Weisser WW, Müller J, et al. Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms. J. Appl. Ecol. 2020;57(12):2429–2440. doi: 10.1111/1365-2664.13741. DOI

Zumr V, Remeš J, Pulkrab K. How to increase biodiversity of saproxylic beetles in commercial stands through integrated forest management in central Europe. Forests. 2021 doi: 10.3390/f12060814. DOI

Svoboda M, Fraver S, Janda P, Bače R, Zenáhlíková J. Natural development and regeneration of a central european montane spruce forest. For. Ecol. Manag. 2010;260(5):707–714. doi: 10.1016/j.foreco.2010.05.027. DOI

Šebková B, Šamonil P, Janík D, Adam D, et al. Spatial and volume patterns of an unmanaged submontane mixed forest in central Europe: 160 years of spontaneous dynamics. For. Ecol. Manag. 2011;262(5):873–885. doi: 10.1016/j.foreco.2011.05.028. DOI

Bílek L, Remeš J, Podrázský V, Rozenbergar D, Diaci J, Zahradník D. Gap regeneration in near-natural european beech forest stands in central bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology. 2013 doi: 10.12657/denbio.071.006. DOI

Čada V, Morrissey RC, Michalová Z, Bače R, Janda P, Svoboda M. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For. Ecol. Manag. 2016;363:169–178. doi: 10.1016/j.foreco.2015.12.023. DOI

Thorn S, Bässler C, Brandl R, Burton PJ, et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 2018;55(1):279–289. doi: 10.1111/1365-2664.12945. PubMed DOI PMC

Schelhaas M-J, Nabuurs G-J, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 2003;9(11):1620–1633. doi: 10.1046/j.1365-2486.2003.00684.x. DOI

Vera FWM, editor. Grazing Ecology and Forest History. CABI; 2000.

Vera FWM. The dynamic European forest. Arboric. J. 2012;26(3):179–211. doi: 10.1080/03071375.2002.9747335. DOI

Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 2011;9(2):117–125. doi: 10.1890/090157. DOI

Lachat T, Chumak M, Chumak V, Jakoby O, Müller J, et al. Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv. Divers. 2016;9(6):559–573. doi: 10.1111/icad.12188. DOI

Gossner MM, Lachat T, Brunet J, Isacsson G, et al. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 2013;27(3):605–614. doi: 10.1111/cobi.12023. PubMed DOI

Procházka J, Schlaghamerský J. Does dead wood volume affect saproxylic beetles in montane beech-fir forests of central Europe? J. Insect Conserv. 2019;23(1):157–173. doi: 10.1007/s10841-019-00130-4. DOI

Winter S, Möller GC. Microhabitats in lowland beech forests as monitoring tool for nature conservation. For. Ecol. Manag. 2008;255(3–4):1251–1261. doi: 10.1016/j.foreco.2007.10.029. DOI

Bouget C, Larrieu L, Brin A. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol. Ind. 2014;36:656–664. doi: 10.1016/j.ecolind.2013.09.031. DOI

Sebek P, Vodka S, Bogusch P, Pech P, et al. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 2016;380:172–181. doi: 10.1016/j.foreco.2016.08.052. DOI

Kozel P, Sebek P, Platek M, Benes J, Zapletal M, et al. Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. J. Appl. Ecol. 2021;58(12):2951–2961. doi: 10.1111/1365-2664.14019. DOI

Nagel TA, Svoboda M, Kobal M. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecol. Appl. 2014;24(4):663–679. doi: 10.1890/13-0632.1. PubMed DOI

Christensen M, et al. The forest cycle of Suserup Skov – revisited and revised. Ecol. Bull. 2007;52:33–42.

Trotsiuk V, Hobi ML, Commarmot B. Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians) For. Ecol. Manag. 2012;265:181–190. doi: 10.1016/j.foreco.2011.10.042. DOI

Wermelinger B, Duelli P, Obrist MK. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. Res. 2002;77:133–148.

Wermelinger B, Moretti M, Duelli P, Lachat T, et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 2017;391:9–18. doi: 10.1016/j.foreco.2017.01.033. DOI

Meyer P, Schmidt M, Feldmann E, Willig J, Larkin R. Long-term development of species richness in a central European beech (Fagus Sylvatica) forest affected by windthrow—support for the intermediate disturbance hypothesis? Ecol. Evol. 2021;11(18):12801–12815. doi: 10.1002/ece3.8028. PubMed DOI PMC

Korpeľ S. Die Urwälder der Westkarpaten. Stuttgart: Gustav Fischer; 1995.

Emborg J, Christensen M, Heilmann-Clausen J. The structural dynamics of Suserup Skov, a near natural temperate deciduous forest in Denmark. For. Ecol. Manag. 2000;126:173–189. doi: 10.1016/S0378-1127(99)00094-8. DOI

Peňa J, Remeš J, Bílek L. Dynamics of natural regeneration of even-aged beech (Fagus sylvatica L.) stands at different shelterwood densities. J. For. Sci. 2010;56(12):580–588. doi: 10.17221/69/2010-JFS. DOI

Bílek, L., Peňa, J. F. B., Remeš, J. (2013b). National Nature Reserve Voděradské Bučiny 30 Years of Forestry Research Folia Forestalia Bohemica edn, Vol. 86 (Lesnická práce, 2013).

Ruchin AB, Egorov LV. Vertical stratification of beetles in deciduous forest communities in the centre of European Russia. Diversity. 2021;13:508. doi: 10.3390/d13110508. DOI

Parmain G, Bouget C, Müller J, Horak J, Gossner MM, et al. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests? Bull. Entomol. Res. 2015;105(1):101–109. doi: 10.1017/S0007485314000741. PubMed DOI

Schmidl J, Bußler H. Ökologische gilden xylobionter Käfer Deutschlands. Nat. Landsch. 2004;36:202–218.

Seibold S, Brandl R, Buse J, Hothorn T, et al. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 2015;29(2):382–390. doi: 10.1111/cobi.12427. PubMed DOI

Hejda R, Farkač J, Chobot K. Red List of Threatened Species of the Czech Republic. Praha: Agentura ochrany přírody a krajiny České republiky; 2017. pp. 1–612.

Lepš, J., Šmilauer, P. Biostatistika (Nakladatelství Jihočeské univerzity v Českých Budějovicích, 2016)

Chao A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984;11:265–270.

Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987;43:783–791. doi: 10.2307/2531532. PubMed DOI

Colwell, R. K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. User's Guide and application published at: http://purl.oclc.org/estimates (2013).

Seibold S, Hagge J, Müller J, Gruppe A, Brandl R, Bässler C, Thorn S. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 2018;409:564–570. doi: 10.1016/j.foreco.2017.11.052. DOI

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014;84:45–67. doi: 10.1890/13-0133.1. DOI

Chao, A., Ma, K. H., Hsieh, T. C. iNEXT (iNterpolation and EXTrapolation)Online: Software for Interpolation and Extrapolation of Species Diversity. ProgramandUser’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016).

Schenker N, Gentleman JF. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 2001;55:182–186. doi: 10.1198/000313001317097960. DOI

Horak J, Vodka S, Kout J, Halda JP, Bogusch P, Pech P. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manag. 2014;315:80–85. doi: 10.1016/j.foreco.2013.12.018. DOI

Lepš J, Šmilauer P. Multivariate Analysis of Ecological Data Using Canoco. Cambridge: Cambridge University Press; 2010.

Šmilauer P, Lepš J. Multivariate Analysis of Ecological Data Using Canoco 5. 2. New York; 2014.

Parisi F, Lombardi F, Sciarretta A, Tognetti R, et al. Spatial patterns of saproxylic beetles in a relic silver fir forest (Central Italy), relationships with forest structure and biodiversity indicators. For. Ecol. Manag. 2016;381:217–234. doi: 10.1016/j.foreco.2016.09.041. DOI

Siitonen J. Decaying wood and saproxylic coleoptera in two old spruce forests: a comparison based on two sampling methods. Ann. Zool. Fenn. 1994;31:89–95.

Alinvi O, Ball JP, Danell K, Hjältén J, Pettersson RB. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 2007;11(2):99–112. doi: 10.1007/s10841-006-9012-2. DOI

Økland B. A comparison of three methods of trapping saproxylic beetles. Eur. J. Entomol. 1996;93:195–209.

Quinto J, Marcos-García MDLÁ, Brustel H, Galante E, Micó E. Effectiveness of three sampling methods to survey saproxylic beetle assemblages in mediterranean Woodland. J. Insect Conserv. 2013;17(4):765–776. doi: 10.1007/s10841-013-9559-7. DOI

Müller J, Brustel H, Brin A, Bussler H, Bouget C, et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography. 2015;38(5):499–509. doi: 10.1111/ecog.00908. DOI

Schiegg K. Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography. 2000;23:579–587. doi: 10.1034/j.1600-0587.2000.230509.x. DOI

Bouget C, Larrieu L, Nusillard B, Parmain G. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers. Conserv. 2013;22(9):2111–2130. doi: 10.1007/s10531-013-0531-3. DOI

Brunet J, Isacsson G. Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers. Conserv. 2009;18(9):2387–2404. doi: 10.1007/s10531-009-9595-5. DOI

Eckelt A, Müller J, Bense U, Brustel H, Bußler H, et al. “Primeval forest relict beetles” of central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 2018;22(1):15–28. doi: 10.1007/s10841-017-0028-6. DOI

Speight, M. C. D. (1989). Saproxylic Invertebrates and Their Conservation. Saproxylic Invertebrates and Their Conservation, Vol. 42, Nature and Environmental Series, Strasbourg, 81.

Gustafsson L, Hannerz M, Koivula M, Shorohova E, Vanha-Majamaa I, Weslien J. Research on retention forestry in northern Europe. Ecol. Process. 2020 doi: 10.1186/s13717-019-0208-2. DOI

Zumr V, Remeš J. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: review. Rep. For. Res. 2020;65:242–257.

Bouget C, Duelli P. The effects of windthrow on forest insect communities: a literature review. Biol. Cons. 2004;118(3):281–299. doi: 10.1016/j.biocon.2003.09.009. DOI

Gran O, Götmark F. Long-term experimental management in Swedish mixed oak-rich forests has a positive effect on saproxylic beetles after 10 years. Biodivers. Conserv. 2019;28:1451–1472. doi: 10.1007/s10531-019-01736-5. DOI

Fahrig L, Storch D. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 2020;29(4):615–628. doi: 10.1111/geb.13059. DOI

Müller J, Engel H, Blaschke M. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 2007;126(4):513–527. doi: 10.1007/s10342-007-0173-7. DOI

Friess N, Müller JC, Aramendi P, Bässler C, Brändle M, et al. Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Divers. Distrib. 2019;25(5):783–796. doi: 10.1111/ddi.12882. DOI

Brin A, Brustel H, Jactel H. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann. For. Sci. 2009 doi: 10.1051/forest/2009009. DOI

Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in european forests. Eur. J. For. Res. 2010;129(6):981–992. doi: 10.1007/s10342-010-0400-5. DOI

Alencar JBR, Fonseca CRV, Marra DM, Baccaro FB. Windthrows promote higher diversity of saproxylic beetles (Coleoptera: Passalidae) in a central Amazon forest. Insect Conserv. Divers. 2021 doi: 10.1111/icad.12523. DOI

Audisio P, Cline AR, De Biase A, Antonini G, Mancini E, Trizzino M, Costantini L, et al. Preliminary re-examination of genus-level taxonomy of the pollen beetle subfamily Meligethinae (Coleoptera: Nitidulidae) Acta Entomol. Musei Natl. Pragae. 2009;49(2):341–504.

Burakowski, B., Mroczkowski, M., Stefańska, J. Chrząszcze – Coleoptera. Ryjkowce – Curculionidae, Część 1. Katalog Fauny Polski Vol. XXIII, no, 19 Warszawa.

Laibner S. Elateridae of the Czech and Slovak Republics. Zlín: Kabourek; 2000.

Frank T, Reichhart B. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bull. Entomol. Res. 2004;94(3):209–217. doi: 10.1079/BER2004301. PubMed DOI

Herrmann S, Kahl T, Bauhus J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. 2015 doi: 10.1186/s40663-015-0052-5. DOI

Hararuk O, Kurz WA, Didion M. Dynamics of dead wood decay in swiss forests. For. Ecosyst. 2020 doi: 10.1186/s40663-020-00248-x. DOI

Jonsell M, Weslien J, Ehnström B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 1998;7(6):749–764. doi: 10.1023/A:1008888319031. DOI

Bobiec A, editor. The After Life of a Tree. WWF Poland: Warsawa; 2005. p. 252.

Gossner MM, Wende B, Levick S, Schall P, et al. Deadwood enrichment in European forests – which tree species should be used to promote saproxylic beetle diversity? Biol. Cons. 2016;201:92–102. doi: 10.1016/j.biocon.2016.06.032. DOI

Vogel S, Gossner MM, Mergner U, Müller J, Thorn S, Cheng L. Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: an experimental approach. J. Appl. Ecol. 2020;57(10):2075–2085. doi: 10.1111/1365-2664.13648. DOI

Gough LA, Sverdrup-Thygeson A, Milberg P, Pilskog HE, et al. Specialists in ancient trees are more affected by climate than generalists. Ecol. Evol. 2015;5(23):5632–5641. doi: 10.1002/ece3.1799. PubMed DOI PMC

Koch Widerberg M, Ranius T, Drobyshev I, Nilsson U, Lindbladh M. Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers. Conserv. 2012;21(12):3035–3059. doi: 10.1007/s10531-012-0353-8. DOI

Horák J, Pavlíček J, Kout J, Halda JP. Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures. Biodivers. Conserv. 2018;27(11):3019–3029. doi: 10.1007/s10531-018-1585-z. DOI

Vandekerkhove K, Thomaes A, Crèvecoeur L, et al. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in meerdaal forest (Belgium): an exploratory analysis. IFor. Biogeosci. For. 2016;9(4):536–545. doi: 10.3832/ifor1841-009. DOI

Lachat T, Wermelinger B, Gossner MM, Bussler H, Isacsson G, Müller J. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Ind. 2012;23:323–331. doi: 10.1016/j.ecolind.2012.04.013. DOI

Müller J, Ulyshen M, Seibold S, Cadotte M, Chao A, et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos. 2020;129(10):1579–1588. doi: 10.1111/oik.07335. DOI

Černecká Ľ, Mihál I, Gajdoš P, Jarčuška B. The effect of canopy openness of European beech (Fagus Sylvatica) forests on ground-dwelling spider communities. Insect Conserv. Divers. 2020;13(3):250–261. doi: 10.1111/icad.12380. DOI

Spitzer L, Konvicka M, Benes J, Tropek R, Tuf IH, Tufova J. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Cons. 2008;141(3):827–837. doi: 10.1016/j.biocon.2008.01.005. DOI

Podrázský V, Remeš J, Farkač J. Složení společenstev střevlíkovitých brouků (Coleoptera: Carabidae) v lesních porostech s různou druhovou strukturou a systémem hospodaření. Zpr. Lesn. Výzk. 2010;55:10–15.

Welti EAR, Zajicek P, Frenzel M, et al. Temperature drives variation in flying insect biomass across a german malaise trap network. Insect Conserv. Divers. 2021 doi: 10.1111/icad.12555. DOI

Brang P, Spathelf P, Larsen JB, Bauhus J, et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry. 2014;87(4):492–503. doi: 10.1093/forestry/cpu018. DOI

Schall P, Gossner MM, Heinrichs S, Fischer M, et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 2018;55(1):267–278. doi: 10.1111/1365-2664.12950. DOI

Leidinger J, Blaschke M, Ehrhardt M, Fischer A, Gossner MM, et al. Shifting tree species composition affects biodiversity of multiple taxa in central European forests. For. Ecol. Manag. 2021 doi: 10.1016/j.foreco.2021.119552. DOI

Christensen M, Hahn K, Mountford EP, Ódor P, et al. Dead wood in European beech (Fagus Sylvatica) forest reserves. For. Ecol. Manag. 2005;210(1–3):267–282. doi: 10.1016/j.foreco.2005.02.032. DOI

Plieninger T, Hartel T, Martín-López B, Beaufoy G, et al. Wood-pastures of Europe: geographic coverage, social-ecological values, conservation management, and policy implications. Biol. Cons. 2015;190:70–79. doi: 10.1016/j.biocon.2015.05.014. DOI

Weiss M, Kozel P, Zapletal M, Hauck D, et al. The effect of coppicing on insect biodiversity. Small-scale mosaics of successional stages drive community turnover. For. Ecol. Manag. 2021 doi: 10.1016/j.foreco.2020.118774. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Trapping liquids may bias the results of beetle diversity assessment

. 2023 ; 11 () : e16531. [epub] 20231208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...