Post-fire insect fauna explored by crown fermental traps in forests of the European Russia
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34716333
PubMed Central
PMC8556309
DOI
10.1038/s41598-021-00816-3
PII: 10.1038/s41598-021-00816-3
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Ecosystem MeSH
- Insecta * MeSH
- Forests * MeSH
- Wildfires * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Russia MeSH
Wildfires considerably affect forest ecosystems. However, there is a lack of data on the post-fire status of insect communities in these ecosystems. This paper presents results of a study conducted in 2019 which considered the post-fire status of the insect fauna in a Protected Area, Mordovia State Nature Reserve (Republic of Mordovia, centre of European Russia), considered as regional hotspot of insect diversity in Mordovia. We sampled insects on intact (unburned, control) and fire-damaged (burnt in 2010) sites and compared the alpha-diversity between sites. In total, we sampled and analysed 16,861 specimens belonging to 11 insect orders, 51 families and 190 species. The largest orders represented in the samples were Coleoptera (95 species), Diptera (54 species), Hymenoptera (21 species), and Neuroptera (11 species). Other insect orders were represented by between one and four species. The largest four orders (Coleoptera, Lepidoptera, Diptera and Hymenoptera) represented 96.7% of all studied specimens. We found that in the ninth year after low intensity surface fire damage, the insect diversity had returned to a similar level to that of the control (unburned) sites. Sites damaged by crown wildfire differed considerably from other sites in terms of a negative impact on both species diversity and the number of specimens. This indicates the serious effect of the crown fires on the biodiversity and consequent long-term recovery of the damaged ecosystem.
Mordovia State Nature Reserve and National Park Smolny Saransk Russia
N K Koltsov Institute of Developmental Biology RAS Moscow Russia
National Museums of Scotland Collection Centre Edinburgh Scotland UK
Prisursky State Nature Reserve Cheboksary Russia
Tři Sekery Mariánské Lázně Czech Republic
Tyumen State University Tyumen Russia
Zoological Museum Moscow State University Moscow Russia 125009
See more in PubMed
Stephenson C, Handmer J, Robyn B. Estimating the economic, social and environmental impacts of wildfires in Australia. Environ. Hazards. 2013;12:93–111. doi: 10.1080/17477891.2012.703490. DOI
Doerr SH, Santín C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci. 2016;371(1696):20150345. doi: 10.1098/rstb.2015.0345. PubMed DOI PMC
Dusaeva GKh, Kalmykova OG, Dusaeva NV. Fire influence on dynamics of above-ground phytomass in steppe plant communities in the Burtinskaya Steppe (Orenburg State Nature Reserve, Russia) Nat. Conserv. Res. 2019;4(Suppl. 1):78–92. doi: 10.24189/ncr.2019.050. DOI
Koltz AM, Burkle LA, Pressler Y, Dell JE, Vidal MC, Richards LA, Murphy SM. Global change and the importance of fire for the ecology and evolution of insects. Curr. Opin. Insect Sci. 2018;29:110–116. doi: 10.1016/j.cois.2018.07.015. PubMed DOI
Malevsky-Malevich SP, Molkentin EK, Nadyozhina ED, Shklyarevich OB. An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century. Clim. Change. 2008;86:463–474. doi: 10.1007/s10584-007-9295-7. DOI
Anisimov OA, Sherstiukov AB. Evaluating the effect of environmental factors on permafrost in Russia. Earth's Cryosphere. 2016;20(2):90–99.
Aleinikov AA. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: Possible anthropogenic causes and long-term effects. Nat. Conserv. Res. 2019;4(Suppl. 1):21–34. doi: 10.24189/ncr.2019.033. DOI
Rozhkov YuF, Kondakova MYu. Assessment of the post-fire forest restoration dynamics in the Olekminsky State Nature Reserve (Russia) according to data of Landsat satellite images. Nat. Conserv. Res. 2019;4(Suppl. 1):1–10. doi: 10.2418/ncr.2019.014. DOI
Shvetsov EG, Ponomarev EI. Postfire effects in Siberian larch stands on multispectral satellite data. Contemp. Probl. Ecol. 2020;13(1):104–112. doi: 10.1134/S1995425520010096. DOI
Shvetsov EG, Kukavskaya EA, Buryak LV. Satellite monitoring of the state of forest vegetation after fire impacts in the Zabaikal Region. Contemp. Probl. Ecol. 2016;9(6):702–710. doi: 10.1134/S1995425516060123. DOI
Kazeev KSh, Poltoratskaya TA, Yakimova AS, Odobashyan MYu, Shkhapatsev AK, Kolesnikov SI. Post-fire changes in the biological properties of the brown soils in the Utrish State Nature Reserve (Russia) Nat. Conserv. Res. 2019;4(Suppl. 1):93–104. doi: 10.24189/ncr.2019.055. DOI
Kopoteva TA, Kuptsova VA. Effects of pyrogenic factor on wetlands of Petrovskaya Pad' (Jewish Autonomous Region, Russia) Nat. Conserv. Res. 2019;4(Suppl. 1):35–44. doi: 10.24189/ncr.2019.034. DOI
Lebedinskii AA, Noskova OS, Dmitriev AI. Post-fire recovery of terrestrial vertebrates in the Kerzhensky State Nature Biosphere Reserve (Central Volga Region, Russia) Nat. Conserv. Res. 2019;4(Suppl. 1):45–56. doi: 10.24189/ncr.2019.049. DOI
Shinkarenko SS, Ivanov NM, Berdengalieva AN. Spatio-temporal dynamics of burnt areas in federal Protected Areas in the south-east of European Russia. Nat. Conserv. Res. 2021;6(3):23–44. doi: 10.24189/ncr.2021.035. DOI
Hoffmann BD. Responses of ant communities to experimental fire regimes on rangelands in the Victoria River District of the Northern Territory. Aust. Ecol. 2003;28:182–195. doi: 10.1046/j.1442-9993.2003.01267.x. DOI
Murphy SM, Richards LA, Wimp GM. Editorial: Arthropod interactions and responses to disturbance in a changing world. Front. Ecol. Evol. 2020;8:93. doi: 10.3389/fevo.2020.00093. DOI
Turner MG. Disturbance and landscape dynamics in a changing world. Ecology. 2010;91:2833–2849. doi: 10.1890/10-0097.1. PubMed DOI
Gandhi KJK, Spence JR, Langor DW, Morgantini LE. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae) Oikos. 2011;120:26–37. doi: 10.1111/j.1600-0706.2010.18765.x. DOI
Buckingham S, Murphy N, Gibb H. Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. For. Ecol. Manag. 2019;434:279–288. doi: 10.1016/j.foreco.2018.12.030. DOI
Niklasson M, Granström A. Numbers and sizes of fires, long-term spatially explicit fire history in a Swedish boreal landscape. Ecology. 2000;81:1484–1499. doi: 10.1890/0012-9658(2000)081[1484:NASOFL]2.0.CO;2. DOI
Wikars L-O. Immediate effects offire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 2001;141:189–200. doi: 10.1016/S0378-1127(00)00328-5. DOI
Egorov, L. V., Podshivalina, V. N. & Kurulenko, D. Yu. Postpyrogenic changes in the fauna of arthropods-herpetobionts on the territory of the Prisursky State Nature Reserve. Long-term processes in natural complexes of reserves in Russia. Velikie Luki, 245–249. (in Russian) (2012).
Gongalsky KB, Persson T. Recovery of soil macrofauna after wildfires in boreal forests. Soil Biol. Biochem. 2013;57:182–191. doi: 10.1016/j.soilbio.2012.07.005. DOI
Ruchin AB, Alekseev SK, Khapugin AA. Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia) Nat. Conserv. Res. 2019;4(Suppl. 1):11–20. doi: 10.24189/ncr.2019.009. DOI
Certini G. Effects of fire on properties of forest soils: A review. Oecologia. 2005;143(1):1–10. doi: 10.1007/s00442-004-1788-8. PubMed DOI
Buddlea CM, Langorb DW, Pohlb GR, Spencec JR. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Cons. 2006;128:346–357. doi: 10.1016/j.biocon.2005.10.002. DOI
Gongalsky KB, Wikars L-O, Persson T. Ground beetle (Coleoptera: Carabidae) responses to a forest wildfire in northern Europe. Russ. Entomol. J. 2008;17(3):273–282.
Gongalsky KB. The spatial distribution of large soil invertebrates on burned areas in xerophilous ecosystems of the Black Sea coast of the Caucasus. Arid. Ecosyst. 2011;17(4):260–266. doi: 10.1134/S2079096111040068. DOI
Muona J, Rutanen I. The short-term impact offire on the beetle fauna in boreal coniferous forest. Ann. Zool. Fenn. 1994;31:109–121.
Boulanger Y, Sirois L. Postfire succession of saproxylic arthropods, with emphasis on Coleoptera, in the north boreal forest of Quebec. Environ. Entomol. 2007;36(1):128–141. doi: 10.1603/0046-225X-36.1.128. PubMed DOI
Azeria ET, Ibarzabal J, Hébert C. Effects of habitat characteristics and interspecific interactions on co-occurrence patterns of saproxylic beetles breeding in tree boles after forest fire: Null model analyses. Oecologia. 2012;168:1123–1135. doi: 10.1007/s00442-011-2180-0. PubMed DOI
Atchison RA, Hulcr J, Lucky A. Managed fire frequency significantly influences the litter arthropod community in longleaf pine Flatwoods. Environ. Entomol. 2018;47:575–585. doi: 10.1093/ee/nvy038. PubMed DOI
Ulyshen MD, Lucky A, Work TT. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 2020;10:9630. doi: 10.1038/s41598-020-66752-w. PubMed DOI PMC
Delettre YR. Fire disturbance of a chironomid (Diptera) community on Heathlands. J. Appl. Ecol. 1994;31(3):560–570. doi: 10.2307/2404450. DOI
Swengel AB, Swengel SR. Benefit of permanent non-fire refugia for Lepidoptera conservation in fire-managed sites. J. Insect Conserv. 2007;11:263–279. doi: 10.1007/s10841-006-9042-9. DOI
Sánchez MÁC, Asís JD, Gayubo SF, Tormos J, González JA. The effects of wildfire on Spheciformes wasp community structure: The importance of local habitat conditions. J. Insect Conserv. 2010;15(4):487–503. doi: 10.1007/s10841-010-9322-2. DOI
Elia M, Lafortezza R, Tarasco E, Colangelo G, Sanesia G. The spatial and temporal effects of fire on insect abundance in Mediterranean forest ecosystems. For. Ecol. Manag. 2012;263:262–267. doi: 10.1016/j.foreco.2011.09.034. DOI
Bogusch P, Blažej L, Trýzna M, Heneberg P. Forgotten role of fires in Central European forests: Critical importance of early post-fire successional stages for bees and wasps (Hymenoptera: Aculeata) Eur. J. Forest Res. 2015;134(1):153–166. doi: 10.1007/s10342-014-0840-4. DOI
Durska E. Effects of fire on scuttle flies (Diptera: Phoridae) in a pine forest in Poland. Entomologica Fennica. 2015;26:181–193. doi: 10.33338/ef.84645. DOI
Pons P. Delayed effects of fire and logging on cicada nymph abundance. J. Insect Conserv. 2015;19:601–606. doi: 10.1007/s10841-015-9781-6. DOI
Lazarina M, Sgardelis SP, Tscheulin T, Devalez J, Mizerakis V, Kallimanis AS, Papakonstantinou S, Kyriazis T, Petanidou T. The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodivers. Conserv. 2017;26:115–131. doi: 10.1007/s10531-016-1228-1. DOI
Ruchin AB, Khapugin AA. Red data book invertebrates in a protected area of European Russia. Acta Zoologica Academiae Scientiarum Hungaricae. 2019;65(4):349–370. doi: 10.17109/AZH.65.4.349.2019. DOI
Khapugin AA, Silaeva TB. The arrangement of threatened plants in Mordovia: The role of biodiversity research centers. Écoscience. 2020;27(3):157–164. doi: 10.1080/11956860.2020.1753293. DOI
Tereshkin IS, Tereshkina LV. Vegetation of the Mordovia Reserve. Successive series of the successions. Proc. Mordovia State Nat. Reserve. 2006;7:186–287.
Bayanov NG. Climate changes of the northwest of Mordovia during the period of existence of the Mordovia Reserve according to the meteorological observations in Temnikov. Proc. Mordovia State Nat. Reserve. 2015;14:212–219.
Sieber A, Kuemmerle T, Prishchepov AV, Wendland KJ, Baumann M, Radeloff VC, Baskin LM, Hostert P. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 2013;133:38–51. doi: 10.1016/j.rse.2013.01.021. DOI
Novenko EY, Mazei NG, Kupriyanov DA, Tsyganov AN, Payne RJ, Chernyshov VA, Mazei YA, Volkova EM. Vegetation dynamics and fire history at the southern boundary of the forest vegetation zone in European Russia during the middle and late Holocene. Holocene. 2018;28(2):308–322. doi: 10.1177/0959683617721331. DOI
Kharitonova AO, Kharitonova TI. The effect of landscape pattern on the 2010 wildfire spread in the Mordovia State Nature Reserve, Russia. Nat. Conserv. Res. 2021;6(2):29–41. doi: 10.24189/ncr.2021.022. DOI
Khapugin AA, Vargot EV, Chugunov GG. Vegetation recovery in fire-damaged forests: A case study at the southern boundary of the taiga zone. For. Stud. 2016;64:39–50. doi: 10.1515/fsmu-2016-0003. DOI
Egorov LV, Ruchin AB, Semenov VB, Semionenkov OI, Semishin GB. Checklist of the Coleoptera of Mordovia State Nature Reserve, Russia. ZooKeys. 2020;962:13–122. doi: 10.3897/zookeys.962.54477. PubMed DOI PMC
Bousquet Y. Litteratura Coleopterologica (1758–1900): A guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys. 2016;583:1–776. doi: 10.3897/zookeys.583.7084. DOI
Ruchin AB, Egorov LV, Khapugin AA, Vikhrev NE, Esin MN. The use of simple crown traps for the insects collection. Nat. Conserv. Res. 2020;5(1):87–108. doi: 10.24189/ncr.2020.008. DOI
Ryan KC. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica. 2002;36:13–39. doi: 10.14214/sf.548. DOI
Turner MG, Hargrove WW, Gardner RH, Romme WH. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 1994;5:731–742. doi: 10.2307/3235886. DOI
BC Wildfire Service. 2020. Wildfire Rank. In: Province of British Columbia. Accessed from: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-response/fire-characteristics/rank.
Margalef R. Information theory in ecology. Gen. Syst. 1958;3:36–71.
Shannon CE. A mathematical theory of communication. Bell Syst. Techn. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Magurran AE. Ecological Diversity and Its Measurement. Chapman & Hall; 1996. p. 179.
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics soft-ware package for education and data analysis. Palaeontol. Electron. 2001;4(1):9.
Makarkin VN, Ruchin AB. New data on Neuroptera and Raphidioptera of Mordovia (Russia) Kavkazskij Entomologiceskij Bulleten. 2019;15(1):147–157. doi: 10.23885/181433262019151-147157. DOI
Czechowska W. A comparative analysis of the structure of Neuropteroidea communities of tree canopies in linden-oak-hornbeam forests, light oak forests, mixed coniferous forests and pine forests. Fragm. Faun. 1997;40:127–168. doi: 10.3161/00159301FF1997.40.12.127. DOI
Volkovich TA. Green lacewings (Neuroptera, Chrysopidae) of the «Forest on the Vorskla River» Nature Reserve (Belgorod Province): Fauna and ecology. Entomol. Rev. 2001;81:884–894.
Duelli P, Obrist MK, Flückiger PF. Forest edges are biodiversity hotspots: Also for Neuroptera. Acta Zoologica Hungarica. 2002;48(Suppl. 2):75–87.
Ruchin AB, Makarkin NV. Neuroptera and raphidioptera in the mordovia state nature reserve. Nat. Conserv. Res. 2017;2(2):38–46. doi: 10.24189/ncr.2017.001. DOI
Aspöck H, Aspöck U. Raphidioptera: Kamelhalsfliegen. Ein Überblick zum Einstieg. Entomologica Austriaca. 2009;16:53–72.
Aspöck H, Aspöck U, Rausch H. Raphidiopteren-Larven als Bodenbewohner (Insecta, Neuropteroidea) (Mit Beschreibungen der Larven von Ornatoraphidia, Parvoraphidia und Superboraphidia) Zeitschrift für Angewandte Zoologie. 1975;62:361–375.
Aspöck, H., Aspöck, U. & Hölzel, H. Die Neuropteren Europas. Eine zusammenfassende Darstellung der Systematik, Ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Vols 1 & 2, Goecke and Evers, Krefeld, pp. 495–455 (1980).
Kurochkin AS. Fauna and bionomy of sap beetles (Coleoptera, Nitidulidae) and kateretid beetles (Coleoptera, Kateretidae) of Krasnosamarskoe forestry farm (Samara Region, Russia): Vestnik of Samara University. Nat. Sci. Ser. 2007;8(58):120–128.
Oude JE. Naamlijst van de glanskevers van Nederland en het omliggende gebied (Coleoptera: Nitidulidae and Brachypteridae) Nederlandse Faunistische Mededelinge. 1999;8:11–32.
Alekseev VI, Nikitsky NB. Rare and new for the fauna of the Baltic States beetles (Coleoptera) from the Kaliningrad Region. Acta Zoologica Lituanica. 2008;18(4):254–259. doi: 10.2478/v10043-008-0035-7. DOI
Lasoń A, Holly M. Glischrochilus grandis Tournier, 1872: New species of beetle for the Polish fauna and new data on the occurrence of genus Glischrochilus Reitter, 1873 (Cole-optera: Nitidulidae: Cryptarchinae) Acta entomologica silesiana. 2015;23:1–4.
Nikitsky NB, Osipov IN, Chemeris MV, Semenov VB, Gusakov AA. The beetles of the Prioksko-Terrasny Biosphere Reserve: Xylobiontes, mycetobiontes and Scarabaeidae. Arch. Zool. Museum Moscow State Univ. 1996;XXXVI:1–197.
Tauzin P. Ethologie et chorologie de Protaetia (Liocola) lugubris Herbst, 1786 sur le territoire français (Coleoptera, Cetoniidae, Cetoniinae, Cetoniini) Cetoniimania. 2006;3(1+2):4–38.
Oleksa A, Chybicki IJ, Gawronski R, Svensson GP, Burczyk J. Isolation by distance in saproxylic beetles may increase with niche specialization. J. Insects Conserv. 2013;17:219–233. doi: 10.1007/s10841-012-9499-7. DOI
Urban P, Schulze W. Ein aktueller Nachweis des Marmorierten Rosenkäfers Protaetia marmorata (Fabricius, 1792) in der Senne (Nordrhein-Westfalen) (Mitteilungen zur Insektenfauna Westfalens XXII) Mitteilungen der Arbeitsgemeinschaft westfälischer Entomologen. 2017;33(1):15–19.
Ruchin AB, Egorov LV, Khapugin AA. Seasonal activity of Coleoptera attracted by fermental crown traps in forest ecosystems of Central Russia. Ecol. Questions. 2021;32(1):37–53. doi: 10.12775/EQ.2021.004. DOI
Oleksa A, Ulrich W, Gawronski R. Occurrence of the marbled rose-chafer (Protaetia lugubris Herbst, Coleoptera, Cetoniidae) in rural avenues in northern Poland. J. Insects Conserv. 2006;10:241–247. doi: 10.1007/s10841-005-4830-1. DOI
Nikitsky, N. B. & Vlasov, D. V. Family Scarabaeidae Latreille, 1802. In: Nikitsky N.B. The beetles (Insecta, Coleoptera) of the Moscow oblast. Part. 1. Direct MEDIA. pp. 643–679 (2016) (in Russian).
Ruchin AB, Egorov LV, Sazhnev AS, Polumordvinov OA, Ishin RN. Present distribution of Protaetia fieberi (Kraatz, 1880) (Insecta, Coleoptera, Scarabaeidae) in the European part of Russia. Biharean Biologist. 2019;13(1):12–16.
Tauzin P. Chorologie et éco-éthologie de Protaetia (Potosia) fieberi Kraatz 1880 en France (Coleoptera, Cetoniinae, Cetoniini) Cetoniimania. 2007;3(4):115–146.
Bílý S, Mehl O. Longhorn Beetles (Coleoptera, Cerambycidae) of Fennoscandia and Denmark. Brill; 1989. p. 200.
Gutowski JM, Ługowoj J, Maciejewski KH. Leptura thoracica Creutzer, 1799 (Coleoptera: Cerambycidae) in Poland. Wiad. Entomol. 1994;13(3):157–165.
Sama, G. Atlas of the Cerambycidae of Europe and the Mediterranean Area. Vol. 1. Northern, Western, Central and Eastern Europe British Isles and Continental Europe from France (excl. Corsica) to Scandinavia and Urals. Kabourek, Zlín, p. 173 (2002).
Karpiński L, Szczepański WT, Boldgiv B, Walczak M. New data on the longhorn beetles of Mongolia with particular emphasis on the genus Eodorcadion Breuning, 1947 (Coleoptera, Cerambycidae) ZooKeys. 2018;739:107–150. doi: 10.3897/zookeys.739.23675. PubMed DOI PMC
Danilevsky ML, Ruchin AB, Egorov LV. Mass collection of two rare longicorn-species (Coleoptera, Cerambycidae) in Central Russia. Humanity space. 2019;8(9):1179–1183.
Ruchin AB, Egorov LV. Fauna of longicorn beetles (Coleoptera: Cerambycidae) of Mordovia. Russ. Entomol. J. 2018;27(2):161–177. doi: 10.15298/rusentj.27.2.07. DOI
Ruchin AB, Egorov LV, Khapugin AA. Usage of fermental traps for studying the species diversity of Coleoptera. Insects. 2021;12:407. doi: 10.3390/insects12050407. PubMed DOI PMC
Cherepanov AI. The Longhorn Beetles of Northern Asia (Prioninae, Disteniinae, Lepturinae, Aseminae) Nauka Publ; 1979. p. 472.
Starzyk JR, Partyka M. Study on the morphology, biology and distribution of Obrium cantharinum (L.) (Col., Cerambycidae) J. Appl. Entomol. 1993;116(1–5):333–344. doi: 10.1111/j.1439-0418.1993.tb01205.x. DOI
Lindhe A, Jeppsson T, Ehnstrom B. Longhorn beetles in Sweden changes in distribution and abundance over the last two hundred years. Entomologisk Tidskrift. 2010;131(4):241–508.
Egorov, L. V. & Sysoletina, L. G. On the anthophilic longhorn beetles of the Chuvash ASSR. Terrestrial and aquatic ecosystems, pp. 92–104 (1986) (in Russian).
Moretti M, Barbalat S. The effects of wildfires on wood-eating beetles in deciduous forests on the southern slope of the Swiss Alps. For. Ecol. Manag. 2004;187(1):85–103. doi: 10.1016/S0378-1127(03)00314-1. DOI
Brodie BS, Popescu VD, Iosif R, Ciocanea C, Manolache S, Vanau G, Gavrilidis AA, Serafim R, Rozylowicz L. Non-lethal monitoring of longicorn beetle communities using generic pheromone lures and occupancy models. Ecol. Ind. 2019;101:330–340. doi: 10.1016/j.ecolind.2019.01.038. DOI
Grundel R, Pavlovic NB, Sulzman CL. Habitat use by the endangered Karner blue butterfly in oak woodlands: The influence of canopy cover. Biol. Cons. 1998;85:47–53. doi: 10.1016/S0006-3207(97)00165-1. PubMed DOI
Huntzinger M. Effects of fire management practices on butterfly diversity in the forested western United States. Biol. Cons. 2003;113(1):1–12. doi: 10.1016/S0006-3207(02)00356-7. DOI
Elia M, Lafortezza R, Tarasco E, Colangelo G, Sanesi G. Influenza degli incendi boschivi sulla biodiversità dell’entomofauna: Un caso di studio in Puglia. Forest. 2011;8:13–21. doi: 10.3832/efor0648-008. DOI
Vogel JA, Koford RR, Debinski DM. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning. J. Insect Conserv. 2010;14:663–677. doi: 10.1007/s10841-010-9295-1. DOI
Swengel AB. Effects of fire and hay management on abundance of prairie butterflies. Biol. Cons. 1996;76:73–85. doi: 10.1016/0006-3207(95)00085-2. DOI
Ruchin A, Antropov A. Wasp fauna (Hymenoptera: Bethylidae, Chrysididae, Dryinidae, Tiphiidae, Mutllidae, Scoliidae, Pompilidae, Vespidae, Sphecidae, Crabronidae & Trigonalyidae) of Mordovia State Nature Reserve and its surroundings in Russia. J. Threatened Taxa. 2019;11(2):13195–13250. doi: 10.11609/jot.4216.11.2.13195-13250. DOI
Dvořák L. Social wasps (Hymenoptera: Vespidae) trapped with beer in European forest ecosystems. Acta Mus. Morav. Sci. Biol. (Brno) 2007;92:181–204.
Sorvari J. Social wasp (Hymenoptera: Vespidae) beer trapping in Finland 2008–2012: A German surprise. Entomologica Fennica. 2013;24(3):156–164. doi: 10.33338/ef.8983. DOI
Pesson P, Louveaux J. Pollinisation et productions végétales. INRA; 1984. p. 663.
Richter MR. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 2000;45(1):121–150. doi: 10.1146/annurev.ento.45.1.121. PubMed DOI
Kasper ML, Reeson AF, Mackay DA, Austin AD. Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Soc. 2008;55:288–295. doi: 10.1007/s00040-008-1004-7. DOI
Clemente MA, Ceridório HF, Mendes DRS, Guevara R, Silveira OT, Giannotti E, Moleiro HR, Vieira KM. Impacts of fire in social wasps community in an area of regenerating brazilian savanna. Sociobiology. 2019;66(4):582–591. doi: 10.13102/sociobiology.v66i4.3590. DOI
Raveret-Richter M. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 2000;45:121–150. doi: 10.1146/annurev.ento.45.1.121. PubMed DOI
Jeanne RL. The adaptiveness of social wasp nest architecture. Q. Rev. Biol. 1975;50:267–287. doi: 10.1086/408564. DOI
Wenzel JW. Evolution of nest architecture. In: Ross KG, Matthews RW, editors. The Social Biology of Wasps. Cornell University Press; 1991. pp. 480–519.
Dvořák L, Dvořáková K, Oboňa J, Ruchin AB. Selected Diptera families caught with beer traps in the Republic of Mordovia (Russia) Nat. Conserv. Res. 2020;5(4):65–77. doi: 10.24189/ncr.2020.057. DOI
Krivosheina NP. Family Anisopodidae. In: Papp L, Darvas B, editors. Manual of Palaearctic Diptera. Science Herald; 1997. pp. 239–248.
Rotheray GE. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae) Zootaxa. 2014;3900(1):50–76. doi: 10.11646/zootaxa.3900.1.3. PubMed DOI
Ruchin AB, Carr JF, Dvořák L, Esin MN, Khapugin AA. Pseudotephritis millepunctata (Hennig, 1939) (Diptera Ulidiidae): New species in European fauna. REDIA. 2020;103:25–27. doi: 10.19263/REDIA-103.20.05. DOI
Krivosheina NP, Krivosheina MG. Saproxylic Diptera (Insecta) of the Lazovsky State Nature Reserve (Russia) Nat. Conserv. Res. 2019;4(3):78–92. doi: 10.24189/ncr.2019.052. DOI
Bächli, G. & Rocha Pité, M. T. Family Drosophilidae. P. 186–220. In: Catalogue of Palaearctic Diptera. Vol. 10. Clusiidae–Chloropidae. Akadémiai Kiadó, Budapest (1984).
Gornostaev NG. A review of drosophilid flies (Diptera, Drosophilidae) of Middle Asia and Kazakhstan. Entomologicheskoe Obozrenie. 1995;74(1):214–223.
Gornostaev NG. Addition to the fauna of drosophilid flies (Diptera, Drosophilidae) of Russia. Russ. Entomol. J. 1997;6(1–2):113–118.
Gornostaev NG. Ecological classification of drosophilid flies (Diptera, Drosophilidae) Entomologicheskoe Obozrenie. 1996;75(3):698–705.
Máca J. Revision of Palaearctic species of Amiota subg. Phortica (Diptera, Drosophilidae) Acta ent. bohemoslov. 1977;74:115–130.
Bächli G, Thunes K. Leucophenga quinquemaculata Strobl (Diptera, Drosophilidae) from Norway. Fauna Norvegica. 1992;39(2):81–84.
Jonsell M, Nordlander G, Jonsson M. Colonization patterns of insects breeding in wood-decaying fungi. J. Insect Conserv. 1999;3:145–161. doi: 10.1023/A:1009665513184. DOI
Edwards FW. Amiota alboguttata Wahlb. in Dorset (Diptera, Drosophilidae) Entomologist. 1936;69:218.
Kovalev VG. Faunistic and ecological material on flies of the genus Lonchaea (Diptera, Lonchaeidae) from Tuva. Entomologicheskoe Obozrenie. 1976;55:934–945.
MacGowan, I. & Rotheray, G. E. British Lonchaeidae. Diptera, Cyclorrhapha, Acalyptratae. Handbooks for the Identification of British Insects, 10 (15). Royal Entomological Society, London (2008).
Godfrey A. Lonchaea carpathica Kovalev (Diptera, Lonchaeidae) new to Britain and other Diptera from Cherkley Wood, Leatherhead. Surrey. Dipterists Digest (Second Series) 2017;24:153–155.
MacGowan I, Vikhrev NE, Krivosheina MG, Ruchin AB, Esin MN. New records of Diptera from the Republic of Mordovia. Russ. Far Eastern Entomol. 2021;423:9–20. doi: 10.25221/fee.423.3. DOI
Gaponov SP, Panteleeva NYu. New data of saprobiont larval feeding habits of Brachycera (Diptera) in the Middle Podonye: III: Superfamilies Muscoidea and Oestroidea. Proc. Voronezh State Univ Ser. Chem. Biol. Pharm. 2017;1:49–56.
Vikhrev NE, Erofeeva EA. Review of the Phaonia pallida group (Diptera: Muscidae) Russ. Entomol. J. 2018;27:315–322. doi: 10.15298/rusentj.27.3.14. DOI
Gisondi S, Rognes K, Badano D, Pape T, Cerretti P. The world Polleniidae (Diptera, Oestroidea): Key to genera and checklist of species. ZooKeys. 2020;971:105–155. doi: 10.3897/zookeys.971.51283. PubMed DOI PMC
Duelli P, Obrist MK, Wermelinger B. Windthrow induces changes of faunistic biodiversity in alpine spruce forests. For. Snow Landsc. Res. 2002;77(1/2):117–131.
Moretti M, Duelli P, Obrist MK. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia. 2006;149(2):312–327. doi: 10.1007/s00442-006-0450-z. PubMed DOI
Campbell JW, Grodsky SM, Keller O, Vigueira CC, Vigueira PA, Waite ES, Greenberg CH. Response of beetles (Coleoptera) to repeated applications of prescribed fire and other fuel reduction techniques in the southern Appalachian Mountains. For. Ecol. Manag. 2018;429:294–299. doi: 10.1016/j.foreco.2018.07.022. DOI
Chen ZZ, Liu LY, Liu SY, Cheng LY, Wang XH, Xu YY. Response of Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae) Under Long and Short Photoperiods. J. Insect Sci. 2017;17(2):1–9. doi: 10.1093/jisesa/iex005. PubMed DOI PMC
Swengel AB. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 2001;10:1141–1169. doi: 10.1023/A:1016683807033. DOI
Gongalsky KB. Perfugia as a mechanism for the recovery of soil fauna after ecosystem disturbances. Russ. J. Ecosyst. Ecol. 2017;2(4):1. doi: 10.21685/2500-0578-2017-4-3. DOI
Hjältén J, Hägglund R, Löfroth T, Roberge J-M, Dynesius M, Olsson J. Forest restoration by burning and gap cutting of voluntary set-asides yield distinct immediate effects on saproxylic beetles. Biodivers. Conserv. 2017;26:1623–1640. doi: 10.1007/s10531-017-1321-0. DOI
Gutowski JM, Sućko K, Borowski J, Kubisz D, Mazur MA, Melke A, Mokrzycki T, Plewa R, Żmihorski M. Post-fire beetle succession in a biodiversity hotspot: Białowieża Primeval Forest. For. Ecol. Manag. 2020;461:117893. doi: 10.1016/j.foreco.2020.117893. DOI