Natural naphthoquinones and their derivatives as potential drug molecules against trypanosome parasites

. 2022 Dec ; 100 (6) : 786-817. [epub] 20220727

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35852920

Over the past decades, a number of 1,4-naphthoquinones have been isolated from natural resources and several of naphthoquinone derivatives with diverse structural motif have been synthesized; they possess a multitude of biochemical properties and modulate numerous pharmacological roles that offer new targets for addressing the challenges pertaining to novel drug developments. Among natural naphthoquinones, lapachol, α-lapachone, β-lapachone, lawsone, juglone, and plumbagin have been evaluated for its potential as antitrypanosomal activities. The chemotherapeutic drugs available for combating human trypanosomiasis, that is, American trypanosomiasis and African trypanosomiasis caused by Trypanosoma cruzi and Trypanosoma brucei, respectively, and animal tripanosomosis caused by Trypanosoma evansi have a problem of drug resistance and several toxic effect. Therefore, search of alternative effective drug molecules, without toxic effects, have enthused the researchers for searching new drug entity with potential clinical efficacy. In the search for new antitrypanosomal compound, this review focuses on different natural quinones and their synthetic derivatives associated with antitrypanosomal studies. In this context, this review will be useful for the development of new antitrypanosomal drugs mainly based on different structural modification of natural and synthetic naphthoquinones.

Zobrazit více v PubMed

Almeida, R. G., Valença, W. O., Rosa, L. G., de Simone, C. A., de Castro, S. L., Barbosa, J. M., Pinheiro, D. P., Paier, C. R., de Carvalho, G. G., Pessoa, C., & Goulart, M. O. (2020). Synthesis of quinone imine and sulphur-containing compounds with antitumor and trypanocidal activities: Redox and biological implications. RSC Medicinal Chemistry, 11, 1145-1160.

Aminin, D., & Polonik, S. (2020). 1, 4-Naphthoquinones: Some biological properties and application. Chemical and Pharmaceutical Bulletin, 68, 46-57.

Babula, P., Adam, V., Havel, L., & Kizek, R. (2009). Noteworthy secondary metabolites naphthoquinones-their occurrence, pharmacological properties and analysis. Current Pharmaceutical Analysis, 5, 47-68.

Bahia, S. B. B., Reis, W. J., Jardim, G. A., Souto, F. T., de Simone, C. A., Gatto, C. C., Menna-Barreto, R. F., de Castro, S. L., Cavalcanti, B. C., Pessoa, C., & Araujo, M. H. (2016). Molecular hybridization as a powerful tool towards multitarget quinoidal systems: Synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1, 4-disubstituted-, 1, 4-and 1, 5-disubstituted-1, 2, 3-triazoles. MedChemComm, 7, 1555-1563.

Barani, M., Mirzaei, M., Torkzadeh-Mahani, M., & Nematollahi, M. H. (2018). Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast cancer cell line: A Nano-herbal treatment for cancer. DARU Journal of Pharmaceutical Sciences, 26, 11-17.

Basnet, B., Liu, L., Zhao, W., Liu, R., Ma, K., Bao, L., & Liu, H. (2019). New 1, 2-naphthoquinone-derived pigments from the mycobiont of lichen Trypethelium eluteriae Sprengel. Natural Product Research, 33, 2044-2050.

Carneiro, P. F., do Nascimento, S. B., Pinto, A. V., Maria do Carmo, F. R., Lechuga, G. C., Santos, D. O., dos Santos, H. M., Resende, J. A., Bourguignon, S. C., & Ferreira, V. F. (2012). New oxirane derivatives of 1, 4- S.C. naphthoquinones and their evaluation against T. cruzi epimastigote forms. Bioorganic and Medicinal Chemistry, 20, 4995-5000.

Cascabulho, M., Meuser-Batista, M., de Moura, K. C. G., Pinto, M. D. C., Duque, T. L. A., Demarque, K. C., & De Castro, S. L. (2020). Antiparasitic and anti-inflammatory activities of ß-lapachone-derived naphthoimidazoles in experimental acute Trypanosoma cruzi infection. Memórias do Instituto Oswaldo Cruz, 115, e190389.

Coder, K. D. (1983). Seasonal changes of juglone potential in leaves of black walnut (Juglans nigra L.). Journal of Chemical Ecology, 9, 1203-1212.

Colaric, M., Veberic, R., Solar, A., Hudina, M., & Stampar, F. (2005). Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. Journal of Agricultural and Food Chemistry, 53, 6390-6396.

da Silva, J. M., Netto, C. D., Pacienza-Lima, W., Torres-Santos, E. C., Rossi-Bergmann, B., Maurel, S., Alexis Valentind, A., & Costa, P. R. R. (2009). Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1, 4-naphthoquinone derivatives. Journal of the Brazilian Chemical Society, 20, 176-182.

da Silva, E. N., Menna-Barreto, R. F., Maria do Carmo, F. R., Silva, R. S., Teixeira, D. V., de Souza, M. C., De Simone, C. A., De Castro, S. L., Ferreira, V. F., & Pinto, A. V. (2008). Naphthoquinoidal [1, 2, 3]-triazole, a new structural moiety active against Trypanosoma cruzi. European Journal of Medicinal Chemistry, 43, 1774-1780.

da Silva, E. N., de Melo, I. M., Diogo, E. B., Costa, V. A., de Souza Filho, J. D., Valença, W. O., Camara, C. A., de Oliveira, R. N., de Araujo, A. S., Emery, F. S., & dos Santos, M. R. (2012). On the search for potential anti-Trypanosoma cruzi drugs: Synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1, 2, 3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. European Journal of Medicinal Chemistry, 52, 304-312.

da Silva, E. N., de Souza, M. C., Fernandes, M. C., Menna-Barreto, R. F., Maria do Carmo, F. R., de Assis Lopes, F., de Simone, C. A., Andrade, C. K., Pinto, A. V., Ferreira, V. F., & de Castro, S. L. (2008). Synthesis and anti-Trypanosoma cruzi activity of derivatives from nor-lapachones and lapachones. Bioorganic and Medicinal Chemistry, 16, 5030-5038.

da Silva, E. N., Guimarães, T. T., Menna-Barreto, R. F., Maria do Carmo, F. R., de Simone, C. A., Pessoa, C., Cavalcanti, B. C., Sabino, J. R., Andrade, C. K., Goulart, M. O., & de Castro, S. L. (2010). The evaluation of quinonoid compounds against Trypanosoma cruzi: Synthesis of imidazolic anthraquinones, nor-β-lapachone derivatives and β-lapachone-based 1, 2, 3-triazoles. Bioorganic and Medicinal Chemistry, 18, 3224-3230.

da Silva, E. N., Jardim, G. A., Jacob, C., Dhawa, U., Ackermann, L., & de Castro, S. L. (2019). Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. European Journal of Medicinal Chemistry, 179, 863-915.

da Silva, E. N., Jardim, G. A., Menna-Barreto, R. F., & Castro, S. L. D. (2014). Anti-Trypanosoma cruzi compounds: Our contribution for the evaluation and insights on the mode of action of naphthoquinones and derivatives. Journal of the Brazilian Chemical Society, 25, 1780-1798.

da Silva, O., da Silva Lopes, R., de Lima, R. V., Tozatti, C. S. S., Marques, M. R., de Albuquerque, S., Beatriz, A., & de Lima, D. P. (2013). Synthesis and biological activity against Trypanosoma cruzi of substituted 1, 4-naphthoquinones. European Journal of Medicinal Chemistry, 60, 51-56.

Dantas, D., De Souza, F. J., Nogueira, W. N., Silva, C. C., De Azevedo, P. H., Soares Aragao, C. F., Almeida, P. D., Cardoso, M. F., Da Silva, F. D., De Azevedo, E. P., & Guimarães Barbosa, E. (2017). Characterization and trypanocidal activity of a novel pyranaphthoquinone. Molecules, 22, 1631.

Dantas-Pereira, L., Cunha, E. F., Andrade-Neto, V. V., Bower, J. F., Jardim, G. A., da Silva, E. N., Torres-Santos, E. C., & Menna-Barreto, R. F. (2021). Naphthoquinones and derivatives for chemotherapy: Perspectives and limitations of their anti-trypanosomatids activities. Current Pharmaceutical Design, 27(15), 1807-1824.

de Andrade-Neto, V. F., Goulart, M. O., da Silva Filho, J. F., da Silva, M. J., Pinto Mdo, C., Pinto, A. V., Zalis, M. G., Carvalho, L. H., & Krettli, A. U. (2004). Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorganic & Medicinal Chemistry Letters, 14, 1145-1149.

De Castro, S. L., Pinto, M. C. F. R., & Pinto, A. V. (1994). Screening of natural and synthetic drugs against Trypanosoma cruzi: Establishing a structure/activity relationship. Microbios, 78, 83-90.

De Moura, C. G., Emery, F. S., Neves-Pinto, C., Pinto, M. C. F. R., Dantas, A. P., Salomão, K., De Castro, S. L., & Pinto, A. V. (2001). Synthesis and trypanocidal activity of naphthoquinones isolated from Tabebuia and heterocyclic derivatives: A review from an interdisciplinary study. Journal of Brazilian Chemical Society, 12, 325-338.

De Moura, C. G., Salomão, K., Menna-Barreto, R. F. S., Emery, F. S., Pinto, M. C. F. R., Pinto, A. V., & De Castro, S. L. (2004). Studies on the trypanocidal activity of semi-synthetic pyran[b-4,3]naphtho[1,2-d]imidazoles from -lapachone. European Journal of Medicinal Chemistry, 39, 639-645.

Desquesnes, M., Holzmuller, P., Lai, D. H., Dargantes, A., Lun, Z. R., & Jittaplapong, S. (2013). Trypanosoma evansi and surra: A review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Research International, 2013, 194176.

Diogo, B., Dias, G. G., Rodrigues, B. L., Guimarães, T. T., Valença, W. O., Camara, C. A., de Oliveira, R. N., da Silva, M. G., Ferreira, V. F., & de Paiva, Y. G. (2013). Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: Electrochemical studies on the effects of the quinoidal moiety. Bioorganic and Medicinal Chemistry, 21, 6337-6348.

do Carmo Cardoso, M. F., Salomão, K., Bombaça, A. C., da Rocha, D. R., da Silva, F. D., Cavaleiro, J. A., de Castro, S. L., & Ferreira, V. F. (2015). Synthesis and anti-Trypanosoma cruzi activity of new 3-phenylthio-nor-β-lapachone derivatives. Bioorganic and Medicinal Chemistry, 23, 4763-4768.

Dos Anjos, D. O., Alves, E. S., Gonçalves, V. T., Fontes, S. S., Nogueira, M. L., Suarez-Fontes, A. M., da Costa, J. B., Rios-Santos, F., & Vannier-Santos, M. A. (2016). Effects of a novel β-lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis. International Journal of Parasitology: Drugs and Drug Resistance, 6, 207-219.

dos Santos Naujorks, A., da Silva, A. O., da Silva Lopes, R., de Albuquerque, S., Beatriz, A., Marques, M. R., & de Lima, D. P. (2015). Novel naphthoquinone derivatives and evaluation of their trypanocidal and leishmanicidal activities. Organic and Biomolecular Chemistry, 13, 428-437.

Ellendorff, T., Brun, R., Kaiser, M., Sendker, J., & Schmidt, T. J. (2015). PLS-prediction and confirmation of hydrojuglone glucoside as the antitrypanosomal constituent of Juglans spp. Molecules, 20, 10082-10094.

Emadi, A., Ross, A. E., Cowan, K. M., Fortenberry, Y. M., & Vuica-Ross, M. (2010). A chemical genetic screen for modulators of asymmetrical 2, 2′-dimeric naphthoquinones cytotoxicity in yeast. PLoS One, 5, 10846.

Fernandes, C., da Silva, E. N., Pinto, A. V., de Castro, S. L., & Menna-Barreto, R. F. (2012). A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi. Parasitology, 139, 26-36.

Ferreira, S. B., Salomão, K., da Silva, F. D. C., Pinto, A. V., Kaiser, C. R., Pinto, A. C., Ferreira, V. F., & de Castro, S. L. (2011). Synthesis and anti-Trypanosoma cruzi activity of β-lapachone analogues. European Journal of Medicinal Chemistry, 46, 3071-3077.

Goijman, S. G., & Stoppani, A. O. (1985). Effects of β-lapachone, a peroxidegenerating quinone, on macromolecule synthesis and degradation in Trypanosoma cruzi. Archives of Biochemistry and Biophysics, 240(1), 273-280.

Gong, Q., Hu, J., Wang, P., Li, X., & Zhang, X. (2020). A comprehensive review on β-lapachone: Mechanisms, structural modifications, and therapeutic potentials. European Journal of Medicinal Chemistry, 210, 112962.

Hussain, H., Krohn, K., Ahmad, V. U., Miana, G. A., & Green, I. R. (2007). Lapachol: An overview. Arkivoc, 2, 145-171.

Jardim, A., Reis, W. J., Ribeiro, M. F., Ottoni, F. M., Alves, R. J., Silva, T. L., Goulart, M. O., Braga, A. L., Menna-Barreto, R. F., Salomão, K., & de Castro, S. L. (2015). On the investigation of hybrid quinones: Synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Advances, 5, 78047-78060.

Jardim, A., Silva, T. L., Goulart, M. O., de Simone, C. A., Barbosa, J. M., Salomão, K., de Castro, S. L., Bower, J. F., & da Silva, E. N. (2017). Rhodium-catalyzed CH bond activation for the synthesis of quinonoid compounds: Significant anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones. European Journal of Medicinal Chemistry, 136, 406-419.

Jardim, G. A., Bozzi, Í. A., Oliveira, W. X., Mesquita-Rodrigues, C., Menna-Barreto, R. F., Kumar, R. A., Gravel, E., Doris, E., Braga, A. L., & da Silva, E. N. (2019). Copper complexes and carbon nanotube-copper ferrite-catalyzed benzenoid A-ring selenation of quinones: An efficient method for the synthesis of trypanocidal agents. New Journal of Chemistry, 43, 13751-13763.

Jardim, G. A., Oliveira, W. X., de Freitas, R. P., Menna-Barreto, R. F., Silva, T. L., Goulart, M. O., & da Silva, E. N. (2018). Direct sequential C-H iodination/organoyl-thiolation for the benzenoid A-ring modification of quinonoid deactivated systems: A new protocol for potent trypanocidal quinones. Organic and Biomolecular Chemistry, 16, 1686-1691.

Kaewbumrung, S., & Panichayupakaranant, P. (2014). Antibacterial activity of plumbagin derivative-rich Plumbago indica root extracts and chemical stability. Natural Product Research, 28, 835-837.

Kharma, A., Jacob, C., Bozzi, Í. A., Jardim, G. A., Braga, A. L., Salomão, K., Gatto, C. C., Silva, M. F., Pessoa, C., Stangier, M., & Ackermann, L. (2020). Electrochemical selenation/cyclization of quinones: A rapid, green and efficient access to functionalized trypanocidal and antitumor compounds. European Journal of Organic Chemistry, 2020, 4474-4486.

Khraiwesh, M. H., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M., & Bakare, O. (2012). Antitrypanosomal activities and cytotoxicity of some novel imidosubstituted 1, 4-naphthoquinone derivatives. Archives of Pharmacal Research, 35(1), 27-33.

Kumar, R., Sharma, P., Kumar, S., Gaur, D., & Jain, S. (2016). Recent development in identification of potential novel therapeutic targets against trypanosomatids. Current Topics in Medicinal Chemistry, 16, 2303-2315.

Kundakovic, T., Fokialakis, N., Dobric, S., Pratsinis, H., Kletsas, D., Kovacevic, N., & Chinou, I. (2006). Evaluation of the anti-inflammatory and cytotoxic activities of naphthazarine derivatives from Onosma leptantha. Phytomedicine, 13, 290-294.

Li, K., Wang, B., Zheng, L., Yang, K., Li, Y., Hu, M., & He, D. (2018). Target ROS to induce apoptosis and cell cycle arrest by 5, 7-dimethoxy-1, 4-naphthoquinone derivative. Bioorganic and Medicinal Chemistry Letters, 28, 273-277.

Li, Y., Li, C. J., Yu, D., & Pardee, A. B. (2000). Potent induction of apoptosis by β-lapachone in human multiple myeloma cell lines and patient cells. Molecular Medicine, 6, 1008-1015.

Lima, N. M., Correia, C. S., Leon, L. L., Machado, G., Madeira, M. D. F., Santana, A. E. G., & Goulart, M. O. (2004). Antileishmanial activity of lapachol analogues. Memórias do Instituto Oswaldo Cruz, 99, 757-761.

Lopes, J. N., Cruz, F. S., Docampo, R., Vasconcellos, M. E., Sampaio, M. C. R., Pinto, A. V., & Gilbert, B. (1978). In vitro and in vivo evaluation of the toxicity of 1, 4-naphthoquinone and 1, 2-naphthoquinone derivatives against Trypanosoma cruzi. Annals of Tropical Medicine & Parasitology, 72(6), 523-531.

López López, L. I., Nery Flores, S. D., Silva Belmares, S. Y., & Sáenz Galindo, A. (2014). Naphthoquinones: Biological properties and synthesis of lawsone and derivatives-a structured review. Vitae-Columbia, 21, 248-258.

Ma, W. D., Zou, Y. P., Wang, P., Yao, X. H., Sun, Y., Duan, M. H., Fu, Y. J., & Yu, B. (2014). Chimaphilin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway. Food and Chemical Toxicology, 70, 1-8.

Mahapatra, S. P., Mativandlela, S. P., Binneman, B., Fourie, P. B., Hamilton, C. J., Meyer, J. J., Van dey Kooy, F., Houghton, P., & Lall, N. (2007). Activity of 7-methyljuglone derivatives against Mycobacterium tuberculosis and as subversive substrates for mycothiol disulfide reductase. Bioorganic & Medicinal Chemistry, 15, 7638-7646.

Majiene, D., Kuseliauskyte, J., Stimbirys, A., & Jekabsone, A. (2019). Comparison of the effect of native 1, 4-Naphthoquinones plumbagin, menadione, and Lawsone on Viability, Redox Status, and Mitochondrial Functions of C6 Glioblastoma Cells. Nutrients, 11, 1294.

Manickam, M., Boggu, P. R., Cho, J., Nam, Y. J., Lee, S. J., & Jung, S. H. (2018). Investigation of chemical reactivity of 2-alkoxy-1, 4-naphthoquinones and their anticancer activity. Bioorganic and Medicinal Chemistry Letters, 28, 2023-2028.

Medentsev, G., Arinbasarova, A. Y., & Akimenko, V. K. (2005). Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Applied Biochemistry and Microbiology, 41, 503-507.

Menna-Barreto, R. F., Beghini, D. G., Ferreira, A. T., Pinto, A. V., De Castro, S. L., & Perales, J. A. (2010). Proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro. Journal of Proteomics, 73, 2306-2315.

Menna-Barreto, R. F., Corrêa, J. R., Cascabulho, C. M., Fernandes, M. C., Pinto, A. V., Soares, M. J., & De Castro, S. L. (2009). Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology, 136, 499-510.

Menna-Barreto, R. F., Corrêa, J. R., Pinto, A. V., Soares, M. J., & De Castro, S. L. (2007). Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitology Research, 101, 895-905.

Menna-Barreto, R. F., Henriques-Pons, A., Pinto, A. V., Morgado-Diaz, J. A., Soares, M. J., & De Castro, S. L. (2005). Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: Identification of target organelles. Journal of Antimicrobial Chemotherapy, 56, 1034-1041.

Milackova, M. S., Prnova, M., Majekova, R., Sotnikova, M., Stasko, L., Kovacikova, S. B., & Veverka Stefek, M. (2015). 2-Chloro-1, 4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent. Journal of Enzyme Inhibition and Medicinal Chemistry, 30, 107-113.

Moideen, S. V. K., Houghton, P. J., Rock, P., Croft, S. L., & Aboagye-Nyame, F. (1999). Activity of extracts and naphthoquinones from Kigelia pinnata against Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. Planta Medica, 65(6), 536-540.

Montenegro, R. C., Araújo, A. J., Molina, M. T., Marinho Filho, J. D. B., Rocha, D. D., Lopéz-Montero, E., Goulart, M. O., Bento, E. S., Alves, A. P. N. N., Pessoa, C., & de Moraes, M. O. (2010). Cytotoxic activity of naphthoquinones with special emphasis on juglone and its 5-O-methyl derivative. Chemico-Biological Interactions, 184, 439-448.

Morello, A., Pavani, M., Garbarino, J. A., Frey, C., Mancilla, J., Repetto, Y., & Ferreira, J. (1995). Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 112(2), 119-128.

Nair, S. V., Baranwal, G., Chatterjee, M., Sachu, A., Vasudevan, A. K., Bose, C., Banerji, A., & Biswas, R. (2016). Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. International Journal of Medical Microbiology, 306, 237-248.

Nayak, N., Bajpai, M., & Razdan, B. (2014). Plumbagin analogs-synthesis, characterization, and antitubercular activity. Journal of Advanced Pharmaceutical Technology & Research, 5, 28-32.

Osada, S., Tomita, H., Tanaka, Y., Tokuyama, Y., Tanaka, H., Sakashita, F., & Takahashi, T. (2008). The utility of vitamin K3 (menadione) against pancreatic cancer. Anticancer Research, 28, 45-50.

Pacheco, P. A. F., de Menezes Ribeiro, T., dos Santos Galvão, R. M., Dos Santos, E. G., Faria, A. F. M., von Ranke, N. L., Bello, M. L., Rodrigues, C. R., Ferreira, V. F., Souza, A. L. A., & de Jesús Hardoim, D. (2020). Synthesis of new N, S-acetal analogs derived from juglone with cytotoxic activity against Trypanosoma cruzi. Journal of Bioenergetics and Biomembranes, 52, 199-213.

Padhye, S., Dandawate, P., Yusufi, M., Ahmad, A., & Sarkar, F. H. (2012). Perspectives on medicinal properties of plumbagin and its analogs. Medicinal Research Reviews, 32, 1131-1158.

Periasamy, H., Iswarya, S., Pavithra, N., Senthilnathan, S., & Gnanamani, A. (2019). In vitro antibacterial activity of plumbagin isolated from Plumbago zeylanica L. against methicillin-resistant Staphylococcus aureus. Letters in Applied Microbiology, 69, 41-49.

Pieretti, S., Haanstra, J. R., Mazet, M., Perozzo, R., Bergamini, C., Prati, F., Fato, R., Lenaz, G., Capranico, G., Brun, R., & Bakker, B. M. (2013). Naphthoquinone derivatives exert their antitrypanosomal activity via a multi-target mechanism. PLoS Neglected Tropical Diseases, 7, e2012.

Pinto, C. N., Dantas, A. P., De Moura, K. C., Emery, F. S., Polequevitch, P. F., Maria do Carmo, F. P., de Castro, S. L., & Pinto, A. V. (2000). Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy. Arzneimittel-Forschung, 50, 1120-1128.

Pinto, V., & de Castro, S. L. (2009). The trypanocidal activity of naphthoquinones: A review. Molecules, 14, 4570-4590.

Pinto, V., Neves Pinto, C., Pinto, M. D. C., Santa Rita, R., Pezzella, C. A., & De Castro, S. L. (1997). Trypanocidal activity of synthetic heterocyclic derivatives of active quinones from Tabebuia sp. Drug Research, 47, 74-79.

Prachayasittikul, V., Pingaew, R., Worachartcheewan, A., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S., & Prachayasittikul, V. (2014). Synthesis, anticancer activity and QSAR study of 1, 4-naphthoquinone derivatives. European Journal of Medicinal Chemistry, 84, 247-263.

Rahmoun, N. M., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M., Villemin, D., & Choukchou-Braham, N. (2012). Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Médecine et Maladies Infectieuses, 42, 270-275.

Ramos, I., Garza, K. M., Krauth-Siegel, R. L., Bader, J., Martinez, L. E., & Maldonado, R. A. (2009). Characterization and trypanocidal activity of a novel pyranaphthoquinone. Journal of Parasitology, 95, 461-466.

Rani, R., Narasimhan, B., Varma, R. S., & Kumar, R. (2021). Naphthoquinone derivatives exhibit apoptosis-like effect and anti-trypanosomal activity against Trypanosoma evansi. Veterinary Parasitology, 290, 109367.

Rani, R., Narasimhan, B., Varma, R. S., & Kumar, R. (2022). Gum-based nanocapsules comprising naphthoquinones enhance the apoptotic and trypanocidal activity against Trypanosoma evansi. European Journal of Pharmaceutical Sciences, 171, 106118.

Rathore, S. N., Manuja, A., Manuja, B. K., & Choudhary, S. (2016). Chemotherapeutic approaches against Trypanosoma evansi: Retrospective analysis, current status and future outlook. Current Topics in Medicinal Chemistry, 16, 2316-2327.

Ravichandiran, P., Sheet, S., Premnath, D., Kim, A. R., & Yoo, D. J. (2019). 1,4-Naphthoquinone analogues: Potent antibacterial agents and mode of action evaluation. Molecules, 24, 1437.

Ryu, K., Shim, J. Y., Chae, M. J., Choi, I. H., Han, J. Y., Jung, O. J., Lee, J. Y., & Jeong, S. H. (2005). Synthesis and antifungal activity of 2/3-arylthio-and 2, 3-bis (arylthio)-5-hydroxy-/5-methoxy-1, 4-naphthoquinones. European Journal of Medicinal Chemistry, 40, 438-444.

Saeed, S. M. G., Sayeed, S. A., Ashraf, S., Naz, S., Siddiqi, R., Ali, R., & Mesaik, M. A. (2013). A new method for the isolation and purification of lawsone from Lawsonia inermis and its ROS inhibitory activity. Pakistan Journal of Botany, 45, 1431-1436.

Salas, O., Faúndez, M., Morello, A., Diego Maya, J., & Tapia, R. A. (2011). Natural and synthetic naphthoquinones active against Trypanosoma cruzi: An initial step towards new drugs for Chagas disease. Current Medicinal Chemistry, 18, 144-161.

Salas, R. A., Tapia, K., Ciudad, V., Armstrong, M., Orellana, U., Kemmerling, J. F., & Maya, J. D. (2008). Trypanosoma cruzi: Activities of lapachol and alpha- and beta-lapachone derivatives against epimastigote and trypomastigote forms. Bioorganic and Medicinal Chemistry, 16, 668-674.

Salmon-Chemin, L., Buisine, E., Yardley, V., Kohler, S., Debreu, M. A., Landry, V., Sergheraert, C., Croft, S. L., Krauth-Siegel, R. L., & Davioud-Charvet, E. (2001). 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: Synthesis and correlation between redox cycling activities and in vitro cytotoxicity. Journal of Medicinal Chemistry, 44(4), 548-565.

Salomão, K., De Santana, N. A., Molina, M. T., De Castro, S. L., & Menna-Barreto, R. F. (2013). Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiology, 13, 196.

Samant, B. S., & Chakaingesu, C. (2013). Novel naphthoquinone derivatives: Synthesis and activity against human African trypanosomiasis. Bioorganic & Medicinal Chemistry Letters, 23(5), 1420-1423.

Shen, C., Syu, W. J., Li, S. Y., Lin, C. H., Lee, G. H., & Sun, C. M. (2002). Antimicrobial activities of naphthazarins from Arnebia euchroma. Journal of Natural Products, 65, 1857-1862.

Shrestha, J. P., Baker, C., Kawasaki, Y., Subedi, Y. P., de Paul, N. N. V., Takemoto, J. Y., & Chang, C. W. T. (2017). Synthesis and bioactivity investigation of quinone-based dimeric cationic triazolium amphiphiles selective against resistant fungal and bacterial pathogens. European Journal of Medicinal Chemistry, 126, 696-704.

Sieveking, I., Thomas, P., Estévez, J. C., Quiñones, N., Cuéllar, M. A., Villena, J., Espinosa-Bustos, C., Fierro, A., Tapia, R. A., Maya, J. D., & López-Muñoz, R. (2014). 2-Phenylaminonaphthoquinones and related compounds: Synthesis, trypanocidal and cytotoxic activities. Bioorganic and Medicinal Chemistry, 22, 4609-4620.

Silva, J. S., Ferrioli-Filho, S., Kanesiro, M. M., Ferreira, V. F., Santos, S. C., Pinto, C. N., Fonseca, J. L., Mizrahy, H. E., Gilbert, B., Pinto, M. C., & Ribeiro, F. W. (1992). Evaluation of some organic compounds on bloodstream forms of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 87(3), 345-351.

Silva, E. N., de Moura, M. A., Pinto, A. V., Pinto, M. D., de Souza, M. C., Araújo, A. J., Pessoa, C., Costa-Lotufo, L. V., Montenegro, R. C., Moraes, M. O., & Ferreira, V. F. (2009). Cytotoxic, trypanocidal activities and physicochemical parameters of nor-2-lapachone-based 1, 2, 3-triazoles. Journal of Brazilian Chemical Society, 20, 635-643.

Silva, R. S., Costa, E. M., Trindade, U. L., Teixeira, D. V., Maria de Carmo, F. R., Santos, G. L., Malta, V. R., De Simone, C. A., Pinto, A. V., & de Castro, S. L. (2006). Synthesis of naphthofuranquinones with activity against Trypanosoma cruzi. European Journal of Medicinal Chemistry, 41, 526-530.

Singh, B., Sharma, M. K., Meghwal, P. R., Sahu, P. M., & Singh, S. (2003). Anti-inflammatory activity of shikonin derivatives from Arnebia hispidissima. Phytomedicine, 10, 375-380.

Souza-Silva, F., do Nascimento, S. B., Bourguignon, S. C., Pereira, B. A., Carneiro, P. F., da Silva, W. S., Alves, C. R., & de Pinho, R. T. (2014). Evidences for leishmanicidal activity of the naphthoquinone derivative epoxy-α-lapachone. Experimental Parasitology, 147, 81-84.

Strauch, M. A., Tomaz, M. A., Monteiro-Machado, M., Cons, B. L., Patrão-Neto, F. C., Teixeira-Cruz, J. D. M., Tavares-Henriques, M. D. S., Nogueira-Souza, P. D., Gomes, S. L., Costa, P. R., & Schaeffer, E. (2019). Antitumoral and toxicological properties of extracts of bark and various wood components of pau d'arco (Tabebuia avellanedae). PLoS One, 14(1), e0211229.

Van der Kooy, F., Meyer, J. J., & Lall, N. (2006). Antimycobacterial activity and possible mode of action of newly isolated neodiospyrin and other naphthoquinones from Euclea natalensis. South African Journal of Botany, 72, 349-352.

Vaverkova, V., Vrana, O., Adam, V., Pekarek, T., Jampilek, J., & Babula, P. (2014). The study of naphthoquinones and their complexes with DNA by using Raman spectroscopy and surface enhanced Raman spectroscopy: New insight into interactions of DNA with plant secondary metabolites. BioMed Research International, 2014, 461393.

Wang, Y., Luo, Y. H., Piao, X. J., Shen, G. N., Meng, L. Q., Zhang, Y., Wang, J. R., Li, J. Q., Wang, H., Xu, W. T., & Liu, Y. (2019). Novel 1, 4-naphthoquinone derivatives induce reactive oxygen species-mediated apoptosis in liver cancer cells. Molecular Medicine Reports, 19, 1654-1664.

Wellington, K. W., Kolesnikova, N. I., Nyoka, N. B., & McGaw, L. J. (2019). Investigation of the antimicrobial and anticancer activity of amino naphthoquinones. Drug Development Research, 80, 138-146.

Wood, M., Satam, N. S., Almeida, R. G., Cristani, V. S., Lima, D. P., Pereira, L. D., Salomão, K., Menna-Barreto, R. F., Namboothiri, I. N., Bower, J. F., & da Silva, E. N. (2020). Strategies towards potent trypanocidal drugs: Application of Rh-catalyzed [2+ 2+ 2] cycloadditions, sulfonyl phthalide annulation and nitroalkene reactions for the synthesis of substituted quinones and their evaluation against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 28, 115565.

Yardley, V., Snowdon, D., Croft, S., & Hazra, B. (1996). In vitro activity of diospyrin and derivatives against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei brucei. Phytotherapy Research, 10, 559-562.

Yeh, C., Kuo, H. M., Li, T. M., Lin, J. P., Yu, F. S., Lu, H. F., Chung, J. G., & Yang, J. S. (2007). Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). In Vivo, 21, 1011-1019.

Zhang, Y., Li, X. M., Wang, C. Y., & Wang, B. G. (2004). A new naphthoquinoneimine derivative from the marine algal-derived endophytic fungus Aspergillus niger EN-13. Chinese Chemical Letters, 18, 951-953.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace