Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events

. 2022 ; 4 () : 887135. [epub] 20220706

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35875696

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.

Canadian Nuclear Laboratories Chalk River ON Canada

Center for Gender specific Medicine Italian National Institute of Health Rome Italy

Centre for Environmental Radioactivity Norwegian University of Life Sciences Ås Norway

Department of Toxicology University of Würzburg Würzburg Germany

Division of Risk Assessment Center for Biological Safety and Research National Institute of Health Sciences Kawasaki Japan

Group of Alternative Method Development for Environmental Toxicity Testing IUF Leibniz Research Institute for Environmental Medicine Duesseldorf Germany

Health Canada Ottawa ON Canada

Independent Researcher Ohrid North Macedonia

Korea Institute of Science and Technology Europe Saarbrücken Germany

National Research Centre for the Working Environment Copenhagen Denmark

Norwegian Institute for Water Research Oslo Norway

Norwegian University of Life Sciences Ås Norway

Organisation for Economic Co operation and Development Paris France

Philip Morris International R and D Philip Morris Products SA Neuchatel Switzerland

RECETOX Faculty of Science Masaryk University Brno Czech Republic

Silent Spring Institute Newton MA United States

U S Army Engineer Research and Development Center Vicksburg MS United States

UK Health Security Agency Public Health England London United Kingdom

Universities of Basel and Geneva Basel Switzerland

University of Helsinki Ecosystems and Environment Research Programme Faculty of Biological and Environmental Sciences Lahti Finland and Helsinki Institute of Sustainability Science Helsinki Finland

University of Ottawa Ottawa ON Canada

Wildlife Toxicology Research Section Environment and Climate Change Canada Toronto ON Canada

Zobrazit více v PubMed

Ahmad S., Hussain A., Ullah F., Jamil M., Ali A., Ali S., et al. (2021). 60Co-γ Radiation Alters Developmental Stages of Zeugodacus Cucurbitae (Diptera: Tephritidae) through Apoptosis Pathways Gene Expression. J. Insect Sci. 21 (5), 16. 10.1093/jisesa/ieab080 PubMed DOI PMC

Ahotupa M. (2017). Oxidized Lipoprotein Lipids and Atherosclerosis. Free Radic. Res. 51 (4), 439–447. 10.1080/10715762.2017.1319944 PubMed DOI

Aid M., Busman-Sahay K., Vidal S. J., Maliga Z., Bondoc S., Starke C., et al. (2020). Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell. 183 (5), 1354–1366. e1313. 10.1016/j.cell.2020.10.005 PubMed DOI PMC

Alam M. S., Czajkowsky D. M. (2022). SARS-CoV-2 Infection and Oxidative Stress: Pathophysiological Insight into Thrombosis and Therapeutic Opportunities. Cytokine & Growth Factor Rev. 63, 44–57. 10.1016/j.cytogfr.2021.11.001 PubMed DOI PMC

Alizadeh E., Orlando T. M., Sanche L. (2015). Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 66 (1), 379–398. 10.1146/annurev-physchem-040513-103605 PubMed DOI

Annesley S. J., Fisher P. R. (2019). Mitochondria in Health and Disease. Cells 8 (7), 680. 10.3390/cells8070680 PubMed DOI PMC

Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S. E. (2014). Oxidative Stress: an Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 94 (2), 329–354. 10.1152/physrev.00040.2012 PubMed DOI PMC

Boyles M., Murphy F., Mueller W., Wohlleben W., Jacobsen N. R., Braakhuis H., et al. (2022). Development of a Standard Operating Procedure for the DCFH2-DA Acellular Assessment of Reactive Oxygen Species Produced by Nanomaterials. Toxicol. Mech. Methods 32, 439–452. 10.1080/15376516.2022.2029656 PubMed DOI

Braakhuis H. M., Gosens I., Heringa M. B., Oomen A. G., Vandebriel R. J., Groenewold M., et al. (2021). Mechanism of Action of TiO2: Recommendations to Reduce Uncertainties Related to Carcinogenic Potential. Annu. Rev. Pharmacol. Toxicol. 61 (1), 203–223. 10.1146/annurev-pharmtox-101419-100049 PubMed DOI

Brand W., Peters R. J. B., Braakhuis H. M., Maślankiewicz L., Oomen A. G. (2020). Possible Effects of Titanium Dioxide Particles on Human Liver, Intestinal Tissue, Spleen and Kidney after Oral Exposure. Nanotoxicology 14 (7), 985–1007. 10.1080/17435390.2020.1778809 PubMed DOI

Breitenbach M., Eckl P. (2015). Introduction to Oxidative Stress in Biomedical and Biological Research. Biomolecules 5 (2), 1169–1177. 10.3390/biom5021169 PubMed DOI PMC

Buonanno M., de Toledo S. M., Pain D., Azzam E. I. (2011). Long-term Consequences of Radiation-Induced Bystander Effects Depend on Radiation Quality and Dose and Correlate with Oxidative Stress. Radiat. Res. 175 (4), 405–415. 10.1667/rr2461.1 PubMed DOI PMC

Cadet J., Wagner J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harb. Perspect. Biol. 5 (2), a012559. 10.1101/cshperspect.a012559 PubMed DOI PMC

Califf R. M. (2018). Biomarker Definitions and Their Applications. Exp. Biol. Med. (Maywood) 243 (3), 213–221. 10.1177/1535370217750088 PubMed DOI PMC

Cecchini R., Cecchini A. L. (2020). SARS-CoV-2 Infection Pathogenesis Is Related to Oxidative Stress as a Response to Aggression. Med. Hypotheses 143, 110102. 10.1016/j.mehy.2020.110102 PubMed DOI PMC

Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. (2018). Oxidative Stress and the Amyloid Beta Peptide in Alzheimer's Disease. Redox Biol. 14, 450–464. 10.1016/j.redox.2017.10.014 PubMed DOI PMC

Chen S., Wang Y., Zhang H., Chen R., Lv F., Li Z., et al. (2019). The Antioxidant MitoQ Protects against CSE-Induced Endothelial Barrier Injury and Inflammation by Inhibiting ROS and Autophagy in Human Umbilical Vein Endothelial Cells. Int. J. Biol. Sci. 15 (7), 1440–1451. 10.7150/ijbs.30193 PubMed DOI PMC

Clerbaux L.-A., Amorim M. J., Bal-Price A., Batista Leite S., Beronius A., Bezemer G. F. G., et al. (2022). COVID-19 through Adverse Outcome Pathways: Building Networks to Better Understand the Disease - 3rd CIAO AOP Design Workshop. Altex 39, 322–335. 10.14573/altex.2112161 PubMed DOI PMC

Climent M., Viggiani G., Chen Y.-W., Coulis G., Castaldi A. (2020). MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Ijms 21 (12), 4370. 10.3390/ijms21124370 PubMed DOI PMC

Clydesdale G. J., Dandie G. W., Muller H. K. (2001). Ultraviolet Light Induced Injury: Immunological and Inflammatory Effects. Immunol. Cell. Biol. 79 (6), 547–568. 10.1046/j.1440-1711.2001.01047.x PubMed DOI

Conklin K. A. (2004). Chemotherapy-Associated Oxidative Stress: Impact on Chemotherapeutic Effectiveness. Integr. Cancer Ther. 3 (4), 294–300. 10.1177/1534735404270335 PubMed DOI

Connors J. M., Levy J. H. (2020). COVID-19 and its Implications for Thrombosis and Anticoagulation. Blood 135 (23), 2033–2040. 10.1182/blood.2020006000 PubMed DOI PMC

Datla S. R., Griendling K. K. (2010). Reactive Oxygen Species, NADPH Oxidases, and Hypertension. Hypertension 56 (3), 325–330. 10.1161/hypertensionaha.109.142422 PubMed DOI PMC

De Logu F., Souza Monteiro de Araujo D., Ugolini F., Iannone L. F., Vannucchi M., Portelli F., et al. (2021). The TRPA1 Channel Amplifies the Oxidative Stress Signal in Melanoma. Cells 10 (11), 3131. 10.3390/cells10113131 PubMed DOI PMC

Di Florio D. N., Sin J., Coronado M. J., Atwal P. S., Fairweather D. (2020). Sex Differences in Inflammation, Redox Biology, Mitochondria and Autoimmunity. Redox Biol. 31, 101482. 10.1016/j.redox.2020.101482 PubMed DOI PMC

Dikalov S. I., Harrison D. G. (2014). Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxidants redox Signal. 20 (2), 372–382. 10.1089/ars.2012.4886 PubMed DOI PMC

Đorđević V., Stanković Đorđević D., Kocić B., Dinić M., Sokolović D., Pešić Stanković J. (2021). The Impact of Hepatitis C Virus Genotypes on Oxidative Stress Markers and Catalase Activity. Oxidative Med. Cell. Longev. 2021, 6676057. 10.1155/2021/6676057 PubMed DOI PMC

Dröge W. (2002). Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 82 (1), 47–95. 10.1152/physrev.00018.2001 PubMed DOI

Du S., Miao J., Lu X., Shi L., Sun J., Xu E., et al. (2019). NADPH Oxidase 4 Is Correlated with Gastric Cancer Progression and Predicts a Poor Prognosis. Am. J. Transl. Res. 11 (6), 3518–3530. PubMed PMC

Flaherty R. L., Owen M., Fagan-Murphy A., Intabli H., Healy D., Patel A., et al. (2017). Glucocorticoids Induce Production of Reactive Oxygen Species/reactive Nitrogen Species and DNA Damage through an iNOS Mediated Pathway in Breast Cancer. Breast Cancer Res. 19 (1), 35–13. 10.1186/s13058-017-0823-8 PubMed DOI PMC

Forrester S. J., Booz G. W., Sigmund C. D., Coffman T. M., Kawai T., Rizzo V., et al. (2018). Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 98 (3), 1627–1738. 10.1152/physrev.00038.2017 PubMed DOI PMC

Frazziano G., Al Ghouleh I., Baust J., Shiva S., Champion H. C., Pagano P. J. (2014). Nox-derived ROS Are Acutely Activated in Pressure Overload Pulmonary Hypertension: Indications for a Seminal Role for Mitochondrial Nox4. Am. J. Physiology-Heart Circulatory Physiology 306 (2), H197–H205. 10.1152/ajpheart.00977.2012 PubMed DOI PMC

Freudenthal B. D., Schaich M. A., Smith M. R., Flynn T. S., Freudenthal B. D. (2017). Base Excision Repair of Oxidative DNA Damage from Mechanism to Disease. Front. Biosci. 22, 1493–1522. 10.2741/4555 PubMed DOI PMC

Frisoni P., Neri M., D’Errico S., Alfieri L., Bonuccelli D., Cingolani M., et al. (2021). Cytokine Storm and Histopathological Findings in 60 Cases of COVID-19-Related Death: from Viral Load Research to Immunohistochemical Quantification of Major Players IL-1β, IL-6, IL-15 and TNF-α. Forensic Sci. Med. Pathol. 18, 4–19. 10.1007/s12024-021-00414-9 PubMed DOI PMC

Fukai T., Ushio-Fukai M. (2020). Cross-talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells 9 (8), 1849. 10.3390/cells9081849 PubMed DOI PMC

Fuloria S., Subramaniyan V., Karupiah S., Kumari U., Sathasivam K., Meenakshi D. U., et al. (2021). Comprehensive Review of Methodology to Detect Reactive Oxygen Species (ROS) in Mammalian Species and Establish its Relationship with Antioxidants and Cancer. Antioxidants 10 (1), 128. 10.3390/antiox10010128 PubMed DOI PMC

Gebicki J. M. (2016). Oxidative Stress, Free Radicals and Protein Peroxides. Archives Biochem. Biophysics 595, 33–39. 10.1016/j.abb.2015.10.021 PubMed DOI

Ghezzi P. (2020). Environmental Risk Factors and Their Footprints In Vivo - A Proposal for the Classification of Oxidative Stress Biomarkers. Redox Biol. 34, 101442. 10.1016/j.redox.2020.101442 PubMed DOI PMC

Gomes T., Xie L., Brede D., Lind O.-C., Solhaug K. A., Salbu B., et al. (2017). Sensitivity of the Green Algae Chlamydomonas Reinhardtii to Gamma Radiation: Photosynthetic Performance and ROS Formation. Aquat. Toxicol. 183, 1–10. 10.1016/j.aquatox.2016.12.001 PubMed DOI

Goodhead D. T. (1988). Spatial and Temporal Distribution of Energy. Health Phys. 55 (2), 231–240. 10.1097/00004032-198808000-00015 PubMed DOI

Gornicka A., Morris-Stiff G., Thapaliya S., Papouchado B. G., Berk M., Feldstein A. E. (2011). Transcriptional Profile of Genes Involved in Oxidative Stress and Antioxidant Defense in a Dietary Murine Model of Steatohepatitis. Antioxidants Redox Signal. 15 (2), 437–445. 10.1089/ars.2010.3815 PubMed DOI PMC

Gu H., Huang T., Shen Y., Liu Y., Zhou F., Jin Y., et al. (2018). Reactive Oxygen Species-Mediated Tumor Microenvironment Transformation: The Mechanism of Radioresistant Gastric Cancer. Oxidative Med. Cell. Longev. 2018, 5801209. 10.1155/2018/5801209 PubMed DOI PMC

Halappanavar S., Ede J. D., Mahapatra I., Krug H. F., Kuempel E. D., Lynch I., et al. (2021). A Methodology for Developing Key Events to Advance Nanomaterial-Relevant Adverse Outcome Pathways to Inform Risk Assessment. Nanotoxicology 15 (3), 289–310. 10.1080/17435390.2020.1851419 PubMed DOI PMC

Halappanavar S., van den Brule S., Nymark P., Gaté L., Seidel C., Valentino S., et al. (2020). Adverse Outcome Pathways as a Tool for the Design of Testing Strategies to Support the Safety Assessment of Emerging Advanced Materials at the Nanoscale. Part Fibre Toxicol. 17 (1), 16. 10.1186/s12989-020-00344-4 PubMed DOI PMC

Hanahan D., Weinberg R. A. (2011). Hallmarks of Cancer: the Next Generation. Cell. 144 (5), 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI

Hardie W. D., Glasser S. W., Hagood J. S. (2009). Emerging Concepts in the Pathogenesis of Lung Fibrosis. Am. J. pathology 175 (1), 3–16. 10.2353/ajpath.2009.081170 PubMed DOI PMC

Hargreaves M., Spriet L. L. (2020). Skeletal Muscle Energy Metabolism during Exercise. Nat. Metab. 2 (9), 817–828. 10.1038/s42255-020-0251-4 PubMed DOI

He J., Liu L., Tang F., Zhou Y., Liu H., Lu C., et al. (2021). Paradoxical Effects of DNA Tumor Virus Oncogenes on Epithelium-Derived Tumor Cell Fate during Tumor Progression and Chemotherapy Response. Sig Transduct. Target Ther. 6 (1), 408. 10.1038/s41392-021-00787-x PubMed DOI PMC

Helm J. S., Rudel R. A. (2020). Adverse Outcome Pathways for Ionizing Radiation and Breast Cancer Involve Direct and Indirect DNA Damage, Oxidative Stress, Inflammation, Genomic Instability, and Interaction with Hormonal Regulation of the Breast. Arch. Toxicol. 94 (5), 1511–1549. 10.1007/s00204-020-02752-z PubMed DOI PMC

Henkler F., Brinkmann J., Luch A. (2010). The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics. Cancers 2 (2), 376–396. 10.3390/cancers2020376 PubMed DOI PMC

Ho E., Karimi Galougahi K., Liu C.-C., Bhindi R., Figtree G. A. (2013). Biological Markers of Oxidative Stress: Applications to Cardiovascular Research and Practice. Redox Biol. 1 (1), 483–491. 10.1016/j.redox.2013.07.006 PubMed DOI PMC

Huang X., He D., Pan Z., Luo G., Deng J. (2021). Reactive-oxygen-species-scavenging Nanomaterials for Resolving Inflammation. Mater. Today Bio 11, 100124. 10.1016/j.mtbio.2021.100124 PubMed DOI PMC

Huh D., Matthews B. D., Mammoto A., Montoya-Zavala M., Hsin H. Y., Ingber D. E. (2010). Reconstituting Organ-Level Lung Functions on a Chip. Science 328 (5986), 1662–1668. 10.1126/science.1188302 PubMed DOI PMC

Ishida M., Ishida T., Tashiro S., Uchida H., Sakai C., Hironobe N., et al. (2014). Smoking Cessation Reverses DNA Double-Strand Breaks in Human Mononuclear Cells. PLOS ONE 9 (8), e103993. 10.1371/journal.pone.0103993 PubMed DOI PMC

Ivanov A. V., Bartosch B., Isaguliants M. G. (2017). Oxidative Stress in Infection and Consequent Disease. Oxidative Med. Cell. Longev. 2017, 3496043. 10.1155/2017/3496043 PubMed DOI PMC

Jacobsen N. R., Pojana G., White P., Møller P., Cohn C. A., Smith Korsholm K., et al. (2008). Genotoxicity, Cytotoxicity, and Reactive Oxygen Species Induced by Single‐walled Carbon Nanotubes and C60fullerenes in the FE1‐MutaMouse Lung Epithelial Cells. Environ. Mol. Mutagen. 49, 476–487. 10.1002/em.20406 PubMed DOI

Jacobsen N. R., Saber A. T., White P., Møller P., Pojana G., Vogel U., et al. (2007). Increased Mutant Frequency by Carbon Black, but Not Quartz, in thelacZ andcII Transgenes of Mutamouse Lung Epithelial Cells. Environ. Mol. Mutagen. 48 (6), 451–461. 10.1002/em.20300 PubMed DOI

Jacobsen N. R., White P. A., Gingerich J., Møller P., Saber A. T., Douglas G. R., et al. (2011). Mutation Spectrum in FE1-MUTATMMouse Lung Epithelial Cells Exposed to Nanoparticulate Carbon Black. Environ. Mol. Mutagen. 52 (4), 331–337. 10.1002/em.20629 PubMed DOI

Jiang D., Muschhammer J., Qi Y., Kügler A., de Vries J. C., Saffarzadeh M., et al. (2016). Suppression of Neutrophil-Mediated Tissue Damage-A Novel Skill of Mesenchymal Stem Cells. STEM CELLS 34 (9), 2393–2406. 10.1002/stem.2417 PubMed DOI PMC

Kaidashev I., Shlykova O., Izmailova O., Torubara O., Yushchenko Y., Tyshkovska T., et al. (2021). Host Gene Variability and SARS-CoV-2 Infection: A Review Article. Heliyon 7 (8), e07863. 10.1016/j.heliyon.2021.e07863 PubMed DOI PMC

Kalyanaraman B. (2021). Reactive Oxygen Species, Proinflammatory and Immunosuppressive Mediators Induced in COVID-19: Overlapping Biology with Cancer. RSC Chem. Biol. 2 (5), 1402–1414. 10.1039/d1cb00042j PubMed DOI PMC

Katerji M., Filippova M., Duerksen-Hughes P. (2019). Approaches and Methods to Measure Oxidative Stress in Clinical Samples: Research Applications in the Cancer Field. Oxidative Med. Cell. Longev. 2019, 1279250. 10.1155/2019/1279250 PubMed DOI PMC

Katoh Y., Katoh M. (2009). FGFR2-related Pathogenesis and FGFR2-Targeted Therapeutics (Review). Int. J. Mol. Med. 23 (3), 307–311. 10.3892/ijmm_00000132 PubMed DOI

Kay J., Thadhani E., Samson L., Engelward B. (2019). Inflammation-induced DNA Damage, Mutations and Cancer. DNA Repair 83, 102673. 10.1016/j.dnarep.2019.102673 PubMed DOI PMC

Khalil Alyahya H., Subash-Babu P., Mohammad Salamatullah A., Hayat K., Albader N., Alkaltham M. S., et al. (2021). Quantification of Chlorogenic Acid and Vanillin from Coffee Peel Extract and its Effect on α-Amylase Activity, Immunoregulation, Mitochondrial Oxidative Stress, and Tumor Suppressor Gene Expression Levels in H2O2-Induced Human Mesenchymal Stem Cells. Front. Pharmacol. 12 (2734), 760242. 10.3389/fphar.2021.760242 PubMed DOI PMC

Kim K. S., Lee D., Song C. G., Kang P. M. (2015). Reactive Oxygen Species-Activated Nanomaterials as Theranostic Agents. Nanomedicine 10 (17), 2709–2723. 10.2217/nnm.15.108 PubMed DOI PMC

Klose J., Li L., Pahl M., Bendt F., Hübenthal U., Jüngst C., et al. (2022). Application of the Adverse Outcome Pathway Concept for Investigating Developmental Neurotoxicity Potential of Chinese Herbal Medicines by Using Human Neural Progenitor Cells In Vitro . Cell. Biol. Toxicol. 10.1007/s10565-022-09730-4 PubMed DOI PMC

Kozak J., Forma A., Czeczelewski M., Kozyra P., Sitarz E., Radzikowska-Büchner E., et al. (2020). Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches. Ijms 22 (1), 277. 10.3390/ijms22010277 PubMed DOI PMC

Kuo C.-Y., Yang T.-H., Tsai P.-F., Yu C.-H. (2021). Role of the Inflammatory Response of RAW 264.7 Cells in the Metastasis of Novel Cancer Stem-like Cells. Medicina 57 (8), 778. 10.3390/medicina57080778 PubMed DOI PMC

Lee D. Y., Kang S., Lee Y., Kim J. Y., Yoo D., Jung W., et al. (2020). PEGylated Bilirubin-Coated Iron Oxide Nanoparticles as a Biosensor for Magnetic Relaxation Switching-Based ROS Detection in Whole Blood. Theranostics 10 (5), 1997–2007. 10.7150/thno.39662 PubMed DOI PMC

Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., et al. (2018). Oxidative Stress, Aging, and Diseases. Cia 13, 757–772. 10.2147/cia.S158513 PubMed DOI PMC

Liou G.-Y., Storz P. (2010). Reactive Oxygen Species in Cancer. Free Radic. Res. 44 (5), 479–496. 10.3109/10715761003667554 PubMed DOI PMC

Lu X., Zhu T., Chen C., Liu Y. (2014). Right or Left: The Role of Nanoparticles in Pulmonary Diseases. Ijms 15 (10), 17577–17600. 10.3390/ijms151017577 PubMed DOI PMC

Lukaszewicz-Hussain A. (2010). Role of Oxidative Stress in Organophosphate Insecticide Toxicity - Short Review. Pesticide Biochem. Physiology 98 (2), 145–150. 10.1016/j.pestbp.2010.07.006 DOI

Ma E., Ingram K. H., Milne G. L., Garvey W. T. (2017). F2-Isoprostanes Reflect Oxidative Stress Correlated with Lean Mass and Bone Density but Not Insulin Resistance. J. Endocr. Soc. 1 (5), 436–448. 10.1210/js.2017-00006 PubMed DOI PMC

Ma S., Fu X., Liu L., Liu Y., Feng H., Jiang H., et al. (2021). Iron-Dependent Autophagic Cell Death Induced by Radiation in MDA-MB-231 Breast Cancer Cells. Front. Cell. Dev. Biol. 9, 723801. 10.3389/fcell.2021.723801 PubMed DOI PMC

Mackman N., Antoniak S., Wolberg A. S., Kasthuri R., Key N. S. (2020). Coagulation Abnormalities and Thrombosis in Patients Infected with SARS-CoV-2 and Other Pandemic Viruses. Atvb 40 (9), 2033–2044. 10.1161/ATVBAHA.120.314514 PubMed DOI PMC

Meagher E. A., FitzGerald G. A. (2000). Indices of Lipid Peroxidation In Vivo: Strengths and Limitations. Free Radic. Biol. Med. 28 (12), 1745–1750. 10.1016/s0891-5849(00)00232-x PubMed DOI

Medithi S., Jonnalagadda P. R., Jee B. (2021). Predominant Role of Antioxidants in Ameliorating the Oxidative Stress Induced by Pesticides. Archives Environ. Occup. Health 76 (2), 61–74. 10.1080/19338244.2020.1750333 PubMed DOI

Milne G. L., Yin H., Hardy K. D., Davies S. S., Roberts L. J., 2nd (2011). Isoprostane Generation and Function. Chem. Rev. 111 (10), 5973–5996. 10.1021/cr200160h PubMed DOI PMC

Modrzynska J., Berthing T., Ravn-Haren G., Jacobsen N. R., Weydahl I. K., Loeschner K., et al. (2018). Primary Genotoxicity in the Liver Following Pulmonary Exposure to Carbon Black Nanoparticles in Mice. Part Fibre Toxicol. 15 (1), 2. 10.1186/s12989-017-0238-9 PubMed DOI PMC

Nagata Y., Kudo M., Nagai T., Watanabe T., Kawasaki M., Asakuma Y., et al. (2013). Heat Shock Protein 27 Expression Is Inversely Correlated with Atrophic Gastritis and Intraepithelial Neoplasia. Dig. Dis. Sci. 58 (2), 381–388. 10.1007/s10620-012-2342-x PubMed DOI

Nash K. M., Ahmed S. (2015). Nanomedicine in the ROS-Mediated Pathophysiology: Applications and Clinical Advances. Nanomedicine Nanotechnol. Biol. Med. 11 (8), 2033–2040. 10.1016/j.nano.2015.07.003 PubMed DOI PMC

Nguyen Dinh Cat A., Montezano A. C., Burger D., Touyz R. M. (2013). Angiotensin II, NADPH Oxidase, and Redox Signaling in the Vasculature. Antioxidants redox Signal. 19 (10), 1110–1120. 10.1089/ars.2012.4641 PubMed DOI PMC

Nishida M., Tanabe S., Maruyama Y., Mangmool S., Urayama K., Nagamatsu Y., et al. (2005). Gα12/13- and Reactive Oxygen Species-dependent Activation of C-Jun NH2-terminal Kinase and P38 Mitogen-Activated Protein Kinase by Angiotensin Receptor Stimulation in Rat Neonatal Cardiomyocytes. J. Biol. Chem. 280 (18), 18434–18441. 10.1074/jbc.M409710200 PubMed DOI

Nymark P., Karlsson H. L., Halappanavar S., Vogel U. (2021). Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles. Front. Toxicol. 3 (21), 653386. 10.3389/ftox.2021.653386 PubMed DOI PMC

Omidifar N., Nili-Ahmadabadi A., Nakhostin-Ansari A., Lankarani K. B., Moghadami M., Mousavi S. M., et al. (2021). The Modulatory Potential of Herbal Antioxidants against Oxidative Stress and Heavy Metal Pollution: Plants against Environmental Oxidative Stress. Environ. Sci. Pollut. Res. 28 (44), 61908–61918. 10.1007/s11356-021-16530-6 PubMed DOI

Onoue S., Hosoi K., Wakuri S., Iwase Y., Yamamoto T., Matsuoka N., et al. (2012). Establishment and Intra-/inter-laboratory Validation of a Standard Protocol of Reactive Oxygen Species Assay for Chemical Photosafety Evaluation. J. Appl. Toxicol. 33 (11), a–n. 10.1002/jat.2776 PubMed DOI

Organization (2020). Global Health Estimates 2020: Deaths by Cause, Age. Sex, by Country and by Region, 2000-2019. Available: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (Accessed December 16, 2021).

Ortiz-Prado E., Dunn J. F., Vasconez J., Castillo D., Viscor G. (2019). Partial Pressure of Oxygen in the Human Body: a General Review. Am. J. Blood Res. 9 (1), 1–14. PubMed PMC

Parimon T., Yao C., Stripp B. R., Noble P. W., Chen P. (2020). Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Ijms 21 (7), 2269. 10.3390/ijms21072269 PubMed DOI PMC

Porter N. A., Caldwell S. E., Mills K. A. (1995). Mechanisms of Free Radical Oxidation of Unsaturated Lipids. Lipids 30 (4), 277–290. 10.1007/bf02536034 PubMed DOI

Pothen L., Balligand J.-L. (2021). Legacy in Cardiovascular Risk Factors Control: From Theory to Future Therapeutic Strategies? Antioxidants 10 (11), 1849. 10.3390/antiox10111849 PubMed DOI PMC

Powers S. K., Jackson M. J. (2008). Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 88 (4), 1243–1276. 10.1152/physrev.00031.2007 PubMed DOI PMC

Racanelli A. C., Kikkers S. A., Choi A. M. K., Cloonan S. M. (2018). Autophagy and Inflammation in Chronic Respiratory Disease. Autophagy 14 (2), 221–232. 10.1080/15548627.2017.1389823 PubMed DOI PMC

Renu K., Chakraborty R., Myakala H., Koti R., Famurewa A. C., Madhyastha H., et al. (2021). Molecular Mechanism of Heavy Metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - Induced Hepatotoxicity - A Review. Chemosphere 271, 129735. 10.1016/j.chemosphere.2021.129735 PubMed DOI

Rocha J. L. M., de Oliveira W. C. F., Noronha N. C., dos Santos N. C. D., Covas D. T., Picanço-Castro V., et al. (2020). Mesenchymal Stromal Cells in Viral Infections: Implications for COVID-19. Stem Cell. Rev Rep 17, 71–93. 10.1007/s12015-020-10032-7 PubMed DOI PMC

Rojas-Sanchez G., García-Miranda A., Montes-Alvarado J. B., Cotzomi-Ortega I., Sarmiento-Salinas F. L., Jimenez-Ignacio E. E., et al. (2021). Chloroquine Induces ROS-Mediated Macrophage Migration Inhibitory Factor Secretion and Epithelial to Mesenchymal Transition in ER-Positive Breast Cancer Cell Lines. J. Mammary Gland. Biol. Neoplasia 26, 341–355. 10.1007/s10911-021-09503-5 PubMed DOI

Salbu B., Teien H. C., Lind O. C., Tollefsen K. E. (2019). Why Is the Multiple Stressor Concept of Relevance to Radioecology? Int. J. Radiat. Biol. 95 (7), 1015–1024. 10.1080/09553002.2019.1605463 PubMed DOI

Saleh J., Peyssonnaux C., Singh K. K., Edeas M. (2020). Mitochondria and Microbiota Dysfunction in COVID-19 Pathogenesis. Mitochondrion 54, 1–7. 10.1016/j.mito.2020.06.008 PubMed DOI PMC

Sasaki J. C., Allemang A., Bryce S. M., Custer L., Dearfield K. L., Dietz Y., et al. (2020). Application of the Adverse Outcome Pathway Framework to Genotoxic Modes of Action. Environ. Mol. Mutagen 61 (1), 114–134. 10.1002/em.22339 PubMed DOI

Sauvaget C., Lagarde F., Nagano J., Soda M., Koyama K., Kodama K. (2005). Lifestyle Factors, Radiation and Gastric Cancer in Atomic-Bomb Survivors (Japan). Cancer Causes Control 16 (7), 773–780. 10.1007/s10552-005-5385-x PubMed DOI

Scandalios J. G. (2005). Oxidative Stress: Molecular Perception and Transduction of Signals Triggering Antioxidant Gene Defenses. Braz J. Med. Biol. Res. 38 (7), 995–1014. 10.1590/s0100-879x2005000700003 PubMed DOI

Schaich M. A., Van Houten B. (2021). Searching for DNA Damage: Insights from Single Molecule Analysis. Front. Mol. Biosci. 8, 772877. 10.3389/fmolb.2021.772877 PubMed DOI PMC

Seebacher N. A., Krchniakova M., Stacy A. E., Skoda J., Jansson P. J. (2021). Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants 10 (11), 1801. 10.3390/antiox10111801 PubMed DOI PMC

Seen S., Tong L. (2018). Dry Eye Disease and Oxidative Stress. Acta Ophthalmol. 96 (4), e412–e420. 10.1111/aos.13526 PubMed DOI

Shenoy S. (2020). Coronavirus (Covid-19) Sepsis: Revisiting Mitochondrial Dysfunction in Pathogenesis, Aging, Inflammation, and Mortality. Inflamm. Res. 69 (11), 1077–1085. 10.1007/s00011-020-01389-z PubMed DOI PMC

Shi T., Denney L., An H., Ho L. P., Zheng Y. (2021). Alveolar and Lung Interstitial Macrophages: Definitions, Functions, and Roles in Lung Fibrosis. J. Leukoc. Bio 110 (1), 107–114. 10.1002/jlb.3ru0720-418r PubMed DOI

Sies H., Berndt C., Jones D. P. (2017). Oxidative Stress. Annu. Rev. Biochem. 86, 715–748. 10.1146/annurev-biochem-061516-045037 PubMed DOI

Sies H. (2015). Oxidative Stress: a Concept in Redox Biology and Medicine. Redox Biol. 4, 180–183. 10.1016/j.redox.2015.01.002 PubMed DOI PMC

Smith K. A., Shepherd J., Wakil A., Kilpatrick E. S. (2011). A Comparison of Methods for the Measurement of 8-isoPGF2α: a Marker of Oxidative Stress. Ann. Clin. Biochem. 48 (Pt 2), 147–154. 10.1258/acb.2010.010151 PubMed DOI

Song Y., Xie L., Lee Y., Brede D. A., Lyne F., Kassaye Y., et al. (2020). Integrative Assessment of Low-Dose Gamma Radiation Effects on Daphnia Magna Reproduction: Toxicity Pathway Assembly and AOP Development. Sci. Total Environ. 705, 135912. 10.1016/j.scitotenv.2019.135912 PubMed DOI

Steffensen I.-L., Dirven H., Couderq S., David A., D’Cruz S., Fernández M., et al. (2020). Bisphenols and Oxidative Stress Biomarkers-Associations Found in Human Studies, Evaluation of Methods Used, and Strengths and Weaknesses of the Biomarkers. Ijerph 17 (10), 3609. 10.3390/ijerph17103609 PubMed DOI PMC

Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 71 (3), 209–249. 10.3322/caac.21660 PubMed DOI

Tanabe S., Beaton D., Chauhan V., Choi I., Danielsen P. H., Delrue N., et al. (2022). Report of the 1st and 2nd Mystery of Reactive Oxygen Species Conferences. Altex 39 (2), 336–338. 10.14573/altex.2203011 DOI

Tanabe S., Quader S., Cabral H., Ono R. (2020). Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front. Pharmacol. 11, 904. 10.3389/fphar.2020.00904 PubMed DOI PMC

Tanabe S., Quader S., Ono R., Cabral H., Aoyagi K., Hirose A., et al. (2021). Cell Cycle Regulation and DNA Damage Response Networks in Diffuse- and Intestinal-type Gastric Cancer. Cancers 13 (22), 5786. 10.3390/cancers13225786 PubMed DOI PMC

Tharmalingam S., Sreetharan S., Kulesza A. V., Boreham D. R., Tai T. C. (2017). Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat. Res. 188 (4.2), 525–538. 10.1667/rr14587.1 PubMed DOI

Tsai C.-H., Shen Y.-C., Chen H.-W., Liu K.-L., Chang J.-W., Chen P.-Y., et al. (2017). Docosahexaenoic Acid Increases the Expression of Oxidative Stress-Induced Growth Inhibitor 1 through the PI3K/Akt/Nrf2 Signaling Pathway in Breast Cancer Cells. Food Chem. Toxicol. 108 (Pt A), 276–288. 10.1016/j.fct.2017.08.010 PubMed DOI

Valko M., Leibfritz D., Moncol J., Cronin M. T. D., Mazur M., Telser J. (2007). Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell. Biol. 39 (1), 44–84. 10.1016/j.biocel.2006.07.001 PubMed DOI

Vargas-Mendoza N., Angeles-Valencia M., Morales-González Á., Madrigal-Santillán E. O., Morales-Martínez M., Madrigal-Bujaidar E., et al. (2021). Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life 11 (11), 1269. 10.3390/life11111269 PubMed DOI PMC

Veith C., Boots A. W., Idris M., van Schooten F.-J., van der Vliet A. (2019). Redox Imbalance in Idiopathic Pulmonary Fibrosis: a Role for Oxidant Cross-Talk between NADPH Oxidase Enzymes and Mitochondria. Antioxidants redox Signal. 31 (14), 1092–1115. 10.1089/ars.2019.7742 PubMed DOI PMC

Wang Y., Xu M., Ke Z.-j., Luo J. (2017). Cellular and Molecular Mechanisms Underlying Alcohol-Induced Aggressiveness of Breast Cancer. Pharmacol. Res. 115, 299–308. 10.1016/j.phrs.2016.12.005 PubMed DOI PMC

Xie L., Solhaug K. A., Song Y., Brede D. A., Lind O. C., Salbu B., et al. (2019). Modes of Action and Adverse Effects of Gamma Radiation in an Aquatic Macrophyte Lemna Minor. Sci. Total Environ. 680, 23–34. 10.1016/j.scitotenv.2019.05.016 PubMed DOI

Yamamoto M., Sanomachi T., Suzuki S., Togashi K., Sugai A., Seino S., et al. (2021). Gemcitabine Radiosensitization Primes Irradiated Malignant Meningioma Cells for Senolytic Elimination by Navitoclax. Neurooncol Adv. 3 (1), vdab148. 10.1093/noajnl/vdab148 PubMed DOI PMC

Yang M., Chitambar C. R. (2008). Role of Oxidative Stress in the Induction of metallothionein-2A and Heme Oxygenase-1 Gene Expression by the Antineoplastic Agent Gallium Nitrate in Human Lymphoma Cells. Free Radic. Biol. Med. 45 (6), 763–772. 10.1016/j.freeradbiomed.2008.05.031 PubMed DOI PMC

Yao Y., Zang Y., Qu J., Tang M., Zhang T. (2019). The Toxicity of Metallic Nanoparticles on Liver: The Subcellular Damages, Mechanisms, and Outcomes. Ijn 14, 8787–8804. 10.2147/ijn.S212907 PubMed DOI PMC

Yi X., Long L., Yang C., Lu Y., Cheng M. (2014). Maotai Ameliorates Diethylnitrosamine-Initiated Hepatocellular Carcinoma Formation in Mice. PLoS One 9 (4), e93599. 10.1371/journal.pone.0093599 PubMed DOI PMC

Yusefi A. R., Bagheri Lankarani K., Bastani P., Radinmanesh M., Kavosi Z. (2018). Risk Factors for Gastric Cancer: A Systematic Review. Asian Pac J. Cancer Prev. 19 (3), 591–603. 10.22034/apjcp.2018.19.3.591 PubMed DOI PMC

Zdrojewicz Z., Szlagor A., Wielogórska M., Nowakowska D., Nowakowski J. (2016). Influence of Ionizing Radiation on Human Body. fmpcr 2 (2), 174–179. 10.5114/fmpcr/43945 DOI

Zhang Y., Dai M., Yuan Z. (2018). Methods for the Detection of Reactive Oxygen Species. Anal. Methods 10 (38), 4625–4638. 10.1039/C8AY01339J DOI

Zhao J., Harper R., Barchowsky A., Di Y. P. P. (2007). Identification of Multiple MAPK-Mediated Transcription Factors Regulated by Tobacco Smoke in Airway Epithelial Cells. Am. J. Physiology-Lung Cell. Mol. Physiology 293 (2), L480–L490. 10.1152/ajplung.00345.2006 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...