Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae)

. 2019 Oct 27 ; 11 (11) : . [epub] 20191027

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31717836

Spiders rely on venom to catch prey and few species are even capable of capturing vertebrates. The majority of spiders are generalist predators, possessing complex venom, in which different toxins seem to target different types of prey. In this study, we focused on the trophic ecology and venom toxicity of Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, a Central American spider of medical importance. We tested the hypothesis that its venom is adapted to catch vertebrate prey by studying its trophic ecology and venom toxicity against selected vertebrate and invertebrate prey. We compared both trophic ecology (based on acceptance experiments) and toxicity (based on bioassays) among sexes of this species. We found that P. boliviensis accepted geckos, spiders, and cockroaches as prey, but rejected frogs. There was no difference in acceptance between males and females. The venom of P. boliviensis was far more efficient against vertebrate (geckos) than invertebrate (spiders) prey in both immobilization time and LD50. Surprisingly, venom of males was more efficient than that of females. Our results suggest that P. boliviensis has adapted its venom to catch vertebrates, which may explain its toxicity to humans.

Zobrazit více v PubMed

Kuhn-Nentwig L., Stöcklin R., Nentwig W. Spider Physiology and Behaviour. Volume 1. Elsevier; London, UK: 2011. Venom composition and strategies in spiders: Is everything possible? pp. 2–86.

Casewell N.R., Wüster W., Vonk F.J., Harrison R.A., Fry B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013;28:219–229. doi: 10.1016/j.tree.2012.10.020. PubMed DOI

Kardong K.V. Snake toxins and venoms: An evolutionary perspective. Herpetologica. 1996;52:36–46.

Walker A.A., Madio B., Jin J., Undheim E.A.B., Fry B.G., King G.F. Melt with this kiss: Paralyzing and liquefying venom of the assassin bug Pristhesancus plagipennis (Hemiptera: Reduviidae) Mol. Cell. Proteom. 2017;16:552–566. doi: 10.1074/mcp.M116.063321. PubMed DOI PMC

Schulz J.R., Norton A.G., Gilly W.F. The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism. Biol. Bull. 2004;207:77–79. doi: 10.2307/1543581. PubMed DOI

Mackessy S.P., Sixberry N.M., Heyborne W.H., Fritts T. Venom of the brown treesnake, Boiga irregularis: Ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006;47:537–548. doi: 10.1016/j.toxicon.2006.01.007. PubMed DOI

Pawlak J., Mackessy S.P., Fry B.G., Bhatia M., Mourier G., Fruchart-Gaillard C., Servent D., Ménez R., Stura E., Ménez A., et al. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 2006;281:29030–29041. doi: 10.1074/jbc.M605850200. PubMed DOI

Starkov V.G., Osipov A.V., Utkin Y.N. Toxicity of venoms from vipers of Pelias group to crickets Gryllus assimilis and its relation to snake entomophagy. Toxicon. 2007;49:995–1001. doi: 10.1016/j.toxicon.2007.01.010. PubMed DOI

Barlow A., Pook C.E., Harrison R.A., Wüster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B Biol. Sci. 2009;276:2443–2449. doi: 10.1098/rspb.2009.0048. PubMed DOI PMC

Healy K., Carbone C., Jackson A.L. Snake venom potency and yield are associated with prey-evolution, predator metabolism and habitat structure. Ecol. Lett. 2019;22:527–537. doi: 10.1111/ele.13216. PubMed DOI

Pekár S., Coddington J.A., Blackledge T.A. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution. 2012;66:776–806. doi: 10.1111/j.1558-5646.2011.01471.x. PubMed DOI

Foelix R.F. Biology of Spiders. 3rd ed. Oxford University Press; Oxford, UK: New York, NY, USA: 2011.

King G.F., Hardy M.C. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 2013;58:475–496. doi: 10.1146/annurev-ento-120811-153650. PubMed DOI

Pekár S., Líznarová E., Bočánek O., Zdráhal Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 2018;87:1639–1652. doi: 10.1111/1365-2656.12900. PubMed DOI

McCormick S., Polis G.A. Arthropods that prey on vertebrates. Biol. Rev. 1982;57:29–58. doi: 10.1111/j.1469-185X.1982.tb00363.x. DOI

Bücherl W., Buckley E.E., editors. Venomous Animals and Their Venoms. Volume 3. Academic Press, Inc.; New York, NY, USA: 1971. pp. 197–277.

Nyffeler M., Knörnschild M. Bat predation by spiders. PLoS ONE. 2013;8:e58120. doi: 10.1371/journal.pone.0058120. PubMed DOI PMC

Von May R., Biggi E., Cárdenas H., Diaz M.I., Alarcón C., Herrera V., Santa-Cruz R., Tomasinelli F., Westeen E.P., Sánchez-Paredes C.M., et al. Ecological interactions between arthropods and small vertebrates in a lowland Amazon rainforest. Amph. Reptil. Conserv. 2019;13:65–77.

Malta-Borges L., Mario-da-Rosa C., Dri G.F., Bertani R. Predation of the snake Erythrolamprus almadensis (Wagler, 1824) by the tarantula Grammostola quirogai Montes De Oca, D’Elía & Pérez-Miles, 2016. J. Herpetol. 2016;9:321–322.

Menin M., Rodrigues D.D.J., Azevedo C.S. De Predation on amphibians by spiders (Arachnida, Araneae) in the Neotropical region. Phyllomedusa J. Herpetol. 2005;4:39. doi: 10.11606/issn.2316-9079.v4i1p39-47. DOI

Nyffeler M., Pusey B.J. Fish predation by semi-aquatic spiders: A global pattern. PLoS ONE. 2014;9:e99459. doi: 10.1371/journal.pone.0099459. PubMed DOI PMC

Garb J.E., Hayashi C.Y. Molecular evolution of α-latrotoxin, the exceptionally potent vertebrate neurotoxin in black widow spider venom. Mol. Biol. Evol. 2013;30:999–1014. doi: 10.1093/molbev/mst011. PubMed DOI PMC

Dunbar J.P., Ennis E., Gandola R., Dugon M.M. Biting off more than one can chew: First record of the non-native noble false widow spider Steatoda nobilis (Thorell, 1875) feeding on the native viviparous lizard Zootoca vivipara (Lichtenstein, 1823) in Ireland. Biol. Environ. 2018;118:45–48.

Bucaretchi F., Bertani R., De Capitani E.M., Hyslop S. Envenomation by Wandering Spiders (Genus Phoneutria) Clin. Tox. 2016;63:1–49.

Sheumack D.D., Baldo B.A., Carroll P.R., Hampson F., Howden M.E.H., Skorulis A. A comparative study of properties and toxic constituents of funnel web spider (A T&4X) venoms. Sci. Rep. 2018;8:1–7. PubMed

Binford G.J. An analysis of geographic and intersexual chemical variation in venoms of the spider Tegenaria agrestis (Agelenidae) Toxicon. 2001;39:955–968. doi: 10.1016/S0041-0101(00)00234-8. PubMed DOI

Herzig V., John Ward R., Ferreira dos Santos W. Intersexual variations in the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keyserling, 1891) Toxicon. 2002;40:1399–1406. doi: 10.1016/S0041-0101(02)00136-8. PubMed DOI

De Lima M.E., Figueiredo S.G., Matavel A., Nunes K.P., da Silva C.N., de Marco Almeida F., Diniz M.R.V., do Cordeiro M.N., Stankiewicz M., Beirão P.S.L. Phoneutria nigriventer venom and toxins: A review. In: Gopalakrishnakone P., Corzo G.A., Diego-Garcia E., de Lima M.E., editors. Spider Venoms. Springer; Dordrecht, The Netherland: 2015. pp. 1–24.

Diniz M.R.V., Paiva A.L.B., Guerra-Duarte C., Nishiyama M.Y., Jr., Mudadu M.A., de Oliveira U., Borges M.H., Yates J.R., Junqueira-de-Azevedo I.D.L. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE. 2018;13:e0200628. doi: 10.1371/journal.pone.0200628. PubMed DOI PMC

Valenzuela-Rojas J.C., González-Gómez J.C., Guevara G., Franco L.M., Reinoso-Flórez G., García L.F. Notes on the feeding habits of the “Wandering spiders” Phoneutria boliviensis (Arachnida: Ctenidae) J. Arachnol. accepted.

Walker S.E., Rypstra A.L. Sexual dimorphism in trophic morphology and feeding behavior of wolf spiders (Araneae: Lycosidae) as a result of differences in reproductive roles. Can. J. Zool. 2002;80:679–688. doi: 10.1139/z02-037. DOI

Pekár S., Toft S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90:744–761. doi: 10.1111/brv.12133. PubMed DOI

Melo-Sampaio P.R., Maciel J.M.L., Oliveira C.M.B., Moura R.S., Silva L.C.B., Silva T.R.B. Scinax ruber (Red Snouted Treefrog) Herpetol. Rev. 2012;43:636–637.

Delfino G., Giachi F., Malentacchi C., Nosi D. Ultrastructural evidence of serous gland polymorphism in the skin of the Tungara Frog Engystomops pustulosus (Anura Leptodactylidae) Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2015;298:1659–1667. doi: 10.1002/ar.23189. PubMed DOI

Taylor P.W., Soley F.G. Ploys and counterploys of assassin bugs and their dangerous spider prey. Behaviour. 2013;150:397–425. doi: 10.1163/1568539X-00003059. DOI

Wigger E., Kuhn-Nentwig L., Nentwig W. The venom optimisation hypothesis: A spider injects large venom quantities only into difficult prey types. Toxicon. 2002;40:749–752. doi: 10.1016/S0041-0101(01)00277-X. PubMed DOI

García L.F., Franco V., Robledo-Ospina L.E., Viera C., Lacava M., Willemart R.H. The predation strategy of the recluse spider Loxosceles rufipes (Lucas, 1834) against four prey species. J. Insect Behav. 2016;29:515–526. doi: 10.1007/s10905-016-9578-9. DOI

García L.F., Viera C., Pekár S. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci. Nat. 2018;105:30. doi: 10.1007/s00114-018-1555-z. PubMed DOI

Edmunds M.C., Sibly R.M. Optimal sting use in the feeding behavior of the scorpion Hadrurus spadix. J. Arachnol. 2010;38:123–125. doi: 10.1636/Hi09-38.1. DOI

Dugon M.M., Wallace A. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda) J. Insect Physiol. 2012;58:874–880. doi: 10.1016/j.jinsphys.2012.03.014. PubMed DOI

Herzig V., Ward R.J., dos Santos W.F. Ontogenetic changes in Phoneutria nigriventer (Araneae, Ctenidae) spider venom. Toxicon. 2004;44:635–640. doi: 10.1016/j.toxicon.2004.07.020. PubMed DOI

Herzig V., Hodgson W.C. Intersexual variations in the pharmacological properties of Coremiocnemis tropix (Araneae, Theraphosidae) spider venom. Toxicon. 2009;53:196–205. doi: 10.1016/j.toxicon.2008.11.002. PubMed DOI

De Oliveira K.C., Gonçalves de Andrade R.M., Giusti A.L., da Silva W.D., Tambourgi D.V. Sex-linked variation of Loxosceles intermedia spider venoms. Toxicon. 1999;37:217–221. doi: 10.1016/S0041-0101(98)00130-5. PubMed DOI

Estrada-Gomez S., Muñoz L., Lanchero P., Latorre C. Partial characterization of venom from the colombian spider Phoneutria boliviensis (Aranae:Ctenidae) Toxins. 2015;7:2872–2887. doi: 10.3390/toxins7082872. PubMed DOI PMC

Santana R., Perez D., Dobson J., Panagides N., Raven R., Nouwens A., Jones A., King G., Fry B. Venom profiling of a population of the theraphosid spider Phlogius crassipes reveals continuous ontogenetic changes from juveniles through adulthood. Toxins. 2017;9:116. doi: 10.3390/toxins9040116. PubMed DOI PMC

Walker A., Weirauch C., Fry B., King G. Venoms of heteropteran insects: A treasure trove of diverse pharmacological toolkits. Toxins. 2016;8:43. doi: 10.3390/toxins8020043. PubMed DOI PMC

Silva L.M., Fortes-Dias C.L., Schaffert P.P., Carvalho Botelho A.C., Nacif-Pimenta R., Estevão-Costa M.I., Cordeiro M.D.N., Paolucci Pimenta P.F. Developmental biology of the Brazilian ‘Armed’ spider Phoneutria nigriventer (Keyserling, 1891): Microanatomical and molecular analysis of the embryonic stages. Toxicon. 2011;57:19–27. doi: 10.1016/j.toxicon.2010.09.006. PubMed DOI

Richardson M., Pimenta A.M.C., Bemquerer M.P., Santoro M.M., Beirao P.S.L., Lima M.E., Figueiredo S.G., Bloch C., Vasconcelos E.A.R., Campos F.A.P., et al. Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Toxicol. Pharmacol. 2006;142:173–187. doi: 10.1016/j.cbpc.2005.09.010. PubMed DOI

McCitorre J.D. Comparative lethality of several Latrodectus venoms. Toxicon. 1964;2:201–203. PubMed

Nyffeler M., Vetter R.S. Black widow spiders, Latrodectus spp. (Araneae: Theridiidae), and other spiders feeding on mammals. J. Arachnol. 2018;46:541–548. doi: 10.1636/JoA-S-18-026.1. DOI

Schenberg S., Lima F.A. Pharmacology of the polypeptides from the venom of the spider Phoneutria fera. Mem. Inst. Butatan. 1966;33:627–638. PubMed

Gallego-Carmona C.A., Forero-Rodríguez J.S., Castro-Arango J.A., Castellanos-Vargas C. Engystomops pustulosus (Túngara Frog). Predation. Herpetol. Rev. 2017;48:408.

Lucas S. Spiders in Brazil. Toxicon. 1988;26:759–772. doi: 10.1016/0041-0101(88)90317-0. PubMed DOI

Hazzi N.A. Natural history of Phoneutria boliviensis (Araneae: Ctenidae): Habitats, reproductive behavior, postembryonic development and prey-wrapping. J. Arachnol. 2014;42:303–310. doi: 10.1636/Hi13-05.1. DOI

Beaupre S.J., Jacobson J.R., Lillywhite H.B., Zamudio K. Guidelines for Use of Live Amphibians and Reptiles in Field and Laboratory Research. 2nd ed. Allen Media Press; South Hadley, MA, USA: 2004.

Simone Y., Garcia L.F., Lacava M., van der Meijden A., Viera C. Predatory versatility in females of the scorpion Bothriurus bonariensis (Scorpiones: Bothriuridae): Overcoming prey with different defensive mechanisms. J. Insect Behav. 2018;31:402–415. doi: 10.1007/s10905-018-9677-x. DOI

Pekár S., García L.F., Viera C. Trophic niches and trophic adaptations of prey-specialized spiders from the neotropics: A guide. In: Viera C., Gonzaga M.O., editors. Behaviour and Ecology of Spiders. Springer; Cham, Switzerland: 2017. pp. 247–274.

Yamashita S. Photoreceptor cells in the spider eye: Spectral sensitivity and efferent control. In: Barth F.G., editor. Neurobiology of Arachnids. Springer; Berlin/Heidelberg, Germany: 1985. pp. 103–117.

Yan J., Fine J. Estimating equations for association structures. Stat. Med. 2004;23:859–874. doi: 10.1002/sim.1650. PubMed DOI

Pekár S., Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124:86–93. doi: 10.1111/eth.12713. DOI

Valenzuela-Rojas J.C. Master’s Thesis. Universida del Tolima; Ibagué, Colombia: 2019. Comportamiento Depredador y Aspectos Toxinológicos del Veneno de la “Araña Bananera” Phoneutria boliviensis F.O. Pickard-Cambridge, 1897.

Garcia L.F., Pedrosa L.H.A., Rosada D.R.B. An easy method for handling the genus Phoneutria (Araneae, Ctenidae) for venom extraction. J. Arachnol. 2008;36:604–605. doi: 10.1636/SH07-82.1. DOI

Hayes W.K., Fox G.A., Nelsen D.R. Venom collection from spiders and snakes: Voluntary and involuntary extractions (“milking”) and venom gland extractions. In: Priel A., editor. Snake and Spider Toxins. Methods and Protocols. Humana Press; Hatfield, UK: 2019. pp. 53–71. PubMed

Kilkenny C., Browne W.J., Cuthill I.C., Emerson M., Altman D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412. PubMed DOI PMC

Pekár S., Brabec M. Modern Analysis of Biological Data: Generalized Linear Models in R. Masaryk University Press; Brno, Czech Republic: 2016.

Kerr D.R., Meador J.P. Modeling dose response using generalized linear models. Environ. Toxicol. Chem. 1996;15:395–401. doi: 10.1002/etc.5620150325. DOI

R Development Core Team . R: Language and Environment for Statistical Computing. R Development Core Team; Vienna, Austria: 2012.

Venables W.N., Ripley B.D. Modern Applied Statistics with S-PLUS. Springer; Berlín, Germany: 2013.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...