Small-scale spontaneous dynamics in temperate beech stands as an importance driver for beetle species richness
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35831430
PubMed Central
PMC9279280
DOI
10.1038/s41598-022-16352-7
PII: 10.1038/s41598-022-16352-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- brouci * MeSH
- buk (rod) * MeSH
- ekosystém MeSH
- lesnictví metody MeSH
- lesy MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Natural dynamics in forests play an important role in the lives of many species. In the landscape of managed forests, natural disturbances are reduced by management activities. This usually has a significant effect on insect diversity. The effect of small-scale natural dynamics of protected beech stands on the richness of saproxylic and non-saproxylic beetles was investigated. Sampling was carried out by using flight interception traps in the framework of comparing different developmental stages: optimum, disintegration, and growing up, each utilizing 10 samples. We recorded 290 species in total, of which 61% were saproxylic. The results showed that the highest species richness and thus abundance was in the disintegration stage. In each developmental stage, species variation was explained differently depending on the variable. Deadwood, microhabitats, and canopy openness were the main attributes in the later stages of development for saproxylic beetles. For non-saproxylics, variability was mostly explained by plant cover and canopy openness. Small-scale disturbances, undiminished by management activities, are an important element for biodiversity. They create more structurally diverse stands with a high supply of feeding and living habitats. In forestry practice, these conclusions can be imitated to the creation of small-scale silvicultural systems with active creation or retention of high stumps or lying logs.
Zobrazit více v PubMed
Lindenmayer DB, Cunningham RB, Donnelly CF, Lesslie R. On the use of landscape surrogates as ecological indicators in fragmented forests. For. Ecol. Manag. 2002;159(3):203–216. doi: 10.1016/S0378-1127(01)00433-9. DOI
Hannah L, Carr JL, Lankerani A. Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers. Conserv. 1995;4(2):128–155. doi: 10.1007/BF00137781. DOI
Sabatini FM, Burrascano S, Keeton WS, et al. Where are europe’s last primary forests? Divers. Distrib. 2018;24(10):1426–1439. doi: 10.1111/ddi.12778. DOI
Mikoláš M, Ujházy K, Jasík M, Wiezik M, et al. Primary forest distribution and representation in a central european landscape: results of a large-scale field-based census. For. Ecol. Manag. 2019 doi: 10.1016/j.foreco.2019.117466. DOI
Hilmers T, Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J, Butt N. Biodiversity along temperate forest succession. J. Appl. Ecol. 2018;55(6):2756–2766. doi: 10.1111/1365-2664.13238. DOI
Nagel TA, Svoboda M, Diaci J. Regeneration patterns after intermediate wind disturbance in an old-growth fagus-abies forest in southeastern Slovenia. For. Ecol. Manag. 2006;226(1–3):268–278. doi: 10.1016/j.foreco.2006.01.039. DOI
Thorn S, Chao A, Georgiev KB, et al. Estimating retention benchmarks for salvage logging to protect biodiversity. Nat. Commun. 2020;11:4762. doi: 10.1038/s41467-020-18612-4. PubMed DOI PMC
Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017 doi: 10.1371/journal.pone.0185809. PubMed DOI PMC
Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 2019;232:8–27. doi: 10.1016/j.biocon.2019.01.020. DOI
Seibold S, Gossner MM, Simons NK, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019;574:671–674. doi: 10.1038/s41586-019-1684-3. PubMed DOI
Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, et al. Experimental studies of dead-wood biodiversity — a review identifying global gaps in knowledge. Biol. Conserv. 2015;191:139–149. doi: 10.1016/j.biocon.2015.06.006. DOI
Paillet Y, Berges L, Hjältén J, et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 2010;24(1):101–112. doi: 10.1111/j.1523-1739.2009.01399.x. PubMed DOI
Cálix, M., Alexander, K. N. A., Nieto, A., Dodelin, B. et al. European Red List of Saproxylic Beetles (IUCN. 19 s, Brussels, Belgium, 2018). Available at: http://www.iucnredlist.org/initiatives/europe/publications
Schiegg K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience. 2016;7(3):290–298. doi: 10.1080/11956860.2000.11682598. DOI
Müller J, Brunet J, Brin A, Bouget Ch, et al. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of european beech forests. Insect Conserv. Divers. 2013;6(2):162–169. doi: 10.1111/j.1752-4598.2012.00200.x. DOI
Schneider A, Blick T, Köhler F, Pauls SU, et al. Animal diversity in beech forests – an analysis of 30 years of intense faunistic research in hessian strict forest reserves. For. Ecol. Manag. 2021 doi: 10.1016/j.foreco.2021.119564. DOI
Brunet J, Fritz Ö, Richnau G. Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol. Bull. 2010;53:77–94.
Bilek L, Remes J, Zahradnik D. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development central Bohemia. For. Syst. 2011;20(1):122–138. doi: 10.5424/fs/2011201-10243. DOI
Müller J, Bußler H, Kneib T. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. J. Insect Conserv. 2008;12(2):107–124. doi: 10.1007/s10841-006-9065-2. DOI
Doerfler I, Müller J, Gossner MM, Hofner B, Weisser WW. Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. For. Ecol. Manag. 2017;400:607–620. doi: 10.1016/j.foreco.2017.06.013. DOI
Doerfler I, Gossner MM, Müller J, Seibold S, Weisser WW. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 2018;228:70–78. doi: 10.1016/j.biocon.2018.10.013. DOI
Doerfler I, Cadotte MW, Weisser WW, Müller J, et al. Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms. J. Appl. Ecol. 2020;57(12):2429–2440. doi: 10.1111/1365-2664.13741. DOI
Zumr V, Remeš J, Pulkrab K. How to increase biodiversity of saproxylic beetles in commercial stands through integrated forest management in central Europe. Forests. 2021 doi: 10.3390/f12060814. DOI
Svoboda M, Fraver S, Janda P, Bače R, Zenáhlíková J. Natural development and regeneration of a central european montane spruce forest. For. Ecol. Manag. 2010;260(5):707–714. doi: 10.1016/j.foreco.2010.05.027. DOI
Šebková B, Šamonil P, Janík D, Adam D, et al. Spatial and volume patterns of an unmanaged submontane mixed forest in central Europe: 160 years of spontaneous dynamics. For. Ecol. Manag. 2011;262(5):873–885. doi: 10.1016/j.foreco.2011.05.028. DOI
Bílek L, Remeš J, Podrázský V, Rozenbergar D, Diaci J, Zahradník D. Gap regeneration in near-natural european beech forest stands in central bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology. 2013 doi: 10.12657/denbio.071.006. DOI
Čada V, Morrissey RC, Michalová Z, Bače R, Janda P, Svoboda M. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For. Ecol. Manag. 2016;363:169–178. doi: 10.1016/j.foreco.2015.12.023. DOI
Thorn S, Bässler C, Brandl R, Burton PJ, et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 2018;55(1):279–289. doi: 10.1111/1365-2664.12945. PubMed DOI PMC
Schelhaas M-J, Nabuurs G-J, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 2003;9(11):1620–1633. doi: 10.1046/j.1365-2486.2003.00684.x. DOI
Vera FWM, editor. Grazing Ecology and Forest History. CABI; 2000.
Vera FWM. The dynamic European forest. Arboric. J. 2012;26(3):179–211. doi: 10.1080/03071375.2002.9747335. DOI
Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 2011;9(2):117–125. doi: 10.1890/090157. DOI
Lachat T, Chumak M, Chumak V, Jakoby O, Müller J, et al. Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv. Divers. 2016;9(6):559–573. doi: 10.1111/icad.12188. DOI
Gossner MM, Lachat T, Brunet J, Isacsson G, et al. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 2013;27(3):605–614. doi: 10.1111/cobi.12023. PubMed DOI
Procházka J, Schlaghamerský J. Does dead wood volume affect saproxylic beetles in montane beech-fir forests of central Europe? J. Insect Conserv. 2019;23(1):157–173. doi: 10.1007/s10841-019-00130-4. DOI
Winter S, Möller GC. Microhabitats in lowland beech forests as monitoring tool for nature conservation. For. Ecol. Manag. 2008;255(3–4):1251–1261. doi: 10.1016/j.foreco.2007.10.029. DOI
Bouget C, Larrieu L, Brin A. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol. Ind. 2014;36:656–664. doi: 10.1016/j.ecolind.2013.09.031. DOI
Sebek P, Vodka S, Bogusch P, Pech P, et al. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 2016;380:172–181. doi: 10.1016/j.foreco.2016.08.052. DOI
Kozel P, Sebek P, Platek M, Benes J, Zapletal M, et al. Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. J. Appl. Ecol. 2021;58(12):2951–2961. doi: 10.1111/1365-2664.14019. DOI
Nagel TA, Svoboda M, Kobal M. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecol. Appl. 2014;24(4):663–679. doi: 10.1890/13-0632.1. PubMed DOI
Christensen M, et al. The forest cycle of Suserup Skov – revisited and revised. Ecol. Bull. 2007;52:33–42.
Trotsiuk V, Hobi ML, Commarmot B. Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians) For. Ecol. Manag. 2012;265:181–190. doi: 10.1016/j.foreco.2011.10.042. DOI
Wermelinger B, Duelli P, Obrist MK. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. Res. 2002;77:133–148.
Wermelinger B, Moretti M, Duelli P, Lachat T, et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 2017;391:9–18. doi: 10.1016/j.foreco.2017.01.033. DOI
Meyer P, Schmidt M, Feldmann E, Willig J, Larkin R. Long-term development of species richness in a central European beech (Fagus Sylvatica) forest affected by windthrow—support for the intermediate disturbance hypothesis? Ecol. Evol. 2021;11(18):12801–12815. doi: 10.1002/ece3.8028. PubMed DOI PMC
Korpeľ S. Die Urwälder der Westkarpaten. Stuttgart: Gustav Fischer; 1995.
Emborg J, Christensen M, Heilmann-Clausen J. The structural dynamics of Suserup Skov, a near natural temperate deciduous forest in Denmark. For. Ecol. Manag. 2000;126:173–189. doi: 10.1016/S0378-1127(99)00094-8. DOI
Peňa J, Remeš J, Bílek L. Dynamics of natural regeneration of even-aged beech (Fagus sylvatica L.) stands at different shelterwood densities. J. For. Sci. 2010;56(12):580–588. doi: 10.17221/69/2010-JFS. DOI
Bílek, L., Peňa, J. F. B., Remeš, J. (2013b). National Nature Reserve Voděradské Bučiny 30 Years of Forestry Research Folia Forestalia Bohemica edn, Vol. 86 (Lesnická práce, 2013).
Ruchin AB, Egorov LV. Vertical stratification of beetles in deciduous forest communities in the centre of European Russia. Diversity. 2021;13:508. doi: 10.3390/d13110508. DOI
Parmain G, Bouget C, Müller J, Horak J, Gossner MM, et al. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests? Bull. Entomol. Res. 2015;105(1):101–109. doi: 10.1017/S0007485314000741. PubMed DOI
Schmidl J, Bußler H. Ökologische gilden xylobionter Käfer Deutschlands. Nat. Landsch. 2004;36:202–218.
Seibold S, Brandl R, Buse J, Hothorn T, et al. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 2015;29(2):382–390. doi: 10.1111/cobi.12427. PubMed DOI
Hejda R, Farkač J, Chobot K. Red List of Threatened Species of the Czech Republic. Praha: Agentura ochrany přírody a krajiny České republiky; 2017. pp. 1–612.
Lepš, J., Šmilauer, P. Biostatistika (Nakladatelství Jihočeské univerzity v Českých Budějovicích, 2016)
Chao A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984;11:265–270.
Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987;43:783–791. doi: 10.2307/2531532. PubMed DOI
Colwell, R. K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. User's Guide and application published at: http://purl.oclc.org/estimates (2013).
Seibold S, Hagge J, Müller J, Gruppe A, Brandl R, Bässler C, Thorn S. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 2018;409:564–570. doi: 10.1016/j.foreco.2017.11.052. DOI
Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014;84:45–67. doi: 10.1890/13-0133.1. DOI
Chao, A., Ma, K. H., Hsieh, T. C. iNEXT (iNterpolation and EXTrapolation)Online: Software for Interpolation and Extrapolation of Species Diversity. ProgramandUser’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016).
Schenker N, Gentleman JF. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 2001;55:182–186. doi: 10.1198/000313001317097960. DOI
Horak J, Vodka S, Kout J, Halda JP, Bogusch P, Pech P. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manag. 2014;315:80–85. doi: 10.1016/j.foreco.2013.12.018. DOI
Lepš J, Šmilauer P. Multivariate Analysis of Ecological Data Using Canoco. Cambridge: Cambridge University Press; 2010.
Šmilauer P, Lepš J. Multivariate Analysis of Ecological Data Using Canoco 5. 2. New York; 2014.
Parisi F, Lombardi F, Sciarretta A, Tognetti R, et al. Spatial patterns of saproxylic beetles in a relic silver fir forest (Central Italy), relationships with forest structure and biodiversity indicators. For. Ecol. Manag. 2016;381:217–234. doi: 10.1016/j.foreco.2016.09.041. DOI
Siitonen J. Decaying wood and saproxylic coleoptera in two old spruce forests: a comparison based on two sampling methods. Ann. Zool. Fenn. 1994;31:89–95.
Alinvi O, Ball JP, Danell K, Hjältén J, Pettersson RB. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 2007;11(2):99–112. doi: 10.1007/s10841-006-9012-2. DOI
Økland B. A comparison of three methods of trapping saproxylic beetles. Eur. J. Entomol. 1996;93:195–209.
Quinto J, Marcos-García MDLÁ, Brustel H, Galante E, Micó E. Effectiveness of three sampling methods to survey saproxylic beetle assemblages in mediterranean Woodland. J. Insect Conserv. 2013;17(4):765–776. doi: 10.1007/s10841-013-9559-7. DOI
Müller J, Brustel H, Brin A, Bussler H, Bouget C, et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography. 2015;38(5):499–509. doi: 10.1111/ecog.00908. DOI
Schiegg K. Are there saproxylic beetle species characteristic of high dead wood connectivity? Ecography. 2000;23:579–587. doi: 10.1034/j.1600-0587.2000.230509.x. DOI
Bouget C, Larrieu L, Nusillard B, Parmain G. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers. Conserv. 2013;22(9):2111–2130. doi: 10.1007/s10531-013-0531-3. DOI
Brunet J, Isacsson G. Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers. Conserv. 2009;18(9):2387–2404. doi: 10.1007/s10531-009-9595-5. DOI
Eckelt A, Müller J, Bense U, Brustel H, Bußler H, et al. “Primeval forest relict beetles” of central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 2018;22(1):15–28. doi: 10.1007/s10841-017-0028-6. DOI
Speight, M. C. D. (1989). Saproxylic Invertebrates and Their Conservation. Saproxylic Invertebrates and Their Conservation, Vol. 42, Nature and Environmental Series, Strasbourg, 81.
Gustafsson L, Hannerz M, Koivula M, Shorohova E, Vanha-Majamaa I, Weslien J. Research on retention forestry in northern Europe. Ecol. Process. 2020 doi: 10.1186/s13717-019-0208-2. DOI
Zumr V, Remeš J. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: review. Rep. For. Res. 2020;65:242–257.
Bouget C, Duelli P. The effects of windthrow on forest insect communities: a literature review. Biol. Cons. 2004;118(3):281–299. doi: 10.1016/j.biocon.2003.09.009. DOI
Gran O, Götmark F. Long-term experimental management in Swedish mixed oak-rich forests has a positive effect on saproxylic beetles after 10 years. Biodivers. Conserv. 2019;28:1451–1472. doi: 10.1007/s10531-019-01736-5. DOI
Fahrig L, Storch D. Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 2020;29(4):615–628. doi: 10.1111/geb.13059. DOI
Müller J, Engel H, Blaschke M. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 2007;126(4):513–527. doi: 10.1007/s10342-007-0173-7. DOI
Friess N, Müller JC, Aramendi P, Bässler C, Brändle M, et al. Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Divers. Distrib. 2019;25(5):783–796. doi: 10.1111/ddi.12882. DOI
Brin A, Brustel H, Jactel H. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann. For. Sci. 2009 doi: 10.1051/forest/2009009. DOI
Müller J, Bütler R. A review of habitat thresholds for dead wood: a baseline for management recommendations in european forests. Eur. J. For. Res. 2010;129(6):981–992. doi: 10.1007/s10342-010-0400-5. DOI
Alencar JBR, Fonseca CRV, Marra DM, Baccaro FB. Windthrows promote higher diversity of saproxylic beetles (Coleoptera: Passalidae) in a central Amazon forest. Insect Conserv. Divers. 2021 doi: 10.1111/icad.12523. DOI
Audisio P, Cline AR, De Biase A, Antonini G, Mancini E, Trizzino M, Costantini L, et al. Preliminary re-examination of genus-level taxonomy of the pollen beetle subfamily Meligethinae (Coleoptera: Nitidulidae) Acta Entomol. Musei Natl. Pragae. 2009;49(2):341–504.
Burakowski, B., Mroczkowski, M., Stefańska, J. Chrząszcze – Coleoptera. Ryjkowce – Curculionidae, Część 1. Katalog Fauny Polski Vol. XXIII, no, 19 Warszawa.
Laibner S. Elateridae of the Czech and Slovak Republics. Zlín: Kabourek; 2000.
Frank T, Reichhart B. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bull. Entomol. Res. 2004;94(3):209–217. doi: 10.1079/BER2004301. PubMed DOI
Herrmann S, Kahl T, Bauhus J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. 2015 doi: 10.1186/s40663-015-0052-5. DOI
Hararuk O, Kurz WA, Didion M. Dynamics of dead wood decay in swiss forests. For. Ecosyst. 2020 doi: 10.1186/s40663-020-00248-x. DOI
Jonsell M, Weslien J, Ehnström B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 1998;7(6):749–764. doi: 10.1023/A:1008888319031. DOI
Bobiec A, editor. The After Life of a Tree. WWF Poland: Warsawa; 2005. p. 252.
Gossner MM, Wende B, Levick S, Schall P, et al. Deadwood enrichment in European forests – which tree species should be used to promote saproxylic beetle diversity? Biol. Cons. 2016;201:92–102. doi: 10.1016/j.biocon.2016.06.032. DOI
Vogel S, Gossner MM, Mergner U, Müller J, Thorn S, Cheng L. Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: an experimental approach. J. Appl. Ecol. 2020;57(10):2075–2085. doi: 10.1111/1365-2664.13648. DOI
Gough LA, Sverdrup-Thygeson A, Milberg P, Pilskog HE, et al. Specialists in ancient trees are more affected by climate than generalists. Ecol. Evol. 2015;5(23):5632–5641. doi: 10.1002/ece3.1799. PubMed DOI PMC
Koch Widerberg M, Ranius T, Drobyshev I, Nilsson U, Lindbladh M. Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers. Conserv. 2012;21(12):3035–3059. doi: 10.1007/s10531-012-0353-8. DOI
Horák J, Pavlíček J, Kout J, Halda JP. Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures. Biodivers. Conserv. 2018;27(11):3019–3029. doi: 10.1007/s10531-018-1585-z. DOI
Vandekerkhove K, Thomaes A, Crèvecoeur L, et al. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in meerdaal forest (Belgium): an exploratory analysis. IFor. Biogeosci. For. 2016;9(4):536–545. doi: 10.3832/ifor1841-009. DOI
Lachat T, Wermelinger B, Gossner MM, Bussler H, Isacsson G, Müller J. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Ind. 2012;23:323–331. doi: 10.1016/j.ecolind.2012.04.013. DOI
Müller J, Ulyshen M, Seibold S, Cadotte M, Chao A, et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos. 2020;129(10):1579–1588. doi: 10.1111/oik.07335. DOI
Černecká Ľ, Mihál I, Gajdoš P, Jarčuška B. The effect of canopy openness of European beech (Fagus Sylvatica) forests on ground-dwelling spider communities. Insect Conserv. Divers. 2020;13(3):250–261. doi: 10.1111/icad.12380. DOI
Spitzer L, Konvicka M, Benes J, Tropek R, Tuf IH, Tufova J. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Cons. 2008;141(3):827–837. doi: 10.1016/j.biocon.2008.01.005. DOI
Podrázský V, Remeš J, Farkač J. Složení společenstev střevlíkovitých brouků (Coleoptera: Carabidae) v lesních porostech s různou druhovou strukturou a systémem hospodaření. Zpr. Lesn. Výzk. 2010;55:10–15.
Welti EAR, Zajicek P, Frenzel M, et al. Temperature drives variation in flying insect biomass across a german malaise trap network. Insect Conserv. Divers. 2021 doi: 10.1111/icad.12555. DOI
Brang P, Spathelf P, Larsen JB, Bauhus J, et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry. 2014;87(4):492–503. doi: 10.1093/forestry/cpu018. DOI
Schall P, Gossner MM, Heinrichs S, Fischer M, et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 2018;55(1):267–278. doi: 10.1111/1365-2664.12950. DOI
Leidinger J, Blaschke M, Ehrhardt M, Fischer A, Gossner MM, et al. Shifting tree species composition affects biodiversity of multiple taxa in central European forests. For. Ecol. Manag. 2021 doi: 10.1016/j.foreco.2021.119552. DOI
Christensen M, Hahn K, Mountford EP, Ódor P, et al. Dead wood in European beech (Fagus Sylvatica) forest reserves. For. Ecol. Manag. 2005;210(1–3):267–282. doi: 10.1016/j.foreco.2005.02.032. DOI
Plieninger T, Hartel T, Martín-López B, Beaufoy G, et al. Wood-pastures of Europe: geographic coverage, social-ecological values, conservation management, and policy implications. Biol. Cons. 2015;190:70–79. doi: 10.1016/j.biocon.2015.05.014. DOI
Weiss M, Kozel P, Zapletal M, Hauck D, et al. The effect of coppicing on insect biodiversity. Small-scale mosaics of successional stages drive community turnover. For. Ecol. Manag. 2021 doi: 10.1016/j.foreco.2020.118774. DOI