Trapping liquids may bias the results of beetle diversity assessment

. 2023 ; 11 () : e16531. [epub] 20231208

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38089907

Several different techniques and methods are used to capture and study beetles (Coleoptera). One option is the use of window traps with various trapping liquids. However, these liquids used in comparative studies may have a biasing effect on the results. The effectiveness of the frequently used liquid baits, involving beer, wine, vinegar, and water as the reference liquid, was compared in this study. Twenty-four traps were assigned to two habitat categories (sunny and shady) and four kinds of bait: beer, wine, vinegar, and water. During the study from June to July 2021, a total of 29,944 invertebrates were captured; of these, 3,931 individuals belonged to Coleoptera. A total of 3,825 beetles were identified, belonging to 120 species and 36 families. The most abundant family was Nitidulidae, with 3,297 adults (86% of the total). The number of arthropods differed only in the trapping liquid, and the captures were similar between beer and wine and between vinegar and water. The trapping liquid had a more significant effect on beetle abundance and species richness. In contrast, exposure had a significant effect only on the number of beetle species and a higher ratio of beetles was found in the shade. Beer and wine were very attractive and collected similar beetle communities. However, the diversity (Shannon's index) was low due to the high abundance of several species. Traps with vinegar and water collected a similar composition and species richness. After removing sap beetles (Nitidulidae) from all traps, a significant difference was still recorded between trapping liquids in the number of individuals and species, and their communities were much more similar. Thus, at high abundances of sap beetles, it is possible to exclude them from analyses and obtain more accurate data when assessing environmental variables. The results showed that the type of trapping liquids used can have substantial effects on abundance and species composition captured beetles in traps especially for beer and wine. The beer and wine in traps can significantly influence the subsequent biodiversity assessment. We recommend the use of trapping liquids without the baiting effect to correctly assess the effect of environmental variables on beetle richness and abundance.

Zobrazit více v PubMed

Alinvi O, Ball JP, Danell K, Hjältén J, Pettersson RB. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. Journal of Insect Conservation. 2007;11(2):99–112. doi: 10.1007/s10841-006-9012-2. DOI

Bardiani M, Tini M, Carpaneto GM, Audisio P, Bussola E, Campanaro A, Cini A, Maurizi E, Mason F, Peverieri GSabbatini, Roversi PF, Toni I, Chiari S. Effects of trap baits and height on stag beetle and flower chafer monitoring: ecological and conservation implications. Journal of Insect Conservation. 2017;21(1):157–168. doi: 10.1007/s10841-017-9965-3. DOI

Bell AJ, Phillips ID, Floate KD, Hoemsen BM, Phillips CE. Effects of pitfall trap lid transparency and habitat structure on the catches of carabid beetles (coleoptera: carabidae) in tame pasture. Environmental Entomology. 2014;43(1):139–145. doi: 10.1603/EN13145. PubMed DOI

Bouget C, Brustel H, Brin A, Valladares L. Evaluation of window flight traps for effectiveness at monitoring dead wood-associated beetles: the effect of ethanol lure under contrasting environmental conditions. Agricultural and Forest Entomology. 2009;11(2):143–152. doi: 10.1111/j.1461-9563.2008.00400.x. DOI

Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal. 2017;9(2) doi: 10.32614/RJ-2017-066. DOI

Brown GR, Matthews IM. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecology and Evolution. 2016;6(12):3953–3964. doi: 10.1002/ece3.2176. PubMed DOI PMC

Buttigieg PL, Ramette A. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiology Ecology. 2014;90:543–550. doi: 10.1111/1574-6941.12437. PubMed DOI

Černecká Ľ, Mihál I, Gajdoš P, Jarčuška B. The effect of canopy openness of European beech (Fagus sylvatica) forests on ground-dwelling spider communities. Insect Conservation and Diversity. 2020;13(3):250–261. doi: 10.1111/icad.12380. DOI

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs. 2014;84(1):45–67. doi: 10.1890/13-0133.1. DOI

Chao A, Ma KH, Hsieh TC. iNEXT (iNterpolation and EXTrapolation) Online: Software for Interpolation and Extrapolation of Species Diversity. Program and User’s Guide. http://chao.stat.nthu.edu.tw/wordpress/software_download/ 2016

Clarke KR. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology. 1993;18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x. DOI

Csaszar P, Torma A, Galle-Szpisjak N, Tolgyesi C, Galle R. Efficiency of pitfall traps with funnels and/or roofs in capturing ground-dwelling arthropods. European Journal of Entomology. 2018;115:15–24. doi: 10.14411/eje.2018.003. DOI

De Jong Y, Verbeek M, Michelsen V, Bjørn P, Los W, Steeman F, Bailly N, Basire C, Chylarecki P, Stloukal E, Hagedorn G, Wetzel F, Glöckler F, Kroupa A, Korb G, Hoffmann A, Häuser C, Kohlbecker A, Müller A, Güntsch A, Stoev P, Penev L. Fauna Europaea—all European animal species on the web. Biodiversity Data Journal. 2014;2:e4034. doi: 10.3897/BDJ.2.e4034. PubMed DOI PMC

Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs. 1997;67(3):345–366. doi: 10.1890/0012-9615(1997)067[0345:SAAIST. DOI

Dvořák L, Landolt JP. Social wasps trapped in the Czech Republic with syrup and fermented fruit and comparison with similar studies (Hymenoptera Vespidae) Bulletin of Insectology. 2006;59(2):115–120.

Elek Z, Magura T, Tóthmérész T. Impacts of non-native Norway spruce plantation on abundance and species richness of ground beetles (Coleoptera: Carabidae) Web Ecology. 2001;2:32–37. doi: 10.5194/we-2-32-2001. DOI

Graves S, Piepho H, Dorai-Raj LSwhfS. multcompView: visualizations of paired comparisons. R package version 0.1-9https://CRAN.R-project.org/package=multcompView 2023

Hilmers T, Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J, Butt N. Biodiversity along temperate forest succession. Journal of Applied Ecology. 2018;55(6):2756–2766. doi: 10.1111/1365-2664.13238. DOI

Hohbein RR, Conway CJ. Pitfall traps: a review of methods for estimating arthropod abundance. Wildlife Society Bulletin. 2018;42(4):597–606. doi: 10.1002/wsb.928. DOI

Joelsson K, Hjältén J, Work T. Uneven-aged silviculture can enhance within stand heterogeneity and beetle diversity. Journal of Environmental Management. 2018;205:1–8. doi: 10.1016/j.jenvman.2017.09.054. PubMed DOI

Koivula M, Kotze DJ, Hiisivuori L, Rita H. Pitfall trap efficiency: do trap size, collecting fluid and vegetation structure matter? Annales Entomologicae Fennicae. 2003;14:1–14.

Kozel P, Sebek P, Platek M, Benes J, Zapletal M, Dvorsky M, Lanta V, Dolezal J, Bace R, Zbuzek B, Cizek L. Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. Journal of Applied Ecology. 2021;58(12):2951–2961. doi: 10.1111/1365-2664.14019. DOI

Leidinger J, Blaschke M, Ehrhardt M, Fischer A, Gossner MM, Jung K, Kienlein S, Kózak J, Michler B, Mosandl R, Seibold S, Wehner K, Weisser WW. Shifting tree species composition affects biodiversity of multiple taxa in Central European forests. Forest Ecology and Management. 2021;498:119552. doi: 10.1016/j.foreco.2021.119552. DOI

Lenth R. https://CRAN.R-project.org/package=emmeans. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.82023

Lettenmaier L, Seibold S, Bässler C, Brandl R, Gruppe A, Müller J, Hagge J. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia. 2022;198(3):825–834. doi: 10.1007/s00442-022-05141-8. PubMed DOI

Macagno ALM, Hardersen S, Nardi G, Lo Giudice G, Mason F. Measuring saproxylic beetle diversity in small and medium diameter dead wood: the grab-and-go method. European Journal of Entomology. 2015;112(3):510–519. doi: 10.14411/eje.2015.049. DOI

McCravy KW, Willand JE. Effects of pitfall trap preservative on collections of carabid beetles (Coleoptera: Carabidae) The Great Lakes Entomologist. 2007;40(2):6.

Mertlik J. Review of the saproxylic click-beetles (Coleoptera: Elateridae) in Eastern Bohemia (Czech Republic), with special emphasis on species of the oak forests. Elateridarium. 2017;11:17–110.

Montgomery GA, Belitz MW, Guralnick RP, Tingley MW. Standards and best practices for monitoring and benchmarking insects. Frontiers in Ecology and Evolution. 2021;8:579193. doi: 10.3389/fevo.2020.579193. DOI

Nakládal O, Zumr V, Remeš J, Macháčová M, Pešková V. Heritage trees as an important sanctuary for saproxylic beetles in the Central European landscape: a case study from litovelské Pomoraví, Czech Republic. Forests. 2022;13(7):1128. doi: 10.3390/f13071128. DOI

Oettel J, Lapin K. Linking forest management and biodiversity indicators to strengthen sustainable forest management in Europe. Ecological Indicators. 2021;122:107275. doi: 10.1016/j.ecolind.2020.107275. DOI

Økland BA. Comparison of three methods of trapping saproxylic beetles. European Journal of Entomology. 1996;93:195–210.

Oksanen J, Simpson G, Blanchet FG, Kindt RF, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J. https://CRAN.R-project.org/package=vegan. vegan: Community Ecology Package. R package version 2.6-22022

Parmain G, Bouget C, Didham R, Jonsell M. Large solitary oaks as keystone structures for saproxylic beetles in European agricultural landscapes. Insect Conservation and Diversity. 2018;11(1):100–115. doi: 10.1111/icad.12234. DOI

Parmain G, Bouget C, Müller J, Horak J, Gossner MM, Lachat T, Isacsson G. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests? Bulletin of Entomological Research. 2015;105(1):101–109. doi: 10.1017/S0007485314000741. PubMed DOI

Pinheiro J, Bates D. https://CRAN.R-project.org/package=nlme. nlme: Linear and Nonlinear Mixed Effects. Models. R package version 3.1-1622023

Podrázský V, Remeš J, Farkač J. Composition of ground-beetle communities (Coleoptera:Carabidae) in forest stands with differentiated species composition and management system. Zprávy Lesnického Výzkumu. 2010;55:10–15.

R Core Team . R. Foundation for Statistical Computing; Vienna: 2023.

Redolfi De Zan L, Bellotti F, D’Amato D, Carpaneto GM. Saproxylic beetles in three relict beech forests of central Italy: analysis of environmental parameters and implications for forest management. Forest Ecology and Management. 2014;328:229–244. doi: 10.1016/j.foreco.2014.05.040. DOI

Rodríguez-Flores MS, Seijo-Rodríguez A, Escuredo O, Seijo-Coello MDC. Spreading of Vespa velutina in northwestern Spain: influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. Journal of Pest Science. 2019;92(2):557–565. doi: 10.1007/s10340-018-1042-5. DOI

Rothacher J, Hagge J, Bässler C, Brandl R, Gruppe A, Müller J. Logging operations creating snags, logs, and stumps under open and closed canopies promote stand-scale beetle diversity. Forest Ecology and Management. 2023;540:121022. doi: 10.1016/j.foreco.2023.121022. DOI

Ruchin AB, Egorov LV. Vertical stratification of beetles in deciduous forest communities in the centre of european russia. Diversity. 2021;13(11):508. doi: 10.3390/d13110508. DOI

Ruchin AB, Egorov LV, Khapugin AA. Usage of fermental traps for the study of the species diversity of coleoptera. Insects. 2021;12:407. doi: 10.3390/insects12050407. PubMed DOI PMC

Ruchin AB, Egorov LV, Khapugin AA. Usage of fermental traps for the study of the species diversity of coleoptera in open biotopes. Insects. 2023;14:404. doi: 10.3390/insects14040404. PubMed DOI PMC

Ruchin AB, Egorov LV, MacGowan I, Makarkin VN, Antropov AV, Gornostaev NG, Khapugin AA, Dvořák L, Esin MN. Post-fire insect fauna explored by crown fermental traps in forests of the European Russia. Scientific Reports. 2021;11(1):21334. doi: 10.1038/s41598-021-00816-3. PubMed DOI PMC

Šance NR. Care plan for the nature reserve Šance for the period 2022-2031. 2022. https://envis.praha.eu/PlanyPece_oZCHU/PR_Sance_2022_2031/Plan%20pece%20pro%20PR%20Sance%20pro%20roky%202022-2031.pdf https://envis.praha.eu/PlanyPece_oZCHU/PR_Sance_2022_2031/Plan%20pece%20pro%20PR%20Sance%20pro%20roky%202022-2031.pdf

Sebek P, Vodka S, Bogusch P, Pech P, Tropek R, Weiss M, Zimova K, Cizek L. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. Forest Ecology and Management. 2016;380:172–181. doi: 10.1016/j.foreco.2016.08.052. DOI

Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, Ulyshen MD, Müller J. Experimental studies of dead-wood biodiversity—a review identifying global gaps in knowledge. Biological Conservation. 2015;191:139–149. doi: 10.1016/j.biocon.2015.06.006. DOI

Šmilauer P, Lepš J. Multivariate analysis of ecological data using CANOCO 5. Cambridge: Cambridge University Press; 2014. DOI

Spina P, Parisi F, Antonucci S, Garfì V, Marchetti M, Santopuoli G, Johnson C. Tree-related microhabitat diversity as a proxy for the conservation of beetle communities in managed forests of Fagus sylvatica. Forestry: An International Journal of Forest Research. 2023:cpad034. doi: 10.1093/forestry/cpad034. DOI

Sroka K, Finch O-D. Ground beetle diversity in ancient woodland remnants in north-western Germany (Coleoptera, Carabidae) Journal of Insect Conservation. 2006;10(4):335–350. doi: 10.1007/s10841-006-9008-y. DOI

Touroult J, Witté I. Beer, wine, or fruit juice: which is best? A case study of bait efficiency to sample saproxylic beetles (coleoptera) in an Oak Woodland. The Coleopterists Bulletin. 2020;74(4):763–771. doi: 10.1649/0010-065X-74.4.763. DOI

Vogel S, Bussler H, Finnberg S, Müller J, Stengel E, Thorn S. Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches. Insect Conservation and Diversity. 2021;14(1):132–143. doi: 10.1111/icad.12442. DOI

Weiss M, Kozel P, Zapletal M, Hauck D, Prochazka J, Benes J, Cizek L, Sebek P. The effect of coppicing on insect biodiversity. Small-scale mosaics of successional stages drive community turnover. Forest Ecology and Management. 2021;483:118774. doi: 10.1016/j.foreco.2020.118774. DOI

Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag; New York: 2016.

Zumr V, Nakládal O, Bílek L, Remeš J. The diameter of beech snags is an important factor for saproxylic beetle richness: implications for forest management and conservation. Forest Ecosystems. 2023;10:100143. doi: 10.1016/j.fecs.2023.100143. DOI

Zumr V, Remeš J, Nakládal O. Small-scale spontaneous dynamics in temperate beech stands as an importance driver for beetle species richness. Scientific Reports. 2022;12(1):11974. doi: 10.1038/s41598-022-16352-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...