Tacrolimus CYP3A Single-Nucleotide Polymorphisms and Preformed T- and B-Cell Alloimmune Memory Improve Current Pretransplant Rejection-Risk Stratification in Kidney Transplantation

. 2022 ; 13 () : 869554. [epub] 20220627

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35833145

Achieving fast immunosuppression blood exposure after kidney transplantation is key to abrogating both preformed and de novo anti-donor humoral and cellular alloresponses. However, while tacrolimus (TAC) is the cornerstone immunosuppressant inhibiting adaptive alloimmunity, its blood exposure is directly impacted by different single-nucleotide polymorphisms (SNPs) in CYP3A TAC-metabolizing enzymes. Here, we investigated how functional TAC-CYP3A genetic variants (CYP3A4*22/CYP3A5*3) influence the main baseline clinical and immunological risk factors of biopsy-proven acute rejection (BPAR) by means of preformed donor-specific antibodies (DSAs) and donor-specific alloreactive T cells (DSTs) in a large European cohort of 447 kidney transplants receiving TAC-based immunosuppression. A total of 70 (15.7%) patients developed BPAR. Preformed DSAs and DSTs were observed in 12 (2.7%) and 227 (50.8%) patients, respectively. According to the different CYP3A4*22 and CYP3A5*3 functional allele variants, we found 4 differential new clusters impacting fasting TAC exposure after transplantation; 7 (1.6%) were classified as high metabolizers 1 (HM1), 71 (15.9%) as HM2, 324 (72.5%) as intermediate (IM), and 45 (10.1%) as poor metabolizers (PM1). HM1/2 showed significantly lower TAC trough levels and higher dose requirements than IM and PM (p < 0.001) and more frequently showed TAC underexposure (<5 ng/ml). Multivariate Cox regression analyses revealed that CYP3A HM1 and IM pharmacogenetic phenotypes (hazard ratio (HR) 12.566, 95% CI 1.99-79.36, p = 0.007, and HR 4.532, 95% CI 1.10-18.60, p = 0.036, respectively), preformed DSTs (HR 3.482, 95% CI 1.99-6.08, p < 0.001), DSAs (HR 4.421, 95% CI 1.63-11.98, p = 0.003), and delayed graft function (DGF) (HR 2.023, 95% CI 1.22-3.36, p = 0.006) independently predicted BPAR. Notably, a significant interaction between T-cell depletion and TAC underexposure was observed, showing a reduction of the BPAR risk (HR 0.264, 95% CI 0.08-0.92, p = 0.037). Such variables except for DSAs displayed a higher predictive risk for the development of T cell-mediated rejection (TCMR). Refinement of pretransplant monitoring by incorporating TAC CYP3A SNPs with preformed DSAs as well as DSTs may improve current rejection-risk stratification and help induction treatment decision-making.

Zobrazit více v PubMed

Heeger PS. T-Cell Allorecognition and Transplant Rejection: A Summary and Update. Am J Transplan (2003) 3(5):525–33. doi: 10.1034/j.1600-6143.2003.00123.x PubMed DOI

Valujskikh A. Memory T Cells in Allograft Rejection. Adv Exp Med Biol (2007) 601:247–56. doi: 10.1007/978-0-387-72005-0_26 PubMed DOI

Issa F, Schiopu A, Wood KJ. Role of T Cells in Graft Rejection and Transplantation Tolerance. Expert Rev Clin Immunol (2010) 6(1):155–69. doi: 10.1586/eci.09.64 PubMed DOI

Patel R, Terasaki PI. Significance of the Positive Crossmatch Test in Kidney Transplantation. N Engl J Med (1969) 280(14):735–9. doi: 10.1056/NEJM196904032801401 PubMed DOI

Crespo E, Lucia M, Cruzado JM, Luque S, Melilli E, Manonelles A, et al. . Pre-Transplant Donor-Specific T-Cell Alloreactivity is Strongly Associated With Early Acute Cellular Rejection in Kidney Transplant Recipients Not Receiving T-Cell Depleting Induction Therapy. PloS One (2015) 10(2):e0117618. doi: 10.1371/journal.pone.0117618 PubMed DOI PMC

Bestard O, Cruzado JM, Lucia M, Crespo E, Casis L, Sawitzki B, et al. . Prospective Assessment of Antidonor Cellular Alloreactivity is a Tool for Guidance of Immunosuppression in Kidney Transplantation. Kidney Int (2013) 84(6):1226–36. doi: 10.1038/ki.2013.236 PubMed DOI

Montero N, Farouk S, Gandolfini I, Crespo E, Jarque M, Meneghini M, et al. . Pretransplant Donor-Specific Ifnγ ELISPOT as a Predictor of Graft Rejection: A Diagnostic Test Accuracy Meta-Analysis. Transplant Direct (2019) 5(5):e451. doi: 10.1097/TXD.0000000000000886 PubMed DOI PMC

Nickel P, Presber F, Bold G, Biti D, Schönemann C, Tullius SG, et al. . Enzyme-Linked Immunosorbent Spot Assay for Donor-Reactive Interferon-Gamma-Producing Cells Identifies T-Cell Presensitization and Correlates With Graft Function at 6 and 12 Months in Renal-Transplant Recipients. Transplantation (2004) 78(11):1640–6. doi: 10.1097/01.tp.0000144057.31799.6a PubMed DOI

Koyama I, Nadazdin O, Boskovic S, Ochiai T, Smith RN, Sykes M, et al. . Depletion of CD8 Memory T Cells for Induction of Tolerance of a Previously Transplanted Kidney Allograft. Am J Transpl (2007) 7(5):1055–61. doi: 10.1111/j.1600-6143.2006.01703.x PubMed DOI PMC

Kroemer A, Xiao X, Vu MD, Gao W, Minamimura K, Chen M, et al. . OX40 Controls Functionally Different T Cell Subsets and Their Resistance to Depletion Therapy. J Immunol (2007) 179(8):5584–91. doi: 10.4049/jimmunol.179.8.5584 PubMed DOI

Neujahr DC, Chen C, Huang X, Markmann JF, Cobbold S, Waldmann H, et al. . Accelerated Memory Cell Homeostasis During T Cell Depletion and Approaches to Overcome it. J Immunol (2006) 176(8):4632–9. doi: 10.4049/jimmunol.176.8.4632 PubMed DOI

Ayasoufi K, Yu H, Fan R, Wang X, Williams J, Valujskikh A. Pretransplant Antithymocyte Globulin has Increased Efficacy in Controlling Donor-Reactive Memory T Cells in Mice. Am J Transpl (2013) 13(3):589–99. doi: 10.1111/ajt.12068 PubMed DOI PMC

Pearl JP, Parris J, Hale DA, Hoffmann SC, Bernstein WB, McCoy KL, et al. . Immunocompetent T-Cells With a Memory-Like Phenotype are the Dominant Cell Type Following Antibody-Mediated T-Cell Depletion. Am J Transpl (2005) 5(3):465–74. doi: 10.1111/j.1600-6143.2005.00759.x PubMed DOI

Bestard O, Cassis L, Cruzado JM, Torras J, Franquesa M, Gil-Vernet S, et al. . Costimulatory Blockade With Mtor Inhibition Abrogates Effector T-Cell Responses Allowing Regulatory T-Cell Survival in Renal Transplantation. Transpl Int (2011) 24(5):451–60. doi: 10.1111/j.1432-2277.2011.01223.x PubMed DOI

Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A, et al. . Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation. N Engl J Med (2007) 357(25):2562–75. doi: 10.1056/NEJMoa067411 PubMed DOI

Pascual J, Berger SP, Witzke O, Tedesco H, Mulgaonkar S, Qazi Y, et al. . Everolimus With Reduced Calcineurin Inhibitor Exposure in Renal Transplantation. J Am Soc Nephrol (2018) 29(7):1979–91. doi: 10.1681/ASN.2018010009 PubMed DOI PMC

Staatz CE, Tett SE. Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet (2004) 43(10):623–53. doi: 10.2165/00003088-200443100-00001 PubMed DOI

Kershner RP, Fitzsimmons WE. Relationship of FK506 Whole Blood Concentrations and Efficacy and Toxicity After Liver and Kidney Transplantation. Transplantation (1996) 62(7):920–6. doi: 10.1097/00007890-199610150-00009 PubMed DOI

Israni AK, Riad SM, Leduc R, Oetting WS, Guan W, Schladt D, et al. . Tacrolimus Trough Levels After Month 3 as a Predictor of Acute Rejection Following Kidney Transplantation: A Lesson Learned From DeKAF Genomics. Transpl Int (2013) 26(10):982–9. doi: 10.1111/tri.12155 PubMed DOI PMC

Richards KR, Hager D, Muth B, Astor BC, Kaufman D, Djamali A. Tacrolimus Trough Level at Discharge Predicts Acute Rejection in Moderately Sensitized Renal Transplant Recipients. Transplantation (2014) 97(10):986–91. doi: 10.1097/TP.0000000000000149 PubMed DOI

van Gelder T, van Schaik RH, Hesselink DA. Pharmacogenetics and Immunosuppressive Drugs in Solid Organ Transplantation. Nat Rev Nephrol (2014) 10(12):725–31. doi: 10.1038/nrneph.2014.172 PubMed DOI

Lloberas N, Elens L, Llaudó I, Padullés A, van Gelder T, Hesselink DA, et al. . The Combination of CYP3A4*22 and CYP3A5*3 Single-Nucleotide Polymorphisms Determines Tacrolimus Dose Requirement After Kidney Transplantation. Pharmacogenet Genomics (2017) 27(9):313–22. doi: 10.1097/FPC.0000000000000296 PubMed DOI

Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P, et al. . Impact of Cytochrome P450 3A5 Genetic Polymorphism on Tacrolimus Doses and Concentration-to-Dose Ratio in Renal Transplant Recipients. Transplantation (2003) 76(8):1233–5. doi: 10.1097/01.TP.0000090753.99170.89 PubMed DOI

Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D, et al. . Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation (2011) 91(3):300–8. doi: 10.1097/TP.0b013e318200e991 PubMed DOI PMC

Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van Gelder T, et al. . A New Functional CYP3A4 Intron 6 Polymorphism Significantly Affects Tacrolimus Pharmacokinetics in Kidney Transplant Recipients. Clin Chem (2011) 57(11):1574–83. doi: 10.1373/clinchem.2011.165613 PubMed DOI

Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D, et al. . Effect of a New Functional CYP3A4 Polymorphism on Calcineurin Inhibitors' Dose Requirements and Trough Blood Levels in Stable Renal Transplant Patients. Pharmacogenomics (2011) 12(10):1383–96. doi: 10.2217/pgs.11.90 PubMed DOI

Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G, et al. . Optimization of Initial Tacrolimus Dose Using Pharmacogenetic Testing. Clin Pharmacol Ther (2010) 87(6):721–6. doi: 10.1038/clpt.2010.17 PubMed DOI

De Meyer M, Haufroid V, Kanaan N, Darius T, Buemi A, De Pauw L, et al. . Pharmacogenetic-Based Strategy Using De Novo Tacrolimus Once Daily After Kidney Transplantation: Prospective Pilot Study. Pharmacogenomics (2016) 17(9):1019–27. doi: 10.1111/ajt.12286 PubMed DOI

Ashoor I, Najafian N, Korin Y, Reed EF, Mohanakumar T, Ikle D, et al. . Standardization and cross validation of alloreactive IFNγ ELISPOT assays within the clinical trials in organ transplantation consortium. Am J Transpl (2013) 13(7):1871–9. doi: 10.1111/ajt.12286 PubMed DOI PMC

Bestard O, Crespo E, Stein M, Lúcia M, Roelen DL, de Vaal YJ, et al. . Cross-Validation of IFN-γ Elispot Assay for Measuring Alloreactive Memory/Effector T Cell Responses in Renal Transplant Recipients. Am J Transpl (2013) 13(7):1880–90. doi: 10.1111/ajt.12285 PubMed DOI

Haas M, Sis B, Racusen LC, Solez K, Glotz D, Colvin RB, et al. . Banff 2013 Meeting Report: Inclusion of C4d-Negative Antibody-Mediated Rejection and Antibody-Associated Arterial Lesions. Am J Transpl (2014) 14(2):272–83. doi: 10.1111/ajt.12590 PubMed DOI

Loupy A, Haas M, Solez K, Racusen L, Glotz D, Seron D, et al. . The Banff 2015 Kidney Meeting Report: Current Challenges in Rejection Classification and Prospects for Adopting Molecular Pathology. Am J Transpl (2017) 17(1):28–41. doi: 10.1111/ajt.14107 PubMed DOI PMC

Pallet N, Jannot AS, El Bahri M, Etienne I, Buchler M, de Ligny BH, et al. . Kidney Transplant Recipients Carrying the CYP3A4*22 Allelic Variant Have Reduced Tacrolimus Clearance and Often Reach Supratherapeutic Tacrolimus Concentrations. Am J Transpl (2015) 15(3):800–5. doi: 10.1111/ajt.13059 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...