Different phylogenomic methods support monophyly of enigmatic 'Mesozoa' (Dicyemida + Orthonectida, Lophotrochozoa)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 NS114491
NINDS NIH HHS - United States
PubMed
35858055
PubMed Central
PMC9257288
DOI
10.1098/rspb.2022.0683
Knihovny.cz E-zdroje
- Klíčová slova
- Dicyemida, LBA, Lophotrochozoa, Mesozoa, Orthonectida, phylogenomics,
- MeSH
- Bayesova věta MeSH
- bezobratlí * genetika MeSH
- fylogeneze MeSH
- ploštěnci * MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Dicyemids and orthonectids were traditionally classified in a group called Mesozoa, but their placement in a single clade has been contested and their position(s) within Metazoa is uncertain. Here, we assembled a comprehensive matrix of Lophotrochozoa (Metazoa) and investigated the position of Dicyemida (= Rhombozoa) and Orthonectida, employing multiple phylogenomic approaches. We sequenced seven new transcriptomes and one draft genome from dicyemids (Dicyema, Dicyemennea) and two transcriptomes from orthonectids (Rhopalura). Using these and published data, we assembled and analysed contamination-filtered datasets with up to 987 genes. Our results recover Mesozoa monophyletic and as a close relative of Platyhelminthes or Gnathifera. Because of the tendency of the long-branch mesozoans to group with other long-branch taxa in our analyses, we explored the impact of approaches purported to help alleviate long-branch attraction (e.g. taxon removal, coalescent inference, gene targeting). None of these were able to break the association of Orthonectida with Dicyemida in the maximum-likelihood trees. Contrastingly, the Bayesian analysis and site-specific frequency model in maximum-likelihood did not recover a monophyletic Mesozoa (but only when using a specific 50 gene matrix). The classic hypothesis on monophyletic Mesozoa is possibly reborn and should be further tested.
Department of Parasitology University of South Bohemia České Budějovice 37005 Czech Republic
Molecular Cellular and Biomedical Sciences University of New Hampshire Durham NH 03824 USA
Zobrazit více v PubMed
Dunn CW, Giribet G, Edgecombe GD, Hejnol A. 2014. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45, 371-395. (10.1146/annurev-ecolsys-120213-091627) DOI
Wägele WBT. 2014. Deep metazoan phylogeny: the backbone of the tree of life. Berlin–Boston: de Gruyter.
Telford MJ, Budd GE, Philippe H. 2015. Phylogenomic insights into animal evolution. Curr. Biol. 25, R876-R887. (10.1016/j.cub.2015.07.060) PubMed DOI
Halanych KM. 2016. How our view of animal phylogeny was reshaped by molecular approaches: lessons learned. Org. Divers. Evol. 16, 319-328. (10.1007/s13127-016-0264-8) DOI
Kocot KM. 2016. On 20 years of Lophotrochozoa. Org. Divers. Evol. 16, 329-343. (10.1007/s13127-015-0261-3) DOI
Wanninger A. 2016. Twenty years into the ‘new animal phylogeny’: changes and challenges. Org. Divers. Evol. 16, 315-318. (10.1007/s13127-016-0277-3) DOI
Giribet G, Edgecombe GD. 2017. Current understanding of ecdysozoa and its internal phylogenetic relationships. Integr. Comp. Biol. 57, 455-466. (10.1093/icb/icx072) PubMed DOI
Bleidorn C. 2019. Recent progress in reconstructing lophotrochozoan (spiralian) phylogeny. Org. Divers. Evol. 19, 557-566. (10.1007/s13127-019-00412-4) DOI
Marlétaz F, Peijnenburg KTCA, Goto T, Satoh N, Rokhsar DS. 2019. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr. Biol. 29, 312-318.e3. (10.1016/j.cub.2018.11.042) PubMed DOI
Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401-410. (10.2307/2412923) DOI
Bergsten J. 2005. A review of long-branch attraction. Cladistics 21, 163-193. (10.1111/j.1096-0031.2005.00059.x) PubMed DOI
Philippe H, Vienne Dd, Ranwez V, Roure B, Baurain D, Delsuc F. 2017. Pitfalls in supermatrix phylogenomics. Eur. J. Taxon. 283, 1-25. (10.5852/ejt.2017.283) DOI
Qun Y, Junye M, Xiaoyan S, Peiyun C. 2007. Phylochronology of early metazoans: combined evidence from molecular and fossil data. Geol. J. 42, 281-295. (10.1002/gj.1074) DOI
Laumer CE, et al. 2019. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. R. Soc. B 286, 20190831. (10.1098/rspb.2019.0831) PubMed DOI PMC
Zverkov OA, et al. 2019. Dicyemida and Orthonectida: two stories of body plan simplification. Front. Genet. 10, 443. (10.3389/fgene.2019.00443) PubMed DOI PMC
Rokas A, Kruger D, Carroll SB. 2005. Animal evolution and the molecular signature of radiations compressed in time. Science 310, 1933-1938. (10.1126/science.1116759) PubMed DOI
Thomas JA, Welch JJ, Lanfear R, Bromham L. 2010. A generation time effect on the rate of molecular evolution in invertebrates. Mol. Biol. Evol. 27, 1173-1180. (10.1093/molbev/msq009) PubMed DOI
Haraguchi Y, Sasaki A. 1996. Host–parasite arms race in mutation modifications: indefinite escalation despite a heavy load? J. Theor. Biol. 183, 121-137. (10.1006/jtbi.1996.9999) PubMed DOI
Budd GE, Jackson ISC. 2016. Ecological innovations in the Cambrian and the origins of the crown group phyla. Phil. Trans. R. Soc. B 371, 20150287. (10.1098/rstb.2015.0287) PubMed DOI PMC
WoRMS Editorial Board 2018: van der Land, Furuya and Decock. 2018. World Register of Marine Species. See http://www.marinespecies.org at VLIZ (accessed 18 May 2018).
Deheyn D, Watson NA, Jangoux M. 1998. Symbioses in Amphipholis squamata (Echinodermata, Ophiuroidea, Amphiuridae): geographical variation of infestation and effect of symbionts on the host's light production. Int. J. Parasitol. 28, 1413-1424. (10.1016/S0020-7519(98)00119-2) PubMed DOI
Catalano SR. 2012. A review of the families, genera and species of Dicyemida Van Beneden, 1876. Zootaxa 32, 1-32. (10.11646/zootaxa.3479.1.1) DOI
Van Beneden ME. 1876. Recherches sur le Dicyemides, survivants actuels d'un embranchement des Mésozoaires. Bull Académie R Sci Lett B-arts Belg. 1876; Bruxelles: 1160–250.
Nouvel H. 1948. Les Dicyemides 2em partie: Infusoriforme, Teratologie, Specificite du parasitisime, Affinites. Arch. Biol. Liege 59, 147-223. PubMed
Metschnikoff E. 1881. Untersuchunger uber Orthonectiden. Z. Für. Wiss. Zool. 32, 349-387.
Martín-Durán JM, et al. 2021. Conservative route to genome compaction in a miniature annelid. Nat. Ecol. Evol. 5, 231-242. (10.1038/s41559-020-01327-6) PubMed DOI PMC
Slyusarev GS, Kristensen R. 2003. Fine structure of the ciliated cells and ciliary rootlets of Intoshia variabili (Orthonectida). Zoomorphology 122, 33-39. (10.1007/s00435-002-0065-9) DOI
Kozloff EN. 1969. Morphology of the Orthonectid Rhopalura ophiocomae. J. Parasitol. 55, 171-195. (10.2307/3277368) DOI
Pawlowski J, Montoya-Burgos JI, Fahrni JF, Wüest J, Zaninetti L. 1996. Origin of the Mesozoa inferred from 18S rRNA gene sequences. Mol. Biol. Evol. 13, 1128-1132. (10.1093/oxfordjournals.molbev.a025675) PubMed DOI
Zrzavy J, Mihulka S, Kepka P, Bezdek A, Tietz D. 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14, 249-285. (10.1111/j.1096-0031.1998.tb00338.x) PubMed DOI
Kobayashi M. 1999. Dicyemids are higher animals. Nat. Macmillan Mag. Ltd. 40, 762-763. PubMed
Aruga J, Odaka YS, Kamiya A, Furuya H. 2007. Dicyema Pax6 and Zic: tool-kit genes in a highly simplified bilaterian. BMC Evol. Biol. 7, 201. (10.1186/1471-2148-7-201) PubMed DOI PMC
Suzuki TG, Ogino K, Tsuneki K, Furuya H. 2010. Phylogenetic analysis of dicyemid mesozoans (phylum Dicyemida) from innexin amino acid sequences: dicyemids are not related to Platyhelminthes. J. Parasitol. 96, 614-625. (10.1645/GE-2305.1) PubMed DOI
Mikhailov KV, Slyusarev GS, Nikitin MA, Logacheva MD, Penin AA, Aleoshin VV, Panchin YV. 2016. The genome of Intoshia linei affirms orthonectids as highly simplified spiralians. Curr. Biol. 26, 1768-1774. (10.1016/j.cub.2016.05.007) PubMed DOI
Lu TM, Kanda M, Satoh N, Furuya H. 2017. The phylogenetic position of dicyemid mesozoans offers insights into spiralian evolution. Zool. Lett. 3, 1-9. (10.1186/s40851-017-0062-y) PubMed DOI PMC
Schiffer PH, Robertson HE, Telford MJ. 2018. Orthonectids are highly degenerate annelid worms. Curr. Biol. 28, 1970-1974. e3. (10.1016/j.cub.2018.04.088) PubMed DOI
Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095-1109. (10.1093/molbev/msh112) PubMed DOI
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611-615. (10.1093/sysbio/syt022) PubMed DOI
Wang HC, Minh BQ, Susko E, Roger AJ. 2018. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216-235. (10.1093/sysbio/syx068) PubMed DOI
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC
Shen XX, Salichos L, Rokas A. 2016. A genome-scale investigation of how sequence, function, and tree-based gene properties influence phylogenetic inference. Genome Biol. Evol. 8, 2565-2580. (10.1093/gbe/evw179) PubMed DOI PMC
Nesnidal MP, Helmkampf M, Bruchhaus I, Hausdorf B. 2010. Compositional heterogeneity and phylogenomic inference of metazoan relationships. Mol. Biol. Evol. 27, 2095-2104. (10.1093/molbev/msq097) PubMed DOI
Liu L, Yu L, Kubatko L, Pearl DK, Edwards SV. 2009. Coalescent methods for estimating phylogenetic trees. Mol. Phylogenet. Evol. 53, 320-328. (10.1016/j.ympev.2009.05.033) PubMed DOI
Kapli P, Yang Z, Telford MJ. 2020. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428-444. (10.1038/s41576-020-0233-0) PubMed DOI
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. (10.1093/bioinformatics/btu033) PubMed DOI PMC
Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7(Suppl. 1), S4. (10.1186/1471-2148-7-S1-S4) PubMed DOI PMC
Mirarab S, Warnow T. 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, i44-i52. (10.1093/bioinformatics/btv234) PubMed DOI PMC
Kocot KM, et al. 2017. Phylogenomics of lophotrochozoa with consideration of systematic error. Syst. Biol. 66, 256-282. PubMed
Ebersberger I, Strauss S, von Haeseler A. 2009. HaMStR: profile hidden Markov model based search for orthologs in ESTs. BMC Evol. Biol. 9, 157. (10.1186/1471-2148-9-157) PubMed DOI PMC
Meyer B, Meusemann K, Misof B. 2011. MARE v0.1.2-rc.xxx. See https://bonn.leibniz-lib.de/en/research/research-centres-and-groups/mare.
Struck TH. 2014. Trespex-detection of misleading signal in phylogenetic reconstructions based on tree information. Evol Bioinforma. 10, 51-67. (10.4137/EBO.S14239) PubMed DOI PMC
Kück P, Struck TH. 2014. BaCoCa – a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol. Phylogenet. Evol. 70, 94-98. (10.1016/j.ympev.2013.09.011) PubMed DOI
Si Quang L, Gascuel O, Lartillot N. 2008. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317-2323. (10.1093/bioinformatics/btn445) PubMed DOI
Shen XX, Hittinger CT, Rokas A. 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1, 0126. (10.1038/s41559-017-0126) PubMed DOI PMC
Ballesteros JA, Sharma PP. 2019. A critical appraisal of the placement of xiphosura (chelicerata) with account of known sources of phylogenetic error. Syst. Biol. 68, 896-917. (10.1093/sysbio/syz011) PubMed DOI
Simmons MP, Sloan DB, Springer MS, Gatesy J. 2019. Gene-wise resampling outperforms site-wise resampling in phylogenetic coalescence analyses. Mol. Phylogenet. Evol. 131, 80-92. (10.1016/j.ympev.2018.10.001) PubMed DOI
Smith SA, Dunn CW. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715-716. (10.1093/bioinformatics/btm619) PubMed DOI
Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635-1638. (10.1093/molbev/msw046) PubMed DOI PMC
Whelan NV, Halanych KM. 2017. Who Let the CAT Out of the Bag? Accurately dealing with substitutional heterogeneity in phylogenomic analyses. Syst. Biol. 66, 232-255. (10.1093/sysbio/syw084) PubMed DOI
Czaker R. 2000. Extracellular matrix (ECM) components in a very primitive multicellular animal, the dicyemid mesozoan Kantharella antarctica. Anat. Rec. 259, 52-59. (10.1002/(SICI)1097-0185(20000501)259:1<52::AID-AR6>3.0.CO;2-J) PubMed DOI
Nesnidal MP, et al. 2013. New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol. Biol. 13, 253. (10.1186/1471-2148-13-253) PubMed DOI PMC
Ax P. 1996. Multicellular animals: a new approach to the phylogenetic order in nature, vol. 1. Berlin, Germany: Springer.
Whitman CO. 1883. A contribution to the embryology, life-history, and classification of the Dicyemids. Leipzig, Germany: Wilhelm Engelmann.
Telford MJ, Herniou EA, Russell RB, Littlewood DT. 2000. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc. Natl Acad. Sci. USA 97, 11 359-11 364. (10.1073/pnas.97.21.11359) PubMed DOI PMC
Bondarenko N, Bondarenko A, Starunov V, Slyusarev G. 2019. Comparative analysis of the mitochondrial genomes of Orthonectida: insights into the evolution of an invertebrate parasite species. Mol. Genet. Genomics. 294, 715-727. (10.1007/s00438-019-01543-1) PubMed DOI
Slyusarev GS, Bondarenko NI, Skalon EK, Rappoport AK, Radchenko D, Starunov VV. 2022. The structure of the muscular and nervous systems of the orthonectid Rhopalura litoralis (Orthonectida) or what parasitism can do to an annelid. Org. Divers. Evol. 22, 35-45. (10.1007/s13127-021-00519-7) DOI
Kerbl A, Bekkouche N, Sterrer W, Worsaae K. 2015. Detailed reconstruction of the nervous and muscular system of Lobatocerebridae with an evaluation of its annelid affinity. BMC Evol. Biol. 15, 277. (10.1186/s12862-015-0531-x) PubMed DOI PMC
Roure B, Baurain D, Philippe H. 2013. Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. Mol. Biol. Evol. 30, 197-214. (10.1093/molbev/mss208) PubMed DOI
Struck TH. 2013. The impact of paralogy on phylogenomic studies – a case study on annelid relationships. PLoS ONE 8, e62892. (10.1371/journal.pone.0062892) PubMed DOI PMC
Drábková M, et al. . 2022. Different phylogenomic methods support monophyly of enigmatic ‘Mesozoa’ (Dicyemida + Orthonectida, Lophotrochozoa). Figshare. (10.6084/m9.figshare.c.6070258) PubMed DOI PMC