Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31717836
PubMed Central
PMC6891708
DOI
10.3390/toxins11110622
PII: toxins11110622
Knihovny.cz E-zdroje
- Klíčová slova
- LD50, sexual dimorphism, toxins, trophic niche, venom,
- MeSH
- interakce hostitele a parazita * MeSH
- obratlovci parazitologie MeSH
- pavoučí jedy toxicita MeSH
- pavouci parazitologie MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Střední Amerika MeSH
- Názvy látek
- pavoučí jedy MeSH
Spiders rely on venom to catch prey and few species are even capable of capturing vertebrates. The majority of spiders are generalist predators, possessing complex venom, in which different toxins seem to target different types of prey. In this study, we focused on the trophic ecology and venom toxicity of Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, a Central American spider of medical importance. We tested the hypothesis that its venom is adapted to catch vertebrate prey by studying its trophic ecology and venom toxicity against selected vertebrate and invertebrate prey. We compared both trophic ecology (based on acceptance experiments) and toxicity (based on bioassays) among sexes of this species. We found that P. boliviensis accepted geckos, spiders, and cockroaches as prey, but rejected frogs. There was no difference in acceptance between males and females. The venom of P. boliviensis was far more efficient against vertebrate (geckos) than invertebrate (spiders) prey in both immobilization time and LD50. Surprisingly, venom of males was more efficient than that of females. Our results suggest that P. boliviensis has adapted its venom to catch vertebrates, which may explain its toxicity to humans.
Zobrazit více v PubMed
Kuhn-Nentwig L., Stöcklin R., Nentwig W. Spider Physiology and Behaviour. Volume 1. Elsevier; London, UK: 2011. Venom composition and strategies in spiders: Is everything possible? pp. 2–86.
Casewell N.R., Wüster W., Vonk F.J., Harrison R.A., Fry B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013;28:219–229. doi: 10.1016/j.tree.2012.10.020. PubMed DOI
Kardong K.V. Snake toxins and venoms: An evolutionary perspective. Herpetologica. 1996;52:36–46.
Walker A.A., Madio B., Jin J., Undheim E.A.B., Fry B.G., King G.F. Melt with this kiss: Paralyzing and liquefying venom of the assassin bug Pristhesancus plagipennis (Hemiptera: Reduviidae) Mol. Cell. Proteom. 2017;16:552–566. doi: 10.1074/mcp.M116.063321. PubMed DOI PMC
Schulz J.R., Norton A.G., Gilly W.F. The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism. Biol. Bull. 2004;207:77–79. doi: 10.2307/1543581. PubMed DOI
Mackessy S.P., Sixberry N.M., Heyborne W.H., Fritts T. Venom of the brown treesnake, Boiga irregularis: Ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006;47:537–548. doi: 10.1016/j.toxicon.2006.01.007. PubMed DOI
Pawlak J., Mackessy S.P., Fry B.G., Bhatia M., Mourier G., Fruchart-Gaillard C., Servent D., Ménez R., Stura E., Ménez A., et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 2006;281:29030–29041. doi: 10.1074/jbc.M605850200. PubMed DOI
Starkov V.G., Osipov A.V., Utkin Y.N. Toxicity of venoms from vipers of Pelias group to crickets Gryllus assimilis and its relation to snake entomophagy. Toxicon. 2007;49:995–1001. doi: 10.1016/j.toxicon.2007.01.010. PubMed DOI
Barlow A., Pook C.E., Harrison R.A., Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B Biol. Sci. 2009;276:2443–2449. doi: 10.1098/rspb.2009.0048. PubMed DOI PMC
Healy K., Carbone C., Jackson A.L. Snake venom potency and yield are associated with prey-evolution, predator metabolism and habitat structure. Ecol. Lett. 2019;22:527–537. doi: 10.1111/ele.13216. PubMed DOI
Pekár S., Coddington J.A., Blackledge T.A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution. 2012;66:776–806. doi: 10.1111/j.1558-5646.2011.01471.x. PubMed DOI
Foelix R.F. Biology of Spiders. 3rd ed. Oxford University Press; Oxford, UK: New York, NY, USA: 2011.
King G.F., Hardy M.C. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 2013;58:475–496. doi: 10.1146/annurev-ento-120811-153650. PubMed DOI
Pekár S., Líznarová E., Bočánek O., Zdráhal Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 2018;87:1639–1652. doi: 10.1111/1365-2656.12900. PubMed DOI
McCormick S., Polis G.A. Arthropods that prey on vertebrates. Biol. Rev. 1982;57:29–58. doi: 10.1111/j.1469-185X.1982.tb00363.x. DOI
Bücherl W., Buckley E.E., editors. Venomous Animals and Their Venoms. Volume 3. Academic Press, Inc.; New York, NY, USA: 1971. pp. 197–277.
Nyffeler M., Knörnschild M. Bat predation by spiders. PLoS ONE. 2013;8:e58120. doi: 10.1371/journal.pone.0058120. PubMed DOI PMC
Von May R., Biggi E., Cárdenas H., Diaz M.I., Alarcón C., Herrera V., Santa-Cruz R., Tomasinelli F., Westeen E.P., Sánchez-Paredes C.M., et al. Ecological interactions between arthropods and small vertebrates in a lowland Amazon rainforest. Amph. Reptil. Conserv. 2019;13:65–77.
Malta-Borges L., Mario-da-Rosa C., Dri G.F., Bertani R. Predation of the snake Erythrolamprus almadensis (Wagler, 1824) by the tarantula Grammostola quirogai Montes De Oca, D’Elía & Pérez-Miles, 2016. J. Herpetol. 2016;9:321–322.
Menin M., Rodrigues D.D.J., Azevedo C.S. De Predation on amphibians by spiders (Arachnida, Araneae) in the Neotropical region. Phyllomedusa J. Herpetol. 2005;4:39. doi: 10.11606/issn.2316-9079.v4i1p39-47. DOI
Nyffeler M., Pusey B.J. Fish predation by semi-aquatic spiders: A global pattern. PLoS ONE. 2014;9:e99459. doi: 10.1371/journal.pone.0099459. PubMed DOI PMC
Garb J.E., Hayashi C.Y. Molecular evolution of α-latrotoxin, the exceptionally potent vertebrate neurotoxin in black widow spider venom. Mol. Biol. Evol. 2013;30:999–1014. doi: 10.1093/molbev/mst011. PubMed DOI PMC
Dunbar J.P., Ennis E., Gandola R., Dugon M.M. Biting off more than one can chew: First record of the non-native noble false widow spider Steatoda nobilis (Thorell, 1875) feeding on the native viviparous lizard Zootoca vivipara (Lichtenstein, 1823) in Ireland. Biol. Environ. 2018;118:45–48.
Bucaretchi F., Bertani R., De Capitani E.M., Hyslop S. Envenomation by Wandering Spiders (Genus Phoneutria) Clin. Tox. 2016;63:1–49.
Sheumack D.D., Baldo B.A., Carroll P.R., Hampson F., Howden M.E.H., Skorulis A. A comparative study of properties and toxic constituents of funnel web spider (A T&4X) venoms. Sci. Rep. 2018;8:1–7. PubMed
Binford G.J. An analysis of geographic and intersexual chemical variation in venoms of the spider Tegenaria agrestis (Agelenidae) Toxicon. 2001;39:955–968. doi: 10.1016/S0041-0101(00)00234-8. PubMed DOI
Herzig V., John Ward R., Ferreira dos Santos W. Intersexual variations in the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keyserling, 1891) Toxicon. 2002;40:1399–1406. doi: 10.1016/S0041-0101(02)00136-8. PubMed DOI
De Lima M.E., Figueiredo S.G., Matavel A., Nunes K.P., da Silva C.N., de Marco Almeida F., Diniz M.R.V., do Cordeiro M.N., Stankiewicz M., Beirão P.S.L. Phoneutria nigriventer venom and toxins: A review. In: Gopalakrishnakone P., Corzo G.A., Diego-Garcia E., de Lima M.E., editors. Spider Venoms. Springer; Dordrecht, The Netherland: 2015. pp. 1–24.
Diniz M.R.V., Paiva A.L.B., Guerra-Duarte C., Nishiyama M.Y., Jr., Mudadu M.A., de Oliveira U., Borges M.H., Yates J.R., Junqueira-de-Azevedo I.D.L. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE. 2018;13:e0200628. doi: 10.1371/journal.pone.0200628. PubMed DOI PMC
Valenzuela-Rojas J.C., González-Gómez J.C., Guevara G., Franco L.M., Reinoso-Flórez G., García L.F. Notes on the feeding habits of the “Wandering spiders” Phoneutria boliviensis (Arachnida: Ctenidae) J. Arachnol. accepted.
Walker S.E., Rypstra A.L. Sexual dimorphism in trophic morphology and feeding behavior of wolf spiders (Araneae: Lycosidae) as a result of differences in reproductive roles. Can. J. Zool. 2002;80:679–688. doi: 10.1139/z02-037. DOI
Pekár S., Toft S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90:744–761. doi: 10.1111/brv.12133. PubMed DOI
Melo-Sampaio P.R., Maciel J.M.L., Oliveira C.M.B., Moura R.S., Silva L.C.B., Silva T.R.B. Scinax ruber (Red Snouted Treefrog) Herpetol. Rev. 2012;43:636–637.
Delfino G., Giachi F., Malentacchi C., Nosi D. Ultrastructural evidence of serous gland polymorphism in the skin of the Tungara Frog Engystomops pustulosus (Anura Leptodactylidae) Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2015;298:1659–1667. doi: 10.1002/ar.23189. PubMed DOI
Taylor P.W., Soley F.G. Ploys and counterploys of assassin bugs and their dangerous spider prey. Behaviour. 2013;150:397–425. doi: 10.1163/1568539X-00003059. DOI
Wigger E., Kuhn-Nentwig L., Nentwig W. The venom optimisation hypothesis: A spider injects large venom quantities only into difficult prey types. Toxicon. 2002;40:749–752. doi: 10.1016/S0041-0101(01)00277-X. PubMed DOI
García L.F., Franco V., Robledo-Ospina L.E., Viera C., Lacava M., Willemart R.H. The predation strategy of the recluse spider Loxosceles rufipes (Lucas, 1834) against four prey species. J. Insect Behav. 2016;29:515–526. doi: 10.1007/s10905-016-9578-9. DOI
García L.F., Viera C., Pekár S. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci. Nat. 2018;105:30. doi: 10.1007/s00114-018-1555-z. PubMed DOI
Edmunds M.C., Sibly R.M. Optimal sting use in the feeding behavior of the scorpion Hadrurus spadix. J. Arachnol. 2010;38:123–125. doi: 10.1636/Hi09-38.1. DOI
Dugon M.M., Wallace A. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda) J. Insect Physiol. 2012;58:874–880. doi: 10.1016/j.jinsphys.2012.03.014. PubMed DOI
Herzig V., Ward R.J., dos Santos W.F. Ontogenetic changes in Phoneutria nigriventer (Araneae, Ctenidae) spider venom. Toxicon. 2004;44:635–640. doi: 10.1016/j.toxicon.2004.07.020. PubMed DOI
Herzig V., Hodgson W.C. Intersexual variations in the pharmacological properties of Coremiocnemis tropix (Araneae, Theraphosidae) spider venom. Toxicon. 2009;53:196–205. doi: 10.1016/j.toxicon.2008.11.002. PubMed DOI
De Oliveira K.C., Gonçalves de Andrade R.M., Giusti A.L., da Silva W.D., Tambourgi D.V. Sex-linked variation of Loxosceles intermedia spider venoms. Toxicon. 1999;37:217–221. doi: 10.1016/S0041-0101(98)00130-5. PubMed DOI
Estrada-Gomez S., Muñoz L., Lanchero P., Latorre C. Partial characterization of venom from the colombian spider Phoneutria boliviensis (Aranae:Ctenidae) Toxins. 2015;7:2872–2887. doi: 10.3390/toxins7082872. PubMed DOI PMC
Santana R., Perez D., Dobson J., Panagides N., Raven R., Nouwens A., Jones A., King G., Fry B. Venom profiling of a population of the theraphosid spider Phlogius crassipes reveals continuous ontogenetic changes from juveniles through adulthood. Toxins. 2017;9:116. doi: 10.3390/toxins9040116. PubMed DOI PMC
Walker A., Weirauch C., Fry B., King G. Venoms of heteropteran insects: A treasure trove of diverse pharmacological toolkits. Toxins. 2016;8:43. doi: 10.3390/toxins8020043. PubMed DOI PMC
Silva L.M., Fortes-Dias C.L., Schaffert P.P., Carvalho Botelho A.C., Nacif-Pimenta R., Estevão-Costa M.I., Cordeiro M.D.N., Paolucci Pimenta P.F. Developmental biology of the Brazilian ‘Armed’ spider Phoneutria nigriventer (Keyserling, 1891): Microanatomical and molecular analysis of the embryonic stages. Toxicon. 2011;57:19–27. doi: 10.1016/j.toxicon.2010.09.006. PubMed DOI
Richardson M., Pimenta A.M.C., Bemquerer M.P., Santoro M.M., Beirao P.S.L., Lima M.E., Figueiredo S.G., Bloch C., Vasconcelos E.A.R., Campos F.A.P., et al. Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Toxicol. Pharmacol. 2006;142:173–187. doi: 10.1016/j.cbpc.2005.09.010. PubMed DOI
McCitorre J.D. Comparative lethality of several Latrodectus venoms. Toxicon. 1964;2:201–203. PubMed
Nyffeler M., Vetter R.S. Black widow spiders, Latrodectus spp. (Araneae: Theridiidae), and other spiders feeding on mammals. J. Arachnol. 2018;46:541–548. doi: 10.1636/JoA-S-18-026.1. DOI
Schenberg S., Lima F.A. Pharmacology of the polypeptides from the venom of the spider Phoneutria fera. Mem. Inst. Butatan. 1966;33:627–638. PubMed
Gallego-Carmona C.A., Forero-Rodríguez J.S., Castro-Arango J.A., Castellanos-Vargas C. Engystomops pustulosus (Túngara Frog). Predation. Herpetol. Rev. 2017;48:408.
Lucas S. Spiders in Brazil. Toxicon. 1988;26:759–772. doi: 10.1016/0041-0101(88)90317-0. PubMed DOI
Hazzi N.A. Natural history of Phoneutria boliviensis (Araneae: Ctenidae): Habitats, reproductive behavior, postembryonic development and prey-wrapping. J. Arachnol. 2014;42:303–310. doi: 10.1636/Hi13-05.1. DOI
Beaupre S.J., Jacobson J.R., Lillywhite H.B., Zamudio K. Guidelines for Use of Live Amphibians and Reptiles in Field and Laboratory Research. 2nd ed. Allen Media Press; South Hadley, MA, USA: 2004.
Simone Y., Garcia L.F., Lacava M., van der Meijden A., Viera C. Predatory versatility in females of the scorpion Bothriurus bonariensis (Scorpiones: Bothriuridae): Overcoming prey with different defensive mechanisms. J. Insect Behav. 2018;31:402–415. doi: 10.1007/s10905-018-9677-x. DOI
Pekár S., García L.F., Viera C. Trophic niches and trophic adaptations of prey-specialized spiders from the neotropics: A guide. In: Viera C., Gonzaga M.O., editors. Behaviour and Ecology of Spiders. Springer; Cham, Switzerland: 2017. pp. 247–274.
Yamashita S. Photoreceptor cells in the spider eye: Spectral sensitivity and efferent control. In: Barth F.G., editor. Neurobiology of Arachnids. Springer; Berlin/Heidelberg, Germany: 1985. pp. 103–117.
Yan J., Fine J. Estimating equations for association structures. Stat. Med. 2004;23:859–874. doi: 10.1002/sim.1650. PubMed DOI
Pekár S., Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124:86–93. doi: 10.1111/eth.12713. DOI
Valenzuela-Rojas J.C. Master’s Thesis. Universida del Tolima; Ibagué, Colombia: 2019. Comportamiento Depredador y Aspectos Toxinológicos del Veneno de la “Araña Bananera” Phoneutria boliviensis F.O. Pickard-Cambridge, 1897.
Garcia L.F., Pedrosa L.H.A., Rosada D.R.B. An easy method for handling the genus Phoneutria (Araneae, Ctenidae) for venom extraction. J. Arachnol. 2008;36:604–605. doi: 10.1636/SH07-82.1. DOI
Hayes W.K., Fox G.A., Nelsen D.R. Venom collection from spiders and snakes: Voluntary and involuntary extractions (“milking”) and venom gland extractions. In: Priel A., editor. Snake and Spider Toxins. Methods and Protocols. Humana Press; Hatfield, UK: 2019. pp. 53–71. PubMed
Kilkenny C., Browne W.J., Cuthill I.C., Emerson M., Altman D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412. PubMed DOI PMC
Pekár S., Brabec M. Modern Analysis of Biological Data: Generalized Linear Models in R. Masaryk University Press; Brno, Czech Republic: 2016.
Kerr D.R., Meador J.P. Modeling dose response using generalized linear models. Environ. Toxicol. Chem. 1996;15:395–401. doi: 10.1002/etc.5620150325. DOI
R Development Core Team . R: Language and Environment for Statistical Computing. R Development Core Team; Vienna, Austria: 2012.
Venables W.N., Ripley B.D. Modern Applied Statistics with S-PLUS. Springer; Berlín, Germany: 2013.