Tacrolimus CYP3A Single-Nucleotide Polymorphisms and Preformed T- and B-Cell Alloimmune Memory Improve Current Pretransplant Rejection-Risk Stratification in Kidney Transplantation
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35833145
PubMed Central
PMC9272702
DOI
10.3389/fimmu.2022.869554
Knihovny.cz E-zdroje
- Klíčová slova
- acute rejection, calcineurin inhibitors immunosuppression, genetics, immunobiology, kidney transplantation,
- MeSH
- cytochrom P-450 CYP3A * genetika imunologie metabolismus MeSH
- hodnocení rizik MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- paměťové B-buňky * imunologie MeSH
- T-lymfocyty * imunologie MeSH
- takrolimus * farmakologie terapeutické užití MeSH
- transplantace ledvin * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CYP3A protein, human MeSH Prohlížeč
- cytochrom P-450 CYP3A * MeSH
- takrolimus * MeSH
Achieving fast immunosuppression blood exposure after kidney transplantation is key to abrogating both preformed and de novo anti-donor humoral and cellular alloresponses. However, while tacrolimus (TAC) is the cornerstone immunosuppressant inhibiting adaptive alloimmunity, its blood exposure is directly impacted by different single-nucleotide polymorphisms (SNPs) in CYP3A TAC-metabolizing enzymes. Here, we investigated how functional TAC-CYP3A genetic variants (CYP3A4*22/CYP3A5*3) influence the main baseline clinical and immunological risk factors of biopsy-proven acute rejection (BPAR) by means of preformed donor-specific antibodies (DSAs) and donor-specific alloreactive T cells (DSTs) in a large European cohort of 447 kidney transplants receiving TAC-based immunosuppression. A total of 70 (15.7%) patients developed BPAR. Preformed DSAs and DSTs were observed in 12 (2.7%) and 227 (50.8%) patients, respectively. According to the different CYP3A4*22 and CYP3A5*3 functional allele variants, we found 4 differential new clusters impacting fasting TAC exposure after transplantation; 7 (1.6%) were classified as high metabolizers 1 (HM1), 71 (15.9%) as HM2, 324 (72.5%) as intermediate (IM), and 45 (10.1%) as poor metabolizers (PM1). HM1/2 showed significantly lower TAC trough levels and higher dose requirements than IM and PM (p < 0.001) and more frequently showed TAC underexposure (<5 ng/ml). Multivariate Cox regression analyses revealed that CYP3A HM1 and IM pharmacogenetic phenotypes (hazard ratio (HR) 12.566, 95% CI 1.99-79.36, p = 0.007, and HR 4.532, 95% CI 1.10-18.60, p = 0.036, respectively), preformed DSTs (HR 3.482, 95% CI 1.99-6.08, p < 0.001), DSAs (HR 4.421, 95% CI 1.63-11.98, p = 0.003), and delayed graft function (DGF) (HR 2.023, 95% CI 1.22-3.36, p = 0.006) independently predicted BPAR. Notably, a significant interaction between T-cell depletion and TAC underexposure was observed, showing a reduction of the BPAR risk (HR 0.264, 95% CI 0.08-0.92, p = 0.037). Such variables except for DSAs displayed a higher predictive risk for the development of T cell-mediated rejection (TCMR). Refinement of pretransplant monitoring by incorporating TAC CYP3A SNPs with preformed DSAs as well as DSTs may improve current rejection-risk stratification and help induction treatment decision-making.
Berlin Center for Advanced Therapies Berlin Germany
Berlin Institute of Health Berlin Germany
Department of Clinical Sciences Barcelona University Barcelona Spain
Department of Nephrology Institute for Clinical and Experimental Medicine Prague Czechia
Faculty of Health Université Grenoble Alpes Grenoble France
Institute for Advanced Biosciences INSERM 1209 CNRS 5309 Grenoble France
Kidney Transplant Unit and Nephrology Department Vall d'Hebron Hospital Barcelona Spain
Kidney Transplant Unit Nephrology Department Bellvitge University Hospital Barcelona Spain
Nephrology and Transplant Laboratory Vall d'Hebron Institute of Research Barcelona Spain
Pathology Department Bellvitge University Hospital Barcelona Spain
Zobrazit více v PubMed
Heeger PS. T-Cell Allorecognition and Transplant Rejection: A Summary and Update. Am J Transplan (2003) 3(5):525–33. doi: 10.1034/j.1600-6143.2003.00123.x PubMed DOI
Valujskikh A. Memory T Cells in Allograft Rejection. Adv Exp Med Biol (2007) 601:247–56. doi: 10.1007/978-0-387-72005-0_26 PubMed DOI
Issa F, Schiopu A, Wood KJ. Role of T Cells in Graft Rejection and Transplantation Tolerance. Expert Rev Clin Immunol (2010) 6(1):155–69. doi: 10.1586/eci.09.64 PubMed DOI
Patel R, Terasaki PI. Significance of the Positive Crossmatch Test in Kidney Transplantation. N Engl J Med (1969) 280(14):735–9. doi: 10.1056/NEJM196904032801401 PubMed DOI
Crespo E, Lucia M, Cruzado JM, Luque S, Melilli E, Manonelles A, et al. . Pre-Transplant Donor-Specific T-Cell Alloreactivity is Strongly Associated With Early Acute Cellular Rejection in Kidney Transplant Recipients Not Receiving T-Cell Depleting Induction Therapy. PloS One (2015) 10(2):e0117618. doi: 10.1371/journal.pone.0117618 PubMed DOI PMC
Bestard O, Cruzado JM, Lucia M, Crespo E, Casis L, Sawitzki B, et al. . Prospective Assessment of Antidonor Cellular Alloreactivity is a Tool for Guidance of Immunosuppression in Kidney Transplantation. Kidney Int (2013) 84(6):1226–36. doi: 10.1038/ki.2013.236 PubMed DOI
Montero N, Farouk S, Gandolfini I, Crespo E, Jarque M, Meneghini M, et al. . Pretransplant Donor-Specific Ifnγ ELISPOT as a Predictor of Graft Rejection: A Diagnostic Test Accuracy Meta-Analysis. Transplant Direct (2019) 5(5):e451. doi: 10.1097/TXD.0000000000000886 PubMed DOI PMC
Nickel P, Presber F, Bold G, Biti D, Schönemann C, Tullius SG, et al. . Enzyme-Linked Immunosorbent Spot Assay for Donor-Reactive Interferon-Gamma-Producing Cells Identifies T-Cell Presensitization and Correlates With Graft Function at 6 and 12 Months in Renal-Transplant Recipients. Transplantation (2004) 78(11):1640–6. doi: 10.1097/01.tp.0000144057.31799.6a PubMed DOI
Koyama I, Nadazdin O, Boskovic S, Ochiai T, Smith RN, Sykes M, et al. . Depletion of CD8 Memory T Cells for Induction of Tolerance of a Previously Transplanted Kidney Allograft. Am J Transpl (2007) 7(5):1055–61. doi: 10.1111/j.1600-6143.2006.01703.x PubMed DOI PMC
Kroemer A, Xiao X, Vu MD, Gao W, Minamimura K, Chen M, et al. . OX40 Controls Functionally Different T Cell Subsets and Their Resistance to Depletion Therapy. J Immunol (2007) 179(8):5584–91. doi: 10.4049/jimmunol.179.8.5584 PubMed DOI
Neujahr DC, Chen C, Huang X, Markmann JF, Cobbold S, Waldmann H, et al. . Accelerated Memory Cell Homeostasis During T Cell Depletion and Approaches to Overcome it. J Immunol (2006) 176(8):4632–9. doi: 10.4049/jimmunol.176.8.4632 PubMed DOI
Ayasoufi K, Yu H, Fan R, Wang X, Williams J, Valujskikh A. Pretransplant Antithymocyte Globulin has Increased Efficacy in Controlling Donor-Reactive Memory T Cells in Mice. Am J Transpl (2013) 13(3):589–99. doi: 10.1111/ajt.12068 PubMed DOI PMC
Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, et al. . Immunocompetent T-Cells With a Memory-Like Phenotype are the Dominant Cell Type Following Antibody-Mediated T-Cell Depletion. Am J Transpl (2005) 5(3):465–74. doi: 10.1111/j.1600-6143.2005.00759.x PubMed DOI
Bestard O, Cassis L, Cruzado JM, Torras J, Franquesa M, Gil-Vernet S, et al. . Costimulatory Blockade With Mtor Inhibition Abrogates Effector T-Cell Responses Allowing Regulatory T-Cell Survival in Renal Transplantation. Transpl Int (2011) 24(5):451–60. doi: 10.1111/j.1432-2277.2011.01223.x PubMed DOI
Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A, et al. . Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation. N Engl J Med (2007) 357(25):2562–75. doi: 10.1056/NEJMoa067411 PubMed DOI
Pascual J, Berger SP, Witzke O, Tedesco H, Mulgaonkar S, Qazi Y, et al. . Everolimus With Reduced Calcineurin Inhibitor Exposure in Renal Transplantation. J Am Soc Nephrol (2018) 29(7):1979–91. doi: 10.1681/ASN.2018010009 PubMed DOI PMC
Staatz CE, Tett SE. Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet (2004) 43(10):623–53. doi: 10.2165/00003088-200443100-00001 PubMed DOI
Kershner RP, Fitzsimmons WE. Relationship of FK506 Whole Blood Concentrations and Efficacy and Toxicity After Liver and Kidney Transplantation. Transplantation (1996) 62(7):920–6. doi: 10.1097/00007890-199610150-00009 PubMed DOI
Israni AK, Riad SM, Leduc R, Oetting WS, Guan W, Schladt D, et al. . Tacrolimus Trough Levels After Month 3 as a Predictor of Acute Rejection Following Kidney Transplantation: A Lesson Learned From DeKAF Genomics. Transpl Int (2013) 26(10):982–9. doi: 10.1111/tri.12155 PubMed DOI PMC
Richards KR, Hager D, Muth B, Astor BC, Kaufman D, Djamali A. Tacrolimus Trough Level at Discharge Predicts Acute Rejection in Moderately Sensitized Renal Transplant Recipients. Transplantation (2014) 97(10):986–91. doi: 10.1097/TP.0000000000000149 PubMed DOI
van Gelder T, van Schaik RH, Hesselink DA. Pharmacogenetics and Immunosuppressive Drugs in Solid Organ Transplantation. Nat Rev Nephrol (2014) 10(12):725–31. doi: 10.1038/nrneph.2014.172 PubMed DOI
Lloberas N, Elens L, Llaudó I, Padullés A, van Gelder T, Hesselink DA, et al. . The Combination of CYP3A4*22 and CYP3A5*3 Single-Nucleotide Polymorphisms Determines Tacrolimus Dose Requirement After Kidney Transplantation. Pharmacogenet Genomics (2017) 27(9):313–22. doi: 10.1097/FPC.0000000000000296 PubMed DOI
Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P, et al. . Impact of Cytochrome P450 3A5 Genetic Polymorphism on Tacrolimus Doses and Concentration-to-Dose Ratio in Renal Transplant Recipients. Transplantation (2003) 76(8):1233–5. doi: 10.1097/01.TP.0000090753.99170.89 PubMed DOI
Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D, et al. . Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation (2011) 91(3):300–8. doi: 10.1097/TP.0b013e318200e991 PubMed DOI PMC
Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. . A New Functional CYP3A4 Intron 6 Polymorphism Significantly Affects Tacrolimus Pharmacokinetics in Kidney Transplant Recipients. Clin Chem (2011) 57(11):1574–83. doi: 10.1373/clinchem.2011.165613 PubMed DOI
Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D, et al. . Effect of a New Functional CYP3A4 Polymorphism on Calcineurin Inhibitors' Dose Requirements and Trough Blood Levels in Stable Renal Transplant Patients. Pharmacogenomics (2011) 12(10):1383–96. doi: 10.2217/pgs.11.90 PubMed DOI
Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G, et al. . Optimization of Initial Tacrolimus Dose Using Pharmacogenetic Testing. Clin Pharmacol Ther (2010) 87(6):721–6. doi: 10.1038/clpt.2010.17 PubMed DOI
De Meyer M, Haufroid V, Kanaan N, Darius T, Buemi A, De Pauw L, et al. . Pharmacogenetic-Based Strategy Using De Novo Tacrolimus Once Daily After Kidney Transplantation: Prospective Pilot Study. Pharmacogenomics (2016) 17(9):1019–27. doi: 10.1111/ajt.12286 PubMed DOI
Ashoor I, Najafian N, Korin Y, Reed EF, Mohanakumar T, Ikle D, et al. . Standardization and cross validation of alloreactive IFNγ ELISPOT assays within the clinical trials in organ transplantation consortium. Am J Transpl (2013) 13(7):1871–9. doi: 10.1111/ajt.12286 PubMed DOI PMC
Bestard O, Crespo E, Stein M, Lúcia M, Roelen DL, de Vaal YJ, et al. . Cross-Validation of IFN-γ Elispot Assay for Measuring Alloreactive Memory/Effector T Cell Responses in Renal Transplant Recipients. Am J Transpl (2013) 13(7):1880–90. doi: 10.1111/ajt.12285 PubMed DOI
Haas M, Sis B, Racusen LC, Solez K, Glotz D, Colvin RB, et al. . Banff 2013 Meeting Report: Inclusion of C4d-Negative Antibody-Mediated Rejection and Antibody-Associated Arterial Lesions. Am J Transpl (2014) 14(2):272–83. doi: 10.1111/ajt.12590 PubMed DOI
Loupy A, Haas M, Solez K, Racusen L, Glotz D, Seron D, et al. . The Banff 2015 Kidney Meeting Report: Current Challenges in Rejection Classification and Prospects for Adopting Molecular Pathology. Am J Transpl (2017) 17(1):28–41. doi: 10.1111/ajt.14107 PubMed DOI PMC
Pallet N, Jannot AS, El Bahri M, Etienne I, Buchler M, de Ligny BH, et al. . Kidney Transplant Recipients Carrying the CYP3A4*22 Allelic Variant Have Reduced Tacrolimus Clearance and Often Reach Supratherapeutic Tacrolimus Concentrations. Am J Transpl (2015) 15(3):800–5. doi: 10.1111/ajt.13059 PubMed DOI