Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations

. 2023 Jan 15 ; 217 () : 114650. [epub] 20221027

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36309218
Odkazy

PubMed 36309218
PubMed Central PMC9850416
DOI 10.1016/j.envres.2022.114650
PII: S0013-9351(22)01977-6
Knihovny.cz E-zdroje

While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.

Center for Biomedical Research 28029 Madrid Spain

Centre for Arctic Health and Molecular Epidemiology Department of Public Health Aarhus University Bartholins Allé 2 8000 Aarhus Denmark

Centre for Arctic Health and Molecular Epidemiology Department of Public Health Aarhus University Bartholins Allé 2 8000 Aarhus Denmark; Greenland Centre for Health Research University of Greenland Manutooq 1 3905 Nuussuaq Greenland

Division of Drug Discovery and Safety Leiden Academic Centre for Drug Research Leiden University Leiden Netherlands

Division of Risk Assessment Center for Biological Safety and Research National Institute of Health Sciences Kawasaki Japan

Environmental Engineering Laboratory Department of Chemical Engineering Aristotle University of Thessaloniki Thessaloniki Greece; HERACLES Research Centre on the Exposome and Health Center for Interdisciplinary Research and Innovation Thessaloniki Greece

European Commission Joint Research Centre Ispra Italy

German Federal Institute for Risk Assessment Dept Pesticides Safety Berlin Germany

Institute for Public Health and the Environment Centre for Nutrition Prevention and Health Services 3720 BA Bilthoven the Netherlands

Institute of Environmental Medicine Karolinska Institutet Nobels väg 13 Solna Sweden

Institute of Environmental Medicine Karolinska Institutet Nobels väg 13 Solna Sweden; Department of Biomedical Sciences and Veterinary Public Health Swedish University of Agricultural Sciences SE 75007 Uppsala Sweden

Institute of Medical Genetics Center for Pathobiochemistry and Genetics Medical University of Vienna 1090 Vienna Austria

Instituto de Investigación Biosanitaria 18012 Granada Spain; Department of Legal Medicine and Toxicology University of Granada School of Medicine Avda de la Investigación 11 18016 Granada Spain; Consortium for Biomedical Research in Epidemiology and Public Health CIBERESP Madrid Spain

IUF Leibniz Research Institute for Environmental Medicine Auf'm Hennekamp 50 40225 Duesseldorf Germany

KWR Water Research Institute Groningenhaven 7 3433 PE Nieuwegein the Netherlands

LABERCA Oniris INRAE Nantes France

National Institute for Public Health and the Environment Centre for Health Protection Bilthoven the Netherlands

Netherlands Organisation for Applied Scientific Research Risk Analysis for Products in Development Utrecht the Netherlands

Norwegian Institute for Water Research Norway

RECETOX Faculty of Science Masaryk University Kotlarska 2 611 37 Brno Czech Republic

Swiss Centre for Applied Human Toxicology SCAHT University of Basel Missionsstrasse 64 CH 4055 Basel Switzerland

UFZ Helmholtz Center for Environmental Research Dept Bioanalyt Ecotoxicol D 04318 Leipzig Germany

Unit Health Flemish Institute for Technological Research Boeretang 200 2400 Mol Belgium

Université Paris Cité T3S Inserm UMR S 1124 F 75006 Paris France

Zobrazit více v PubMed

Al-Jaal B.A., Jaganjac M., Barcaru A., Horvatovich P., Latiff A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: a systematic literature review. Food Chem. Toxicol. 2019;129:211–228. doi: 10.1016/j.fct.2019.04.047. PubMed DOI

Andersen M., Anderson H., Bailar J.C., Boekelheide K., Brent R., Charnley G., Cheung V.G., Green S., Kelsey K.T., Kerkvliet N.I., Li A. a, McCray L., Meyer O., Patterson R.D., Pennie W., Scala R. a, Solomon G.M., Stephens M., Yager J., Zeise L., Daniel Krewski Daniel Acosta, Jr., Andersen Melvin, Anderson Henry, Bailar John C., III, Kim Boekelheide, Brent Robert, Charnley Gail, Vivian G.Cheung Sidney Green Jr. Kelsey Karl T., Kerkvliet Nancy I., Li Abby A., Lawrence McCray. Toxicity testing in the 21St century: a vision and a strategy. Natl. Acad. Sci. 2007;13:51–138. doi: 10.1080/10937404.2010.483176.TOXICITY. PubMed DOI PMC

Angrish M.M., Allard P., McCullough S.D., Druwe I.L., Chadwick L.H., Hines E., Chorley B.N. Epigenetic applications in adverse outcome pathways and environmental risk evaluation. Environ. Health Perspect. 2018;126:1–12. doi: 10.1289/EHP2322. PubMed DOI PMC

Ankley G.T., Bennett R.S., Erickson R.J., Hoff D.J., Hornung M.W., Johnson R.D., Mount D.R., Nichols J.W., Russom C.L., Schmieder P.K., Serrrano J.A., Tietge J.E., Villeneuve D.L. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010;29:730–741. doi: 10.1002/etc.34. PubMed DOI

Audouze K., Sarigiannis D., Alonso-Magdalena P., Brochot C., Casas M., Vrijheid M., Babin P.J., Karakitsios S., Coumoul X., Barouki R. Integrative strategy of testing systems for identification of endocrine disruptors inducing metabolic disorders—an introduction to the oberon project. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21082988. PubMed DOI PMC

Bajard L., Melymuk L., Blaha L. Prioritization of hazards of novel flame retardants using the mechanistic toxicology information from ToxCast and Adverse Outcome Pathways. Environ. Sci. Eur. 2019;31:14. doi: 10.1186/s12302-019-0195-z. DOI

Baken K.A., Lambrechts N., Remy S., Mustieles V., Rodríguez-Carrillo A., Neophytou C.M., Olea N., Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: proof of concept for phthalates and reproductive effects. Environ. Res. 2019;175:235–256. doi: 10.1016/j.envres.2019.05.013. PubMed DOI

Baker N., Knudsen T., Williams A. Abstract Sifter: a comprehensive front-end system to PubMed. F1000Research. 2017;6:1–10. doi: 10.12688/f1000research.12865.1. PubMed DOI PMC

Bal-Price A., Leist M., Schildknecht S., Tschudi-Monnet F., Paini A., Terron A. Adverse Outcome Pathway on Inhibition of the mitochondrial complex I of nigro-striatal neurons leading to parkinsonian motor deficits. OECD Series on Adverse Outcome Pathways No. 7. 2018:0–184.

Ball N., Bars R., Botham P.A., Cuciureanu A., Cronin M.T.D., Doe J.E., Dudzina T., Gant T.W., Leist M., van Ravenzwaay B. A framework for chemical safety assessment incorporating new approach methodologies within REACH. Arch. Toxicol. 2022;96:743–766. doi: 10.1007/s00204-021-03215-9. PubMed DOI PMC

Barouki R., Audouze K., Becker C., Blaha L., Coumoul X., Karakitsios S., Klanova J., Miller G.W., Price E.J., Sarigiannis D. The exposome and toxicology: a win-win collaboration. Toxicol. Sci. 2022;186:1–11. doi: 10.1093/toxsci/kfab149. PubMed DOI PMC

Beausoleil C., Le Magueresse-Battistoni B., Viguié C., Babajko S., Canivenc-Lavier M.C., Chevalier N., Emond C., Habert R., Picard-Hagen N., Mhaouty-Kodja S. Regulatory and academic studies to derive reference values for human health: the case of bisphenol S. Environ. Res. 2022;204 doi: 10.1016/j.envres.2021.112233. PubMed DOI

Beronius A., Molander L., Zilliacus J., Rudén C., Hanberg A. Testing and refining the Science in Risk Assessment and Policy (SciRAP) web-based platform for evaluating the reliability and relevance of in vivo toxicity studies. J. Appl. Toxicol. 2018;38:1460–1470. doi: 10.1002/jat.3648. PubMed DOI

Beronius A., Zilliacus J., Hanberg A., Luijten M., van der Voet H., van Klaveren J. Methodology for health risk assessment of combined exposures to multiple chemicals. Food Chem. Toxicol. 2020;143 doi: 10.1016/j.fct.2020.111520. PubMed DOI

Bjerregaard-Olesen C., Bach C.C., Long M., Wielsøe M., Bech B.H., Henriksen T.B., Olsen J., Bonefeld-Jørgensen E.C. Associations of fetal growth outcomes with measures of the combined xenoestrogenic activity of maternal serum perfluorinated alkyl acids in Danish pregnant women. Environ. Health Perspect. 2019;127:1–13. doi: 10.1289/EHP1884. PubMed DOI PMC

Borodzicz S., Czarzasta K., Kuch M., Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis. 2015;14:1–8. doi: 10.1186/s12944-015-0053-y. PubMed DOI PMC

Bridges J., Sauer U.G., Buesen R., Deferme L., Tollefsen K.E., Tralau T., van Ravenzwaay B., Poole A., Pemberton M. Framework for the quantitative weight-of-evidence analysis of ‘omics data for regulatory purposes. Regul. Toxicol. Pharmacol. 2017;91:S46–S60. doi: 10.1016/j.yrtph.2017.10.010. PubMed DOI

Browne P., Noyes P.D., Casey W.M., Dix D.J. Application of adverse outcome pathways to U.S. EPA's endocrine disruptor screening program. Environ. Health Perspect. 2017;125 doi: 10.1289/EHP1304. PubMed DOI PMC

Buesen R., Chorley B.N., da Silva Lima B., Daston G., Deferme L., Ebbels T., Gant T.W., Goetz A., Greally J., Gribaldo L., Hackermüller J., Hubesch B., Jennen D., Johnson K., Kanno J., Kauffmann H.M., Laffont M., McMullen P., Meehan R., Pemberton M., Perdichizzi S., Piersma A.H., Sauer U.G., Schmidt K., Seitz H., Sumida K., Tollefsen K.E., Tong W., Tralau T., van Ravenzwaay B., Weber R.J.M., Worth A., Yauk C., Poole A. Applying ’omics technologies in chemicals risk assessment: report of an ECETOC workshop. Regul. Toxicol. Pharmacol. 2017;91 doi: 10.1016/j.yrtph.2017.09.002. S3–S13. PubMed DOI PMC

Burton G.J., Redman C.W., Roberts J.M., Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;366:1–15. doi: 10.1136/bmj.l2381. PubMed DOI

Caloni F., De Angelis I., Hartung T. Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi. Arch. Toxicol. 2022;96:1935–1950. doi: 10.1007/s00204-022-03299-x. PubMed DOI PMC

Caporale N., Leemans M., Birgersson L., Germain P.L., Cheroni C., Borbély G., Engdahl E., Lindh C., Bressan R.B., Cavallo F., Chorev N.E., D'Agostino G.A., Pollard S.M., Rigoli M.T., Tenderini E., Tobon A.L., Trattaro S., Troglio F., Zanella M., Bergman Å., Damdimopoulou P., Jönsson M., Kiess W., Kitraki E., Kiviranta H., Nånberg E., Öberg M., Rantakokko P., Rudén C., Söder O., Bornehag C.G., Demeneix B., Fini J.B., Gennings C., Rüegg J., Sturve J., Testa G. From cohorts to molecules: adverse impacts of endocrine disrupting mixtures. Science. 2022;80:375. doi: 10.1126/science.abe8244. PubMed DOI

Carusi A., Davies M.R., De Grandis G., Escher B.I., Hodges G., Leung K.M.Y., Whelan M., Willett C., Ankley G.T. Harvesting the promise of AOPs: an assessment and recommendations. Sci. Total Environ. 2018;628–629:1542–1556. doi: 10.1016/j.scitotenv.2018.02.015. PubMed DOI PMC

Carusi A., Whelan M., Wittwehr C., European Commission. Joint Research Centre. Publications Office of the European Union; 2019. Bridging across Methods in the Biosciences. DOI

Carusi A., Wittwehr C., Whelan M. 2022. Addressing Evidence Needs in Chemicals Policy and Regulation. DOI

Carvaillo J., Barouki R., Coumoul X., Audouze K. Linking bisphenol S to adverse outcome pathways using a combined text mining and systems biology approach. Environ. Heal. Perpsectives. 2019;127:1–11. PubMed PMC

Chartres N., Bero L.A., Norris S.L. A review of methods used for hazard identification and risk assessment of environmental hazards. Environ. Int. 2019;123:231–239. doi: 10.1016/j.envint.2018.11.060. PubMed DOI

Chauhan V., Hamada N., Garnier-Laplace J., Laurier D., Beaton D., Tollefsen K.E., Locke P.A. Establishing a communication and engagement strategy to facilitate the adoption of the adverse outcome pathways in radiation research and regulation. Int. J. Radiat. Biol. 2022;1–8 doi: 10.1080/09553002.2022.2086716. PubMed DOI

Cho E., Allemang A., Audebert M., Chauhan V., Dertinger S., Hendriks G., Luijten M., Marchetti F., Minocherhomji S., Pfuhler S., Roberts D.J., Trenz K., Yauk C.L. AOP report: development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations. Environ. Mol. Mutagen. 2022:1–17. doi: 10.1002/em.22479. PubMed DOI PMC

Coady K., Browne P., Embry M., Hill T., Leinala E., Steeger T., Maślankiewicz L., Hutchinson T. When are adverse outcome pathways and associated assays “fit for purpose” for regulatory decision-making and management of chemicals? Integr. Environ. Assess. Manag. 2019;15:633–647. doi: 10.1002/ieam.4153. PubMed DOI PMC

Conley J.M., Lambright C.S., Evans N., Cardon M., Furr J., Wilson V.S., Gray L.E. Mixed “antiandrogenic” chemicals at low individual doses produce reproductive tract malformations in the male rat. Toxicol. Sci. 2018;164:166–178. doi: 10.1093/toxsci/kfy069. PubMed DOI PMC

Dieber-Rotheneder M., Beganovic S., Desoye G., Lang U., Cervar-Zivkovic M. Complex expression changes of the placental endothelin system in early and late onset preeclampsia, fetal growth restriction and gestational diabetes. Life Sci. 2012;91:710–715. doi: 10.1016/j.lfs.2012.04.040. PubMed DOI

ECHA . 2013. Guidance for Human Health Risk Assessment Volume III, Part B : Guidance on Regulation (EU) No 528/2012 Concerning the Making Available on the Market and Use of Biocidal Products (BPR)

ECHA, EFSA Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA Journal. 2018;16:1–135. doi: 10.2903/j.efsa.2018.5311. PubMed DOI PMC

EFSA Scientific Opinion of the PPR Panel on the follow‐up of the findings of the External Scientific Report ‘Literature review of epidemiological studies linking exposure to pesticides and health effects. EFSA J. 2017;15 doi: 10.2903/j.efsa.2017.5007. PubMed DOI PMC

EFSA Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA J. 2017;15 doi: 10.2903/j.efsa.2017.4691. PubMed DOI PMC

EFSA Development of Integrated Approaches to Testing and Assessment (IATA) case studies on developmental neurotoxicity (DNT) risk assessment. EFSA J. 2021;19 doi: 10.2903/j.efsa.2021.6599. DOI

EFSA Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J. 2021;19 doi: 10.2903/j.efsa.2021.7033. PubMed DOI PMC

EPA . 2018. Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing 1–13.

Escher S.E., Aguayo-Orozco A., Benfenati E., Bitsch A., Braunbeck T., Brotzmann K., Bois F., van der Burg B., Castel J., Exner T., Gadaleta D., Gardner I., Goldmann D., Hatley O., Golbamaki N., Graepel R., Jennings P., Limonciel A., Long A., Maclennan R., Mombelli E., Norinder U., Jain S., Capinha L.S., Taboureau O.T., Tolosa L., Vrijenhoek N.G., van Vugt-Lussenburg B.M.A., Walker P., van de Water B., Wehr M., White A., Zdrazil B., Fisher C. Integrate mechanistic evidence from new approach methodologies (NAMs) into a read-across assessment to characterise trends in shared mode of action. Toxicol. Vitro. 2022;79 doi: 10.1016/j.tiv.2021.105269. PubMed DOI

European Commission . COM; 2020. Chemicals Strategy for Sustainability towards a Toxic-free Environment; p. 667.

Fay K.A., Villeneuve D.L., LaLone C.A., Song Y., Tollefsen K.E., Ankley G.T. Practical approaches to adverse outcome pathway development and weight-of-evidence evaluation as illustrated by ecotoxicological case studies. Environ. Toxicol. Chem. 2017;36:1429–1449. doi: 10.1002/etc.3770. PubMed DOI PMC

Gant T.W., Sauer U.G., Zhang S.D., Chorley B.N., Hackermüller J., Perdichizzi S., Tollefsen K.E., van Ravenzwaay B., Yauk C., Tong W., Poole A. A generic Transcriptomics Reporting Framework (TRF) for ‘omics data processing and analysis. Regul. Toxicol. Pharmacol. 2017;91:S36–S45. doi: 10.1016/j.yrtph.2017.11.001. PubMed DOI PMC

Gelineau-Van Waes J., Starr L., Maddox J., Aleman F., Voss K.A., Wilberding J., Riley R.T. Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res. Part A Clin. Mol. Teratol. 2005;73:487–497. doi: 10.1002/bdra.20148. PubMed DOI

Geraets L., Nijkamp M.M., ter Burg W. Critical elements for human health risk assessment of less than lifetime exposures. Regul. Toxicol. Pharmacol. 2016;81:362–371. doi: 10.1016/j.yrtph.2016.09.026. PubMed DOI

Gilmour N., Reynolds J., Przybylak K., Aleksic M., Aptula N., Baltazar M.T., Cubberley R., Rajagopal R., Reynolds G., Spriggs S., Thorpe C., Windebank S., Maxwell G. Next generation risk assessment for skin allergy: decision making using new approach methodologies. Regul. Toxicol. Pharmacol. 2022;131 doi: 10.1016/j.yrtph.2022.105159. PubMed DOI

Goeden H. Focus on chronic exposure for deriving drinking water guidance underestimates potential risk to infants. Int. J. Environ. Res. Publ. Health. 2018;15 doi: 10.3390/ijerph15030512. PubMed DOI PMC

Gundacker C., Ellinger I. The unique applicability of the human placenta to the Adverse Outcome Pathway (AOP) concept: the placenta provides fundamental insights into human organ functions at multiple levels of biological organization. Reprod. Toxicol. 2020;96:273–281. doi: 10.1016/j.reprotox.2020.07.014. PubMed DOI

Harrill J.A., Viant M.R., Yauk C.L., Sachana M., Gant T.W., Auerbach S.S., Beger R.D., Bouhifd M., O'Brien J., Burgoon L., Caiment F., Carpi D., Chen T., Chorley B.N., Colbourne J., Corvi R., Debrauwer L., O'Donovan C., Ebbels T.M.D., Ekman D.R., Faulhammer F., Gribaldo L., Hilton G.M., Jones S.P., Kende A., Lawson T.N., Leite S.B., Leonards P.E.G., Luijten M., Martin A., Moussa L., Rudaz S., Schmitz O., Sobanski T., Strauss V., Vaccari M., Vijay V., Weber R.J.M., Williams A.J., Williams A., Thomas R.S., Whelan M. Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regul. Toxicol. Pharmacol. 2021;125 doi: 10.1016/j.yrtph.2021.105020. PubMed DOI PMC

Hartung T. Toxicology for the twenty-first century. Nature. 2009;460:208–212. doi: 10.1038/460208a. PubMed DOI

HBM4EU . 2020. Deliverable 14.5 : Selection Criteria and Inventory of Effect Biomarkers for the 2nd Set of Substances.

HBM4EU . 2021. Additional Deliverable 13.7: Draft Guidance and Recommendations for Risk Assessors and Policymakers on the Use of Mechanistic Toxicology Data and AOPs.

Heldring M.M., Wijaya L.S., Niemeijer M., Yang H., Lakhal T., Le Dévédec S.E., van de Water B., Beltman J.B. Model-based translation of DNA damage signaling dynamics across cell types. PLoS Comput. Biol. 2022;18 doi: 10.1371/journal.pcbi.1010264. PubMed DOI PMC

Hernandez A.F. Toxicological Risk Assessment and Multi-System Health Impacts from Exposure. Elsevier; 2021. In silico toxicology, a robust approach for decision-making in the context of next-generation risk assessment; pp. 31–50. DOI

Heusinkveld H., Braakhuis H., Gommans R., Botham P., Corvaro M., van der Laan J.W., Lewis D., Madia F., Manou I., Schorsch F., Wolterink G., Woutersen R., Corvi R., Mehta J., Luijten M. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit. Rev. Toxicol. 2020;50:725–739. doi: 10.1080/10408444.2020.1841732. PubMed DOI

Heusinkveld H.J., Staal Y.C.M., Baker N.C., Daston G., Knudsen T.B., Piersma A. An ontology for developmental processes and toxicities of neural tube closure. Reprod. Toxicol. 2021;99:160–167. doi: 10.1016/j.reprotox.2020.09.002. PubMed DOI PMC

Hoffmann S. Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks. ALTEX. 2022;39:1–20. doi: 10.14573/altex.2202141. PubMed DOI PMC

Hoffmann S., Kleinstreuer N., Alépée N., Allen D., Api A.M., Ashikaga T., Clouet E., Cluzel M., Desprez B., Gellatly N., Goebel C., Kern P.S., Klaric M., Kühnl J., Lalko J.F., Martinozzi-Teissier S., Mewes K., Miyazawa M., Parakhia R., van Vliet E., Zang Q., Petersohn D. Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Crit. Rev. Toxicol. 2018;48:344–358. doi: 10.1080/10408444.2018.1429385. PubMed DOI

Huhn S., Escher B.I., Krauss M., Scholz S., Hackermüller J., Altenburger R. Unravelling the chemical exposome in cohort studies: routes explored and steps to become comprehensive. Environ. Sci. Eur. 2021;33 doi: 10.1186/s12302-020-00444-0. PubMed DOI PMC

Ives C., Campia I., Wang R., Wittwehr C., Edwards S. Creating a structured adverse outcome pathway knowledgebase via ontology-based annotations. Appl. Vitr. Toxicol. 2017;3:298–311. doi: 10.1089/aivt.2017.0017. PubMed DOI PMC

Jacobs M.N., Colacci A., Corvi R., Vaccari M., Aguila M.C., Corvaro M., Delrue N., Desaulniers D., Ertych N., Jacobs A., Luijten M., Madia F., Nishikawa A., Ogawa K., Ohmori K., Paparella M., Sharma A.K., Vasseur P. Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch. Toxicol. 2020;94:2899–2923. doi: 10.1007/s00204-020-02784-5. PubMed DOI PMC

Jauniaux E., Poston L., Burton G.J. Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum. Reprod. Update. 2006;12:747–755. doi: 10.1093/humupd/dml016.Placental-related. PubMed DOI PMC

Jornod F., Rugard M., Tamisier L., Coumoul X., Andersen H.R., Barouki R., Audouze K. AOP4EUpest: mapping of pesticides in adverse outcome pathways using a text mining tool. Bioinformatics. 2020;36:4379–4381. doi: 10.1093/bioinformatics/btaa545. PubMed DOI PMC

JRC Technical Guidance Document on Risk Assessment in. European Commission. 2003

Kauffmann H.M., Kamp H., Fuchs R., Chorley B.N., Deferme L., Ebbels T., Hackermüller J., Perdichizzi S., Poole A., Sauer U.G., Tollefsen K.E., Tralau T., Yauk C., van Ravenzwaay B. Framework for the quality assurance of ’omics technologies considering GLP requirements. Regul. Toxicol. Pharmacol. 2017;91:S27–S35. doi: 10.1016/j.yrtph.2017.10.007. PubMed DOI PMC

Kienzler A., Bopp S.K., van der Linden S., Berggren E., Worth A. Regulatory assessment of chemical mixtures: requirements, current approaches and future perspectives. Regul. Toxicol. Pharmacol. 2016;80:321–334. doi: 10.1016/j.yrtph.2016.05.020. PubMed DOI

Kleinstreuer N.C., Hoffmann S., Alépée N., Allen D., Ashikaga T., Casey W., Clouet E., Cluzel M., Desprez B., Gellatly N., Göbel C., Kern P.S., Klaric M., Kühnl J., Martinozzi-Teissier S., Mewes K., Miyazawa M., Strickland J., van Vliet E., Zang Q., Petersohn D. Non-animal methods to predict skin sensitization (II): an assessment of defined approaches. Crit. Rev. Toxicol. 2018;48:359–374. doi: 10.1080/10408444.2018.1429386. PubMed DOI PMC

Klose J., Tigges J., Masjosthusmann S., Schmuck K., Bendt F., Hübenthal U., Petzsch P., Köhrer K., Koch K., Fritsche E. TBBPA targets converging key events of human oligodendrocyte development resulting in two novel AOPs. ALTEX. 2021;38:215–234. doi: 10.14573/altex.2007201. PubMed DOI

Knapen D., Angrish M.M., Fortin M.C., Katsiadaki I., Leonard M., Margiotta-Casaluci L., Munn S., O'Brien J.M., Pollesch N., Smith L.C., Zhang X., Villeneuve D.L. Adverse outcome pathway networks I: development and applications. Environ. Toxicol. Chem. 2018;37:1723–1733. doi: 10.1002/etc.4125. PubMed DOI PMC

Knapen D., Stinckens E., Cavallin J.E., Ankley G.T., Holbech H., Villeneuve D.L., Vergauwen L. Toward an AOP network-based tiered testing strategy for the assessment of thyroid hormone disruption. Environ. Sci. Technol. 2020;54:8491–8499. doi: 10.1021/acs.est.9b07205. PubMed DOI PMC

Knebel C., Buhrke T., Süssmuth R., Lampen A., Marx-Stoelting P., Braeuning A. Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines. Arch. Toxicol. 2019;93:1311–1322. doi: 10.1007/s00204-019-02445-2. PubMed DOI

Kolter T., Sandhoff K. Sphingolipid metabolism diseases. Biochim. Biophys. Acta Biomembr. 2006;1758:2057–2079. doi: 10.1016/j.bbamem.2006.05.027. PubMed DOI

Kortenkamp A. Invited perspective : how relevant are mode-of-action considerations for the assessment and prediction of mixture. Effects ? 2022;130:10–11. PubMed PMC

Kovo M., Schreiber L., Bar J. Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb. Res. 2013;131:S18. doi: 10.1016/S0049-3848(13)70013-6. –S21. PubMed DOI

Krebs A., Waldmann T., Wilks M.F., van Vugt-Lussenburg B.M.A., van der Burg B., Terron A., Steger-Hartmann T., Ruegg J., Rovida C., Pedersen E., Pallocca G., Luijten M., Leite S.B., Kustermann S., Kamp H., Hoeng J., Hewitt P., Herzler M., Hengstler J.G., Heinonen T., Hartung T., Hardy B., Gantner F., Fritsche E., Fant K., Ezendam J., Exner T., Dunkern T., Dietrich D.R., Coecke S., Busquet F., Braeuning A., Bondarenko O., Bennekou S.H., Beilmann M., Leist M. Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. ALTEX. 2019;36:682–699. doi: 10.14573/altex.1909271. PubMed DOI

Krewski D., Andersen M.E., Tyshenko M.G., Krishnan K., Hartung T., Boekelheide K., Wambaugh J.F., Jones D., Whelan M., Thomas R., Yauk C., Barton-Maclaren T., Cote I. Archives of Toxicology. Springer Berlin Heidelberg; 2020. Toxicity testing in the 21st century: progress in the past decade and future perspectives. PubMed DOI

Kucheryavenko O., Vogl S., Marx-Stoelting P. 2020. Chapter 1. Endocrine Disruptor Effects on Estrogen, Androgen and Thyroid Pathways: Recent Advances on Screening and Assessment; pp. 1–24. DOI

Kuijper I.A., Yang H., Van De Water B., Beltman J.B. Unraveling cellular pathways contributing to drug-induced liver injury by dynamical modeling. Expet Opin. Drug Metabol. Toxicol. 2017;13:5–17. doi: 10.1080/17425255.2017.1234607. PubMed DOI

La Merrill M.A., Vandenberg L.N., Smith M.T., Goodson W., Browne P., Patisaul H.B., Guyton K.Z., Kortenkamp A., Cogliano V.J., Woodruff T.J., Rieswijk L., Sone H., Korach K.S., Gore A.C., Zeise L., Zoeller R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020;16:45–57. doi: 10.1038/s41574-019-0273-8. PubMed DOI PMC

Legradi J.B., Di Paolo C., Kraak M.H.S., van der Geest H.G., Schymanski E.L., Williams A.J., Dingemans M.M.L., Massei R., Brack W., Cousin X., Begout M.L., van der Oost R., Carion A., Suarez-Ulloa V., Silvestre F., Escher B.I., Engwall M., Nilén G., Keiter S.H., Pollet D., Waldmann P., Kienle C., Werner I., Haigis A.C., Knapen D., Vergauwen L., Spehr M., Schulz W., Busch W., Leuthold D., Scholz S., vom Berg C.M., Basu N., Murphy C.A., Lampert A., Kuckelkorn J., Grummt T., Hollert H. An ecotoxicological view on neurotoxicity assessment. Environ. Sci. Eur. 2018;30:1–34. doi: 10.1186/s12302-018-0173-x. PubMed DOI PMC

Lichtenstein D., Luckert C., Alarcan J., de Sousa G., Gioutlakis M., Katsanou E.S., Konstantinidou P., Machera K., Milani E.S., Peijnenburg A., Rahmani R., Rijkers D., Spyropoulou A., Stamou M., Stoopen G., Sturla S.J., Wollscheid B., Zucchini-Pascal N., Braeuning A., Lampen A. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food Chem. Toxicol. 2020;139 doi: 10.1016/j.fct.2020.111283. PubMed DOI

Luijten M., Rorije E., Sprong R.C., Van Der Ven L.T.M. Practical application of next generation risk assessment of chemicals for human health. Chem. Res. Toxicol. 2020;33:693–694. doi: 10.1021/acs.chemrestox.0c00074. PubMed DOI

Lumen A., McNally K., George N., Fisher J.W., Loizou G.D. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00107. PubMed DOI PMC

Lumsangkul C., Chiang H.I., Lo N.W., Fan Y.K., Ju J.C. Developmental toxicity of mycotoxin fumonisin B 1 in animal embryogenesis: an overview. Toxins. 2019;11:1–12. doi: 10.3390/toxins11020114. PubMed DOI PMC

Maertens A., Golden E., Luechtefeld T.H., Hoffmann S., Tsaioun K., Hartung T. Probabilistic risk assessment - the keystone for the future of toxicology. ALTEX. 2022;39:3–29. doi: 10.14573/altex.2201081. PubMed DOI PMC

Margina D., Nițulescu G., Ungurianu A., Mesnage R., Goumenou M., Sarigiannis D., Aschner M., Spandidos D., Renieri E., Hernandez A., Tsatsakis A. Overview of the effects of chemical mixtures with endocrine disrupting activity in the context of real-life risk simulation: an integrative approach (Review) World Acad. Sci. J. 2019;176:139–148. doi: 10.3892/wasj.2019.17. PubMed DOI PMC

Martens M., Evelo C.T., Willighagen E.L. Providing adverse outcome pathways from the AOP-Wiki in semantic web format to increase usability and accessibility of the content. Chem. 2021;16 doi: 10.26434/chemrxiv.13524191. PubMed DOI PMC

Matos Dos Santos C.E., Miranda R.G., de Oliveira D.P., Dorta D.J. Challenges and opportunities for integrating in silico models and adverse outcomes pathways to set and relate new biomarkers. Water (Switzerland) 2020;12:1–10. doi: 10.3390/w12123549. DOI

Matta K., Koual M., Ploteau S., Coumoul X., Audouze K., Bizec B., Le, Antignac, J.P. Cano-Sancho G. Associations between exposure to organochlorine chemicals and endometriosis: a systematic review of experimental studies and integration of epidemiological evidence. Environ. Health Perspect. 2021;129:1–22. doi: 10.1289/EHP8421. PubMed DOI PMC

Meek M.E.B., Boobis A.R., Crofton K.M., Heinemeyer G., Raaij M., Van, Vickers, C. Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul. Toxicol. Pharmacol. 2011;60:S1–S14. doi: 10.1016/j.yrtph.2011.03.010. PubMed DOI

Meek M.E., Boobis A., Cote I., Dellarco V., Fotakis G., Munn S., Seed J., Vickers C. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J. Appl. Toxicol. 2014;34:1–18. doi: 10.1002/jat.2949. PubMed DOI PMC

Meek M.E., Palermo C.M., Bachman A.N., North C.M., Lewis R.J. Mode of action human relevance (species concordance) framework: evolution of the Bradford Hill considerations and comparative analysis of weight of evidence. J. Appl. Toxicol. 2014;34:595–606. doi: 10.1002/jat.2984. PubMed DOI PMC

Missmer S.A., Suarez L., Felkner M., Wang E., Merrill A.H., Rothman K.J., Hendricks K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 2006;114:237–241. doi: 10.1289/ehp.8221. PubMed DOI PMC

Moermond C.T.A., Kase R., Korkaric M., Ågerstrand M. CRED: criteria for reporting and evaluating ecotoxicity data. Environ. Toxicol. Chem. 2016;35:1297–1309. doi: 10.1002/etc.3259. PubMed DOI

Mortensen H.M., Martens M., Senn J., Levey T., Evelo C.T., Willighagen E.L., Exner T. The AOP-DB RDF: applying FAIR principles to the semantic integration of AOP data using the research description framework. Front. Toxicol. 2022;4:1–6. doi: 10.3389/ftox.2022.803983. PubMed DOI PMC

Mustieles V., Fernández M.F. Bisphenol A shapes children's brain and behavior: towards an integrated neurotoxicity assessment including human data. Environ. Health. 2020;19:66. doi: 10.1186/s12940-020-00620-y. PubMed DOI PMC

Mustieles V., D'Cruz S.C., Couderq S., Rodríguez-Carrillo A., Fini J.B., Hofer T., Steffensen I.L., Dirven H., Barouki R., Olea N., Fernández M.F., David A. Bisphenol A and its analogues: a comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environ. Int. 2020;144 doi: 10.1016/j.envint.2020.105811. PubMed DOI

Mustieles V., Rodríguez-Carrillo A., Vela-Soria F., D'Cruz S.C., David A., Smagulova F., Mundo-López A., Olivas-Martínez A., Reina-Pérez I., Olea N., Freire C., Arrebola J.P., Fernández M.F. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. Sci. Total Environ. 2022;803 doi: 10.1016/j.scitotenv.2021.150014. PubMed DOI

Negi C.K., Bajard L., Kohoutek J., Blaha L. An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis. Environ. Pollut. 2021;289 doi: 10.1016/j.envpol.2021.117855. PubMed DOI

Noyes P.D., Friedman K.P., Browne P., Haselman J.T., Gilbert M.E., Hornung M.W., Barone S., Crofton K.M., Laws S.C., Stoker T.E., Simmons S.O., Tietge J.E., Degitz S.J. Evaluating chemicals for thyroid disruption: opportunities and challenges with in vitro testing and adverse outcome pathway approaches. Environ. Health Perspect. 2019;127 doi: 10.1289/EHP5297. PubMed DOI PMC

NRC . 2006. Human Biomonitoring for Environmental Chemicals, Human Biomonitoring for Environmental Chemicals. DOI

Ochsner S.A., Abraham D., Martin K., Ding W., McOwiti A., Kankanamge W., Wang Z., Andreano K., Hamilton R.A., Chen Y., Hamilton A., Gantner M.L., Dehart M., Qu S., Hilsenbeck S.G., Becnel L.B., Bridges D., Ma’ayan A., Huss J.M., Stossi F., Foulds C.E., Kralli A., McDonnell D.P., McKenna N.J. The Signaling Pathways Project, an integrated ‘omics knowledgebase for mammalian cellular signaling pathways. Sci. Data. 2019;6:1–21. doi: 10.1038/s41597-019-0193-4. PubMed DOI PMC

OECD OECD guidance on the reporting of defined approaches and individual information sources to be used within Integrated Approaches to Testing and Assessment (IATA) for skin sensitization. Toxicol. Lett. 2016;258:S2. doi: 10.1016/j.toxlet.2016.06.027. DOI

OECD . 2017. Revised Guidance Document on Developing and Assessing Adverse Outcome Pathways.

OECD . OECD Publishing; 2018. Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption.

OECD CASE STUDY ON THE USE OF INTEGRATED APPROACHES FOR TESTING AND ASSESSMENT TO INFORM READ-ACROSS OF p_ALKYLPHENOLS. REPEATED-DOSE TOXICITY. 2018;39:1–106.

OECD . vol. 28. ENV/JM/MONO; 2019. (CASE STUDY on the USE of an INTEGRATED APPROACH to TESTING and ASSESSMENT for ESTROGEN RECEPTOR ACTIVE CHEMICALS - Series on Testing and Assessment No. 309).

OECD . 2020. CASE STUDY ON THE USE OF INTEGRATED APPROACHES TO TESTING AND ASSESSMENT FOR IDENTIFICATION AND CHARACTERISATION OF PARKINSONIAN HAZARD LIABILITY OF DEGUELIN BY AN AOP-BASED TESTING AND READ ACROSS 1–57.

OECD . 2020. CASE STUDY ON THE USE OF INTEGRATED APPROACHES TO TESTING AND ASSESSMENT FOR PREDICTION OF A 90 DAY REPEATED DOSE TOXICITY STUDY (OECD 408) FOR 2-ETHYLBUTYRIC ACID USING A READ-ACROSS APPROACH FROM OTHER BRANCHED CARBOXYLIC ACIDS.

OECD Guidance document for the scientific review of adverse outcome pathways. Series on Testing and Assessment No. 344. 2021

OECD AOP Developers’ Handbook supplement to the Guidance Document for 7 developing and assessing Adverse Outcome Pathways (AOPs) OECD Series on Testing and Assessment. 2022

O'Brien J.M., Yauk C.L. Introducing AOP reports: collaborative review and publication of adverse outcome pathways. Environ. Mol. Mutagen. 2022;1–2 doi: 10.1002/em.22481. PubMed DOI

Paini A., Campia I., Cronin M.T.D., Asturiol D., Ceriani L., Exner T.E., Gao W., Gomes C., Kruisselbrink J., Martens M., Meek M.E.B., Pamies D., Pletz J., Scholz S., Schüttler A., Spînu N., Villeneuve D.L., Wittwehr C., Worth A., Luijten M. Towards a qAOP framework for predictive toxicology - linking data to decisions. Comput. Toxicol. 2022;21 doi: 10.1016/j.comtox.2021.100195. PubMed DOI PMC

Papaioannou N., Distel E., de Oliveira E., Gabriel C., Frydas I.S., Anesti O., Attignon E.A., Odena A., Díaz R., Aggerbeck, Μ. Horvat M., Barouki R., Karakitsios S., Sarigiannis D.A. Multi-omics analysis reveals that co-exposure to phthalates and metals disturbs urea cycle and choline metabolism. Environ. Res. 2021;192 doi: 10.1016/j.envres.2020.110041. PubMed DOI

Perkins E.J., Ashauer R., Burgoon L., Conolly R., Landesmann B., Mackay C., Murphy C.A., Pollesch N., Wheeler J.R., Zupanic A., Scholz S. Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment. Environ. Toxicol. Chem. 2019 doi: 10.1002/etc.4505. PubMed DOI PMC

Pistollato F., Madia F., Corvi R., Munn S., Grignard E., Paini A., Worth A., Bal-Price A., Prieto P., Casati S., Berggren E., Bopp S.K., Zuang V. Archives of Toxicology. Springer Berlin Heidelberg; 2021. Current EU regulatory requirements for the assessment of chemicals and cosmetic products: challenges and opportunities for introducing new approach methodologies. PubMed DOI PMC

Punt A., Bouwmeester H., Blaauboer B.J., Coecke S., Hakkert B., Hendriks D.F.G., Jennings P., Kramer N.I., Neuhoff S., Masereeuw R., Paini A., Peijnenburg A.A.C.M., Rooseboom M., Shuler M.L., Sorrell I., Spee B., Strikwold M., van der Meer A.D., van der Zande M., Vinken M., Yang H., Bos P.M.J., Heringa M.B. New approach methodologies (NAMs) for human-relevant biokinetics predictions: meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. ALTEX. 2020;37:607–622. doi: 10.14573/altex.2003242. PubMed DOI

Riley R.T., Torres O., Matute J., Gregory S.G., Ashley-Koch A.E., Showker J.L., Mitchell T., Voss K.A., Maddox J.R., Gelineau-van Waes J.B. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol. Nutr. Food Res. 2015;59:2209–2224. doi: 10.1002/mnfr.201500499. PubMed DOI PMC

Ritchie S. 2022. The Big Idea: Should We Get Rid of the Scientific Paper? Guard.

Rodríguez-Carrillo A., Dćruz S.C., Mustieles V., Suárez B., Smagulova F., David A., Peinado F., Artacho-Cordón F., López L.C., Arrebola J.P., Olea N., Fernández M.F., Freire C. Exposure to non-persistent pesticides, BDNF, and behavioral function in adolescent males: exploring a novel effect biomarker approach. Environ. Res. 2022;211 doi: 10.1016/j.envres.2022.113115. PubMed DOI

Rodríguez-Carrillo A., Mustieles V., D'Cruz S.C., Legoff L., Gil F., Olmedo P., Reina-Pérez I., Mundo A., Molina M., Smagulova F., David A., Freire C., Fernández M.F. Exploring the relationship between metal exposure, BDNF, and behavior in adolescent males. Int. J. Hyg Environ. Health. 2022;239 doi: 10.1016/j.ijheh.2021.113877. PubMed DOI

Rooney A.A., Cooper G.S., Jahnke G.D., Lam J., Morgan R.L., Boyles A.L., Ratcliffe J.M., Kraft A.D., Schünemann H.J., Schwingl P., Walker T.D., Thayer K.A., Lunn R.M. How credible are the study results? Evaluating and applying internal validity tools to literature-based assessments of environmental health hazards. Environ. Int. 92–. 2016;93:617–629. doi: 10.1016/j.envint.2016.01.005. PubMed DOI PMC

Roth N., Zilliacus J., Beronius A. Development of the SciRAP approach for evaluating the reliability and relevance of in vitro toxicity data. Front. Toxicol. 2021;3:1–13. doi: 10.3389/ftox.2021.746430. PubMed DOI PMC

Rotter S., Beronius A., Boobis A.R., Hanberg A., van Klaveren J., Luijten M., Machera K., Nikolopoulou D., van der Voet H., Zilliacus J., Solecki R. Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution. Crit. Rev. Toxicol. 2018;48:796–814. doi: 10.1080/10408444.2018.1541964. PubMed DOI

Rugard M., Coumoul X., Carvaillo J.-C., Barouki R., Audouze K. Deciphering adverse outcome pathway network linked to Bisphenol F using text mining and systems toxicology approaches. Toxicol. Sci. 2019;1–9 doi: 10.1093/toxsci/kfz214. PubMed DOI PMC

Sadler T.W., Merrill A.H., Stevens V.L., Sullards M.C., Wang E., Wang P. Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratology. 2002;66:169–176. doi: 10.1002/tera.10089. PubMed DOI

Sarigiannis D.A., Karakitsios S.P., Handakas E., Simou K., Solomou E., Gotti A. Integrated exposure and risk characterization of bisphenol-A in Europe. Food Chem. Toxicol. 2016;98:134–147. doi: 10.1016/j.fct.2016.10.017. PubMed DOI

Sarigiannis D.A., Papaioannou N., Handakas E., Anesti O., Polanska K., Hanke W., Salifoglou A., Gabriel C., Karakitsios S. Neurodevelopmental exposome: the effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. Environ. Res. 2021;197 doi: 10.1016/j.envres.2021.110949. PubMed DOI

Sauer U.G., Barter R.A., Becker R.A., Benfenati E., Berggren E., Hubesch B., Hollnagel H.M., Inawaka K., Keene A.M., Mayer P., Plotzke K., Skoglund R., Albert O. 21st century approaches for evaluating exposures, biological activity, and risks of complex substances: workshop highlights. Regul. Toxicol. Pharmacol. 2020;111 doi: 10.1016/j.yrtph.2020.104583. PubMed DOI

Schmid S., Song Y., Tollefsen K.E. AOP report: inhibition of chitin synthase 1 leading to increased mortality in arthropods. Environ. Toxicol. Chem. 2021;40:2112–2120. doi: 10.1002/etc.5058. PubMed DOI

Shimonovich M., Pearce A., Thomson H., Keyes K., Katikireddi S.V. Assessing causality in epidemiology: revisiting Bradford Hill to incorporate developments in causal thinking. Eur. J. Epidemiol. 2021;36:873–887. doi: 10.1007/s10654-020-00703-7. PubMed DOI PMC

Sillé F.C.M., Karakitsios S., Kleensang A., Koehler K., Maertens A., Miller G.W., Prasse C., Quiros-Alcala L., Ramachandran G., Rappaport S.M., Rule A.M., Sarigiannis D., Smirnova L., Hartung T. The exposome - a new approach for risk assessment. ALTEX. 2020;37:3–23. doi: 10.14573/altex.2001051. PubMed DOI

Song Y., Villeneuve D.L. AOP report: uncoupling of oxidative phosphorylation leading to growth inhibition via decreased cell proliferation. Environ. Toxicol. Chem. 2021;40:2959–2967. doi: 10.1002/etc.5197. PubMed DOI PMC

Spînu N., Cronin M.T.D., Lao J., Bal-Price A., Campia I., Enoch S.J., Madden J.C., Mora Lagares L., Novič M., Pamies D., Scholz S., Villeneuve D.L., Worth A.P. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Comput. Toxicol. 2022;21:3. doi: 10.1016/j.comtox.2021.100206. PubMed DOI PMC

Svingen T., Villeneuve D.L., Knapen D., Panagiotou E.M., Draskau M.K., Damdimopoulou P., O'Brien J.M. A pragmatic approach to adverse outcome pathway development and evaluation. Toxicol. Sci. 2021;184:183–190. doi: 10.1093/toxsci/kfab113. PubMed DOI PMC

Tan Y.M., Leonard J.A., Edwards S., Teeguarden J., Paini A., Egeghy P. Aggregate exposure pathways in support of risk assessment. Curr. Opin. Toxicol. 2018;9:8–13. doi: 10.1016/j.cotox.2018.03.006. PubMed DOI PMC

Tanabe S., Beaton D., Chauhan V., Choi I., Danielsen P.H., Delrue N., Esterhuizen M., Filipovska J., FitzGerald R., Fritsche E., Gant T., Garcia-Reyero N., Helm J., Huliganga E., Jacobsen N., Kay J.E., Kim Y.J., Klose J., La Rocca C., Luettich K., Mally A., O'Brien J., Poulsen S.S., Rudel R.A., Sovadinova I., Tollefsen K.E., Vogel U., Yepiskoposyan H., Yauk C. Report of the 1st and 2nd Mystery of reactive oxygen species conferences. ALTEX. 2022;39:336–338. doi: 10.14573/altex.2203011. DOI

Tanabe S., O’Brien J., Tollefsen K.E., Kim Y., Chauhan V., Yauk C., Huliganga E., Rudel R.A., Kay J.E., Helm J.S., Beaton D., Filipovska J., Sovadinova I., Garcia-Reyero N., Mally A., Poulsen S.S., Delrue N., Fritsche E., Luettich K., La Rocca C., Yepiskoposyan H., Klose J., Danielsen P.H., Esterhuizen M., Jacobsen N.R., Vogel U., Gant T.W., Choi I., FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. Front. Toxicol. 2022;4:887135. doi: 10.3389/ftox.2022.887135. PubMed DOI PMC

Terron A., Bal-Price A., Paini A., Monnet-Tschudi F., Bennekou S.H., Angeli K., Fritsche E., Mantovani A., Viviani B., Leist M., Schildknecht S. Archives of Toxicology. Springer Berlin Heidelberg; 2018. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. PubMed DOI PMC

Thomas R.S., Paules R.S., Simeonov A., Fitzpatrick S.C., Crofton K.M., Casey W.M., Mendrick D.L. The US Federal Tox 21 Program: a strategic and operational plan for continued leadership. ALTEX. 2018;35:163–168. doi: 10.14573/altex.1803011. PubMed DOI PMC

Tollefsen K.E., Scholz S., Cronin M.T., Edwards S.W., de Knecht J., Crofton K., Garcia-Reyero N., Hartung T., Worth A., Patlewicz G. Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA) Regul. Toxicol. Pharmacol. 2014;70:629–640. doi: 10.1016/j.yrtph.2014.09.009. PubMed DOI

Toyota K., Watanabe H., Hirano M., Abe R., Miyakawa H., Song Y., Sato T., Miyagawa S., Tollefsen K.E., Yamamoto H., Tatarazako N., Iguchi T. Juvenile hormone synthesis and signaling disruption triggering male offspring induction and population decline in cladocerans (water flea): review and adverse outcome pathway development. Aquat. Toxicol. 2022;243 doi: 10.1016/j.aquatox.2021.106058. PubMed DOI

UNEP . World Heal; Organ: 1999. Chemical Risk Assessment - Human Risk Assessment, Environmental Risk Assessment and Ecological Risk Assessment.

van den Brand A.D., Bajard L., Steffensen I., Brantsæter A.L., Dirven H.A.A.M., Louisse J., Peijnenburg A., Ndaw S., Mantovani A., De Santis B., Mengelers M.J.B. Providing biological plausibility for exposure–health relationships for the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1) in humans using the AOP framework. Toxins. 2022;14:279. doi: 10.3390/toxins14040279. PubMed DOI PMC

Van Der Ven L.T.M., Rorije E., Sprong R.C., Zink D., Derr R., Hendriks G., Loo L.H., Luijten M. A case study with triazole fungicides to explore practical application of next-generation hazard assessment methods for human health. Chem. Res. Toxicol. 2020;33:834–848. doi: 10.1021/acs.chemrestox.9b00484. PubMed DOI

van der Ven L.T.M., van Ommeren P., Zwart E.P., Gremmer E.R., Hodemaekers H.M., Heusinkveld H.J., van Klaveren J.D., Slob W., Rorije E. Dose addition in the induction of craniofacial malformations in zebrafish embryos exposed to a complex mixture of food relevant chemicals with dissimilar modes of action. Prep. 2022;130:1–15. PubMed PMC

Vinken M. The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology. 2013;312:158–165. doi: 10.1016/j.tox.2013.08.011. PubMed DOI

Vinken M., Benfenati E., Busquet F., Castell J., Clevert D.A., de Kok T.M., Dirven H., Fritsche E., Geris L., Gozalbes R., Hartung T., Jennen D., Jover R., Kandarova H., Kramer N., Krul C., Luechtefeld T., Masereeuw R., Roggen E., Schaller S., Vanhaecke T., Yang C., Piersma A.H. Safer chemicals using less animals: kick-off of the European ONTOX project. Toxicology. 2021;458:1–7. doi: 10.1016/j.tox.2021.152846. PubMed DOI

Volz D.C., Belanger S., Embry M., Padilla S., Sanderson H., Schirmer K., Scholz S., Villeneuve D. Adverse outcome pathways during early fish development: a conceptual framework for identification of chemical screening and prioritization strategies. Toxicol. Sci. 2011;123:349–358. doi: 10.1093/toxsci/kfr185. PubMed DOI

Vrijenhoek N.G., Wehr M.M., Kunnen S.J., Wijaya L.S., Callegaro G., Moné M.J., Escher S.E., Van de Water B. Application of high-throughput transcriptomics for mechanism-based biological read-across of short-chain carboxylic acid analogues of valproic acid. ALTEX. 2022;39 doi: 10.14573/altex.2107261. PubMed DOI

Whaley P., Edwards S.W., Kraft A., Nyhan K., Shapiro A., Watford S., Wattam S., Wolffe T., Angrish M. Knowledge organization systems for systematic chemical assessments. Environ. Health Perspect. 2020;128:1–11. doi: 10.1289/EHP6994. PubMed DOI PMC

WHO . 2021. WHO Human Health Risk Assessment Toolkit CHEMICAL HAZARDS.

WHO. UNEP . WHO Press; 2012. State of the Science of Endocrine Disrupting Chemicals. PubMed

Willett C. Alternatives to Animal Testing. Springer Singapore; Singapore: 2019. The use of adverse outcome pathways (AOPs) to support chemical safety decisions within the context of integrated approaches to testing and assessment (IATA) pp. 83–90. DOI

Wise A., Parham F., Axelrad D.A., Guyton K.Z., Portier C., Zeise L., Zoeller R.T., Woodruff T.J. Upstream adverse effects in risk assessment: a model of polychlorinated biphenyls, thyroid hormone disruption and neurological outcomes in humans. Environ. Res. 2012;117:90–99. doi: 10.1016/j.envres.2012.05.013. PubMed DOI

Wittwehr C., Aladjov H., Ankley G., Byrne H.J., de Knecht J., Heinzle E., Klambauer G., Landesmann B., Luijten M., MacKay C., Maxwell G., Meek M.E.B., Paini A., Perkins E., Sobanski T., Villeneuve D., Waters K.M., Whelan M. How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology. Toxicol. Sci. 2017;155:326–336. doi: 10.1093/toxsci/kfw207. PubMed DOI PMC

Zgheib E., Gao W., Limonciel A., Aladjov H., Yang H., Tebby C., Gayraud G., Jennings P., Sachana M., Beltman J.B., Bois F.Y. Application of three approaches for quantitative AOP development to renal toxicity. Comput. Toxicol. 2019;11:1–13. doi: 10.1016/j.comtox.2019.02.001. DOI

Zuang V., Dura A., et al. Publications Office of the European Union; 2022. Non-animal methods in science and regulation – EURL ECVAM status report 2021, EUR 30960 EN.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding

. 2024 Apr 30 ; 58 (17) : 7256-7269. [epub] 20240419

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...