Retention prediction of monoamine neurotransmitters in gradient liquid chromatography

. 2022 Sep ; 45 (17) : 3319-3327. [epub] 20220728

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35855653

Grantová podpora
20-21903S Czech Science Foundation

Retention prediction of monoamine neurotransmitters has been compared for the generally applied linear solvent-strength model and quadratic polynomial three-parameter model. The design of experiments protocol has been applied to plan linear gradients within the experimental space with altered gradient time, mobile phase flow rate, and column temperature. Relative prediction errors increased at elevated temperature, which is more significant for the linear solvent-strength model when compared to the polynomial model. On the other hand, the predefined design of experiments space controls the retention time errors, as predictions for LC conditions that are outside of the plan are much less accurate and should be avoided. The final part of the work deals with the effect of extracolumn band dispersion on the peak capacity of linear gradients at various gradient times, mobile phase flow rates, and column temperature. The peak capacity determined for corrected experimental data were consistent with the published results dealing with the optimization of peak capacity in gradient elution.

Zobrazit více v PubMed

Jandera P, Churácék J, Gradient Elution in Column Liquid Chromatography: Theory and Practice. Elsevier¸ Cham 1985.

Snyder LR, Dolan JW, High-Performance Gradient Elution: The Practical Application of the Linear-Solvent-Strength Model. Wiley, Hoboken 2006.

Jandera P, Hajek T, Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns. J. Chromatogr. A 2015;1410:76-89.

Snyder LR, Dolan JW, Advances in Chromatography. CRC Press, Boca Raton 1998.

Jandera P, Advances In Chromatography. CRC Press, Boca Raton 2004.

Jandera P, Can the theory of gradient liquid chromatography be useful in solving practical problems? J. Chromatogr. A 2006;1126:195-218.

Nikitas P, Pappa-Louisi A, Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. J. Chromatogr. A 2009;1216:1737-1755.

Marchand DH, Snyder LR, Dolan JW, Characterization and applications of reversed-phase column selectivity based on the hydrophobic-subtraction model. J. Chromatogr. A 2008;1191:2-20.

Snyder LR, Dolan JW, Carr PW, The hydrophobic-subtraction model of reversed-phase column selectivity. J. Chromatogr. A 2004;1060:77-116.

Abraham M, Scales of Solute Hydrogen-Bonding - Their Construction and Application to Physicochemical and Biochemical Processes. Chem. Soc. Rev. 1993;22:73-83.

Kaliszan R, QSRR: Quantitative Structure-(Chromatographic) retention relationships. Chem. Rev. 2007;107:3212-3246.

Milosevic NP, Kojic V, Curcic J, Jakimov D, Milic N, Banjac N, Uscumlic G, Kaliszan R, Evaluation of in silico pharmacokinetic properties and in vitro cytotoxic activity of selected newly synthesized N-succinimide derivatives. J. Pharm. Biomed. Anal. 2017;137:252-257.

Zuvela P, Skoczylas M, Liu JJ, Baczek T, Kaliszan R, Wong MW, Buszewski B, Heberger K, Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography (vol 119, pg 3674, 2019). Chem. Rev. 2019;119:4818.

Zuvela P, Skoczylas M, Liu JJ, Baczek T, Kaliszan R, Wong MW, Buszewski B, Column characterization and selection systems in reversed-phase high-performance liquid chromatography. Chem. Rev. 2019;119:3674-3729.

den Uijl MJ, Schoenmakers PJ, Pirok BWJ, van Bommel MR, Recent applications of retention modelling in liquid chromatography. J. Sep. Sci. 2021;44:88-114.

Jandera P, Hajek T, Vynuchalova K, Retention and bandwidths prediction in fast gradient liquid chromatography. Part 2-Core-shell columns. J. Chromatogr. A 2014;1337:57-66.

Schellinger AP, Carr PW, A practical approach to transferring linear gradient elution methods. J. Chromatogr. A 2005;1077:110-119.

Wang X, Stoll DR, Schellinger AP, Carr PW, Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: Fixed column format. Anal. Chem. 2006;78:3406-3416.

Roca LS, Schoemaker SE, Pirok BWJ, Gargano AFG, Schoenmakers PJ, Accurate modelling of the retention behaviour of peptides in gradient-elution hydrophilic interaction liquid chromatography. J. Chromatogr. A 2020;1614:460650.

den Uijl MJ, Schoenmakers PJ, Schulte GK, Stoll DR, van Bommel MR, Pirok BWJ, Measuring and using scanning-gradient data for use in method optimization for liquid chromatography. J. Chromatogr. A 2021;1636:461780.

Molnar I, Computerized design of separation strategies by reversed-phase liquid chromatography: development of DryLab software. J. Chromatogr. A 2002;965:175-194.

Galushko SV, Calculation of retention and selectivity in reversed-phase liquid chromatography. J. Chromatogr. A 1991;552:91-102.

Vorslova S, Golushko J, Galushko S, Viksna A, Application of the solvatic model for prediction of retention in RP-LC for multi-step gradient profiles. Chromatographia 2015;78:899-908.

Wang L, Zheng J, Gong X, Hartman R, Antonucci V, Efficient HPLC method development using structure-based database search, physico-chemical prediction and chromatographic simulation. J. Pharm. Biomed. Anal. 2015;104:49-54.

Alkhateeb FL, Wilson I, Maziarz M, Rainville P, Ultra high-performance liquid chromatography method development for separation of formoterol, budesonide, and related substances using an analytical quality by design approach. J. Pharma. Biomed. Anal. 2021;193:113729.

Kormány R, Fekete J, Guillarme D, Fekete S, Reliability of simulated robustness testing in fast liquid chromatography, using state-of-the-art column technology, instrumentation and modelling software. J. Pharma. Biomed. Anal. 2014;89: 67-75.

Tyteca E, Liekens A, Clicq D, Fanigliulo A, Debrus B, Rudaz S, Guillarme D, Desmet G, Predictive elution window stretching and shifting as a generic search strategy for automated method development for liquid chromatography. Anal. Chem. 2012;84:7823-7830.

Chirita R-I, West C, Zubrzycki S, Finaru A-L, Elfakir C, Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J. Chromatogr. A 2011;1218:5939-5963.

Song Q, Li J, Huo H, Cao Y, Wang Y, Song Y, Tu P, Retention time and optimal collision energy advance structural annotation relied on LC-MS/MS: an application in metabolite identification of an antidementia agent namely echinacoside. Anal. Chem. 2019;91:15040-15048.

Rodenas-Montano J, Ortiz-Bolsico C, Ruiz-Angel MJ, Garcia-Alvarez-Coque MC, Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab (R): Separation of basic compounds in urine samples. J. Chromatogr. A 2014;1344:31-41.

Snyder LR, Dolan JW, Gant JR, Gradient elution in high-performance liquid chromatography: I. Theoretical basis for reversed-phase systems. J. Chromatogr. A 1979;165:3-30.

Jandera P, Churáček J, Gradient elution in liquid chromatography: I. The influence of the composition of the mobile phase on the capacity ratio (retention volume, band width, and resolution) in isocratic elution - theoretical considerations. J. Chromatogr. A 1974;91:207-221.

Neue UD, Theory of peak capacity in gradient elution. J. Chromatogr. A 2005;1079:153-161.

Neue UD, Peak capacity in unidimensional chromatography. J. Chromatogr. A 2008;1184:107-130.

Dolan JW, Snyder LR, Djordjevic NM, Hill DW, Waeghe TJ, Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations. J. Chromatogr. A 1999;857:1-20.

Petersson P, Boateng BO, Field JK, Euerby MR, A practical approach to modelling of reversed-phase liquid chromatographic separations: advantages, principles, and possible pitfalls. LC GC Eur. 2018;31:120-143.

R Development Core Team. R Project for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria 2012.

Akaike H, A new look at the statistical model identification. IEEE Trans. Automatic Control 1974;19:716-723.

Gritti F, Guiochon G, Separations by gradient elution: Why are steep gradient profiles distorted and what is their impact on resolution in reversed-phase liquid chromatography. J. Chromatogr. A 2014;1344:66-75.

Jandera P, Hájek T, Šromová Z, Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited. J. Chromatogr. A 2018;1543:48-57.

Box GEP, Draper NR, Empirical Model-Building and Response Surfaces. Wiley, New York 1987.

Lambert N, Felinger A, The effect of the frictional heat on retention and efficiency in thermostated or insulated chromatographic columns packed with sub-2-μm particles. J. Chromatogr. A 2018;1565:89-95.

Neue UD, Kuss H-J, Improved reversed-phase gradient retention modeling. J. Chromatogr. A 2010;1217:3794-3803.

Goyon A, Guillarme D, Fekete S, The importance of system band broadening in modern size exclusion chromatography. J. Pharma. Biomed. Anal. 2017;135:50-60.

Fekete S, Fekete J, The impact of extra-column band broadening on the chromatographic efficiency of 5cm long narrow-bore very efficient columns. J. Chromatogr. A 2011;1218:5286-5291.

Gritti F, Guiochon G, Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column. J. Chromatogr. A 2014;1327:49-56.

Gilar M, McDonald TS, Gritti F, Impact of instrument and column parameters on high-throughput liquid chromatography performance. J. Chromatogr. A 2017;1523:215-223.

Gritti F, Sanchez CA, Farkas T, Guiochon G, Achieving the full performance of highly efficient columns by optimizing conventional benchmark high-performance liquid chromatography instruments. J. Chromatogr. A 2010;1217:3000-3012.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...