• This record comes from PubMed

A prognostic model integrating PET-derived metrics and image texture analyses with clinical risk factors from GOYA

. 2022 May ; 3 (2) : 406-414. [epub] 20220324

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Image texture analysis (radiomics) uses radiographic images to quantify characteristics that may identify tumour heterogeneity and associated patient outcomes. Using fluoro-deoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT)-derived data, including quantitative metrics, image texture analysis and other clinical risk factors, we aimed to develop a prognostic model that predicts survival in patients with previously untreated diffuse large B-cell lymphoma (DLBCL) from GOYA (NCT01287741). Image texture features and clinical risk factors were combined into a random forest model and compared with the international prognostic index (IPI) for DLBCL based on progression-free survival (PFS) and overall survival (OS) predictions. Baseline FDG-PET scans were available for 1263 patients, 832 patients of these were cell-of-origin (COO)-evaluable. Patients were stratified by IPI or radiomics features plus clinical risk factors into low-, intermediate- and high-risk groups. The random forest model with COO subgroups identified a clearer high-risk population (45% 2-year PFS [95% confidence interval (CI) 40%-52%]; 65% 2-year OS [95% CI 59%-71%]) than the IPI (58% 2-year PFS [95% CI 50%-67%]; 69% 2-year OS [95% CI 62%-77%]). This study confirms that standard clinical risk factors can be combined with PET-derived image texture features to provide an improved prognostic model predicting survival in untreated DLBCL.

See more in PubMed

Chaganti S, Illidge T, Barrington S, McKay P, Linton K, Cwynarski K, et al. British Committee for Standards in Haematology. Guidelines for the management of diffuse large B‐cell lymphoma. Br J Haematol. 2016;174(1):43–56. PubMed

Coiffier B, Thieblemont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, et al. Long‐term outcome of patients in the LNH‐98.5 trial, the first randomized study comparing rituximab‐CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. Blood 2010;116(12):2040–5. PubMed PMC

Sehn LH, Berry B, Chhanabhai M, Fitzgerald C, Gill K, Hoskins P, et al. The revised International Prognostic Index (R‐IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B‐cell lymphoma treated with R‐CHOP. Blood 2007;109(5):1857–61. PubMed

International Non‐Hodgkin's Lymphoma Prognostic Factors Project . A predictive model for aggressive non‐Hodgkin's lymphoma. N Engl J Med. 1993;329(14):987–94. PubMed

Ziepert M, Hasenclever D, Kuhnt E, Glass B, Schmitz N, Pfreundschuh M, et al. Standard International prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B‐cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(14):2373–80. PubMed

NCCN Guidelines B‐Cell Lymphomas . National comprehensive cancer network B‐cell lymphomas (V5.2021). Available from: https://jnccn.org/view/journals/jnccn/19/11/article‐p1218.xml. Accessed March 2022.

Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–90. PubMed PMC

Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B‐cell lymphoma. N Engl J Med. 2018;378(15):1396–407. PubMed PMC

Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481–94.e15. PubMed PMC

Pfreundschuh M, Ho AD, Cavallin‐Stahl E, Wolf M, Pettengell R, Vasova I, et al. Prognostic significance of maximum tumour (bulk) diameter in young patients with good‐prognosis diffuse large‐B‐cell lymphoma treated with CHOP‐like chemotherapy with or without rituximab: an exploratory analysis of the MabThera International Trial Group (MInT) study. Lancet Oncol. 2008;9(5):435–44. PubMed

Wilder RB, Rodriguez MA, Ha CS, Pro B, Hess MA, Cabanillas F, et al. Bulky disease is an adverse prognostic factor in patients treated with chemotherapy comprised of cyclophosphamide, doxorubicin, vincristine, and prednisone with or without radiotherapy for aggressive lymphoma. Cancer. 2001;91(12):2440–6. PubMed

Barrington SF, Meignan M. Time to prepare for risk adaptation in lymphoma by standardizing measurement of metabolic tumor burden. J Nucl Med. 2019;60(8):1096–102. PubMed PMC

Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F‐FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40(1):133–40. PubMed

Ha S, Choi H, Paeng JC, Cheon GJ. Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging. 2019;53(1):14–29. PubMed PMC

Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278(2):563–77. PubMed PMC

Schöder H, Moskowitz C. Metabolic tumor volume in lymphoma: hype or hope? J Clin Oncol. 2016;34(30):3591–4. PubMed PMC

Fornacon‐Wood I, Faivre‐Finn C, O'Connor JPB, Price GJ. Radiomics as a personalized medicine tool in lung cancer: separating the hope from the hype. Lung Cancer. 2020;146:197–208. PubMed PMC

Cottereau AS, Nioche C, Dirand AS, Clerc J, Morschhauser F, Casasnovas O, et al. (18)F‐FDG PET dissemination features in diffuse large B‐cell lymphoma are predictive of outcome. J Nucl Med. 2020;61(1):40–5. PubMed PMC

Aide N, Fruchart C, Nganoa C, Gac AC, Lasnon C. Baseline (18)F‐FDG PET radiomic features as predictors of 2‐year event‐free survival in diffuse large B cell lymphomas treated with immunochemotherapy. Eur Radiol. 2020;30(8):4623–32. PubMed

Vitolo U, Trněný M, Belada D, Burke JM, Carella AM, Chua N, et al. Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large B‐cell lymphoma. J Clin Oncol. 2017;35(31):3529–37. PubMed

Scott DW, Wright GW, Williams PM, Lih CJ, Walsh W, Jaffe ES, et al. Determining cell‐of‐origin subtypes of diffuse large B‐cell lymphoma using gene expression in formalin‐fixed paraffin‐embedded tissue. Blood 2014;123(8):1214–7. PubMed PMC

Wallden B, Ferree S, Ravi H, Dowidar N, Hood T, Danaher P, et al. Development of the molecular diagnostic (MDx) DLBCL lymphoma subtyping test (LST) on the nCounter analysis system. J Clin Oncol. 2015;33(15_suppl):8536.

Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high‐throughput image‐based phenotyping. Radiology 2020;295(2):328–38. PubMed PMC

Ishwaran H, Kogalur U, Blackstone E, Lauer M. Random survival forests. Ann Appl Stat. 2008;2(3):841–60.

Steyerberg EW. Validation in prediction research: the waste by data splitting. J Clin Epidemiol. 2018;103:131–3. PubMed

Kostakoglu L, Chauvie S. PET‐derived quantitative metrics for response and prognosis in lymphoma. PET Clin. 2019;14(3):317–29. PubMed

Xie M, Wu K, Liu Y, Jiang Q, Xie Y. Predictive value of F‐18 FDG PET/CT quantization parameters in diffuse large B cell lymphoma: a meta‐analysis with 702 participants. Med Oncol. 2015;32(1):446. PubMed

Kostakoglu L, Martelli M, Sehn LH, Belada D, Carella AM, Chua N, et al. Baseline PET‐derived metabolic tumor volume metrics predict progression‐free and overall survival in DLBCL after first‐line treatment: results from the phase 3 GOYA study. Blood 2017;130(Supplement 1):824.

Hsu CY, Doubrovin M, Hua CH, Mohammed O, Shulkin BL, Kaste S, et al. Radiomics features differentiate between normal and tumoral high‐Fdg uptake. Sci Rep. 2018;8(1):3913. PubMed PMC

Lartizien C, Rogez M, Niaf E, Ricard F. Computer‐aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Health Inform. 2014;18(3):946–55. PubMed

Watabe T, Tatsumi M, Watabe H, Isohashi K, Kato H, Yanagawa M, et al. Intratumoral heterogeneity of F‐18 FDG uptake differentiates between gastrointestinal stromal tumors and abdominal malignant lymphomas on PET/CT. Ann Nucl Med. 2012;26(3):222–7. PubMed

Ben Bouallègue F, Tabaa YA, Kafrouni M, Cartron G, Vauchot F, Mariano‐Goulart D. Association between textural and morphological tumor indices on baseline PET‐CT and early metabolic response on interim PET‐CT in bulky malignant lymphomas. Med Phys. 2017;44(9):4608–19. PubMed

Ceriani L, Milan L, Martelli M, Ferreri AJM, Cascione L, Zinzani PL, et al. Metabolic heterogeneity on baseline 18FDG‐PET/CT scan is a predictor of outcome in primary mediastinal B‐cell lymphoma. Blood 2018;132(2):179–86. PubMed

Parvez A, Tau N, Hussey D, Maganti M, Metser U. (18)F‐FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non‐Hodgkin's lymphoma as predictors of treatment outcome and survival. Ann Nucl Med. 2018;32(6):410–6. PubMed

Aide N, Talbot M, Fruchart C, Damaj G, Lasnon C. Diagnostic and prognostic value of baseline FDG PET/CT skeletal textural features in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging. 2018;45(5):699–711. PubMed PMC

Decazes P, Becker S, Toledano MN, Vera P, Desbordes P, Jardin F, et al. Tumor fragmentation estimated by volume surface ratio of tumors measured on 18F‐FDG PET/CT is an independent prognostic factor of diffuse large B‐cell lymphoma. Eur J Nucl Med Mol Imaging. 2018;45(10):1672–9. PubMed

Wang H, Zhao S, Li L, Tian R. Development and validation of an (18)F‐FDG PET radiomic model for prognosis prediction in patients with nasal‐type extranodal natural killer/T cell lymphoma. Eur Radiol. 2020;30(10):5578–87. PubMed

Wang H, Zhou Y, Li L, Hou W, Ma X, Tian R. Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol. 2020;30(11):6228–40. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...