The Exposome and Toxicology: A Win-Win Collaboration
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
U2C ES030163
NIEHS NIH HHS - United States
PubMed
34878125
PubMed Central
PMC9019839
DOI
10.1093/toxsci/kfab149
PII: 6456323
Knihovny.cz E-zdroje
- Klíčová slova
- adverse outcome pathways, chemical toxicity, epigenetics, mixtures, multiple stress,
- MeSH
- ekosystém MeSH
- expozom * MeSH
- hodnocení rizik MeSH
- lidé MeSH
- těhotenství MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Enve 10 Thessaloniki 55133 Greece
Faculty of Sports Studies Masaryk University Brno 62500 Czech Republic
Inserm UMR S 1124 Université de Paris T3S Paris F 75006 France
RECETOX Faculty of Science Masaryk University Brno 60200 Czech Republic
Service de Biochimie métabolomique et protéomique Hôpital Necker enfants malades AP HP Paris France
Zobrazit více v PubMed
Aguayo-Orozco A., Audouze K., Siggaard T., Barouki R., Brunak S., Taboureau O. (2019). sAOP: Linking chemical stressors to adverse outcomes pathway networks. Bioinforma. Oxf. Engl 35, 5391–5392. PubMed PMC
Ashauer R., O'Connor I., Escher B. I. (2017). Toxic mixtures in time—The sequence makes the poison. Environ. Sci. Technol. 51, 3084–3092. PubMed
Asimina S., Chapizanis D., Karakitsios S., Kontoroupis P., Asimakopoulos D. N., Maggos T., Sarigiannis D. (2018). Assessing and enhancing the utility of low-cost activity and location sensors for exposure studies. Environ. Monit. Assess. 190, 155. PubMed
Athersuch T. J., Keun H. C. (2015). Metabolic profiling in human exposome studies. Mutagenesis 30, 755–762. PubMed
Bajard L., Melymuk L., Blaha L. (2019). Prioritization of hazards of novel flame retardants using the mechanistic toxicology information from ToxCast and adverse outcome pathways. Environ. Sci. Eur. 31, Article number 14.
Barouki R. (2010). Linking long-term toxicity of xeno-chemicals with short-term biological adaptation. Biochimie 92, 1222–1226. PubMed
Barouki R., Audouze K., Coumoul X., Demenais F., Gauguier D. (2018). Integration of the human exposome with the human genome to advance medicine. Biochimie 152, 155–158. PubMed
Barouki R., Gluckman P. D., Grandjean P., Hanson M., Heindel J. J. (2012). Developmental origins of non-communicable disease: Implications for research and public health. Environ. Health Glob. Access Sci. Source 11, 42. PubMed PMC
Barouki R., Melén E., Herceg Z., Beckers J., Chen J., Karagas M., Puga A., Xia Y., Chadwick L., Yan W., et al. (2018). Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ. Int. 114, 77–86. PubMed PMC
Birgersson L., Borbély G., Caporale N., Germain P.-L., Leemans M., Rendel F., D’Agostino G. A., Bressan R. B., Cavallo F., Chorev N. E., et al. (2017). From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Mol. Biol. PREPRINT. PubMed
Bopp S. K., Barouki R., Brack W., Dalla Costa S., Dorne J.-L. C. M., Drakvik P. E., Faust M., Karjalainen T. K., Kephalopoulos S., van Klaveren J., et al. (2018). Current EU research activities on combined exposure to multiple chemicals. Environ. Int. 120, 544–562. PubMed PMC
Bouvier E., Brouillard F., Molet J., Claverie D., Cabungcal J.-H., Cresto N., Doligez N., Rivat C., Do K. Q., Bernard C., et al. (2017). Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol. Psychiatry 22, 1701–1713. PubMed
Buck Louis G. M., Smarr M. M., Patel C. J. (2017). The exposome research paradigm: An opportunity to understand the environmental basis for human health and disease. Curr. Environ. Health Rep. 4, 89–98. PubMed PMC
Calistri P., Iannetti S., L. Danzetta M., Narcisi V., Cito F., Di Sabatino D., Bruno R., Sauro F., Atzeni M., Carvelli A., et al. (2013). The components of ‘one world - one health’ approach. Transbound. Emerg. Dis. 60, 4–13. PubMed
Carvaillo J.-C., Barouki R., Coumoul X., Audouze K. (2019). Linking bisphenol S to adverse outcome pathways using a combined text mining and systems biology approach. Environ. Health Perspect. 127, 47005. PubMed PMC
Chung F. F.-L., Herceg Z. (2020). The promises and challenges of toxico-epigenomics: Environmental chemicals and their impacts on the epigenome. Environ. Health Perspect. 128, 15001. PubMed PMC
Chung M. K., Rappaport S. M., Wheelock C. E., Nguyen V. K., van der Meer T. P., Miller G. W., Vermeulen R., Patel C. J. (2021). Utilizing a biology-driven approach to map the exposome in health and disease: An essential investment to drive the next generation of environmental discovery. Environ. Health Perspect. 129, 85001. PubMed PMC
Committee on Human and Environmental Exposure Science in the 21st Century, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council. (2012). Exposure Science in the 21st Century: A Vision and a Strategy. National Academies Press (US; ), Washington, DC. PubMed
DeMarini D. M. (2004). Genotoxicity of tobacco smoke and tobacco smoke condensate: A review. Mutat. Res. 567, 447–474. PubMed
Denison M. S., Nagy S. R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309–334. PubMed
Dennis K. K., Auerbach S. S., Balshaw D. M., Cui Y., Fallin M. D., Smith M. T., Spira A., Sumner S., Miller G. W. (2016). The importance of the biological impact of exposure to the concept of the exposome. Environ. Health Perspect. 124, 1504–1510. PubMed PMC
Drakvik E., Altenburger R., Aoki Y., Backhaus T., Bahadori T., Barouki R., Brack W., Cronin M. T. D., Demeneix B., Hougaard Bennekou S., et al. (2020). Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 134, 105267. PubMed PMC
Duval C., Teixeira-Clerc F., Leblanc A. F., Touch S., Emond C., Guerre-Millo M., Lotersztajn S., Barouki R., Aggerbeck M., Coumoul X. (2017). Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model. Environ. Health Perspect. 125, 428–436. PubMed PMC
Escher B. I., Hackermüller J., Polte T., Scholz S., Aigner A., Altenburger R., Böhme A., Bopp S. K., Brack W., Busch W., et al. (2017). From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ. Int. 99, 97–106. PubMed PMC
Escher B. I., Stapleton H. M., Schymanski E. L. (2020). Tracking complex mixtures of chemicals in our changing environment. Science 367, 388–392. PubMed PMC
Francis G. A., Fayard E., Picard F., Auwerx J. (2003). Nuclear receptors and the control of metabolism. Annu. Rev. Physiol. 65, 261–311. PubMed
Fuller C. H., Feeser K. R., Sarnat J. A., O'Neill M. S. (2017). Air pollution, cardiovascular endpoints and susceptibility by stress and material resources: A systematic review of the evidence. Environ. Health 16, 58. PubMed PMC
Gao P. (2021). The exposome in the era of one health. Environ. Sci. Technol. 55, 2790–2799. PubMed
Garí M., Grimalt J. O., Torrent M., Sunyer J. (2013). Influence of socio-demographic and diet determinants on the levels of mercury in preschool children from a Mediterranean island. Environ. Pollut. 182, 291–298. PubMed
González-Bosch C., Boorman E., Zunszain P. A., Mann G. E. (2021). Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol. 47, 102165. PubMed PMC
Goodchild C. G., Simpson A. M., Minghetti M., DuRant S. E. (2019). Bioenergetics-adverse outcome pathway: Linking organismal and suborganismal energetic endpoints to adverse outcomes. Environ. Toxicol. Chem. 38, 27–45. PubMed
Grandjean P., Barouki R., Bellinger D. C., Casteleyn L., Chadwick L. H., Cordier S., Etzel R. A., Gray K. A., Ha E.-H., Junien C., et al. (2015). Life-long implications of developmental exposure to environmental stressors: New perspectives. Endocrinology 156, 3408–3415. PubMed PMC
Hajat A., MacLehose R. F., Rosofsky A., Walker K. D., Clougherty J. E. (2021). Confounding by socioeconomic status in epidemiological studies of air pollution and health: Challenges and opportunities. Environ. Health Perspect. 129, 65001. PubMed PMC
Hanson M. A., Skinner M. K. (2016). Developmental origins of epigenetic transgenerational inheritance. Environ. Epigenetics 2, dvw002. PubMed PMC
Hartung T. (2009). Toxicology for the twenty-first century. Nature 460, 208–212. PubMed
He Y., Lakhani C. M., Manrai A. K., Patel C. J. (2019). Poly-exposure and poly-genomic scores implicate prominent roles of non-genetic and demographic factors in four common diseases in the UK. Bioinformatics. PREPRINT.
He Y., Lakhani C. M., Rasooly D., Manrai A. K., Tzoulaki I., Patel C. J. (2021). Comparisons of polyexposure, polygenic, and clinical risk scores in risk prediction of type 2 diabetes. Diabetes Care 44, 935–943. PubMed PMC
Hines D. E., Edwards S. W., Conolly R. B., Jarabek A. M. (2018). A case study application of the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks to facilitate the integration of human health and ecological end points for cumulative risk assessment (CRA). Environ. Sci. Technol. 52, 839–849. PubMed PMC
Hommen U., Forbes V., Grimm V., Preuss T. G., Thorbek P., Ducrot V. (2016). How to use mechanistic effect models in environmental risk assessment of pesticides: Case studies and recommendations from the SETAC workshop MODELINK: MODELINK workshop summary. Integr. Environ. Assess. Manage. 12, 21–31. PubMed
Hooper M. J., Ankley G. T., Cristol D. A., Maryoung L. A., Noyes P. D., Pinkerton K. E. (2013). Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ. Toxicol. Chem. 32, 32–48. PubMed PMC
Joffin N., Noirez P., Antignac J.-P., Kim M.-J., Marchand P., Falabregue M., Le Bizec B., Forest C., Emond C., Barouki R., et al. (2018). Release and toxicity of adipose tissue-stored TCDD: Direct evidence from a xenografted fat model. Environ. Int. 121, 1113–1120. PubMed
Jornod F., Jaylet T., Blaha L., Sarigiannis D., Tamisier L., Audouze K. (2021). AOP-helpFinder webserver: A tool for comprehensive analysis of the literature to support adverse outcome pathways development. Bioinforma. Oxf. Engl btab750. 10.1093/bioinformatics/btab750. Accessed May 28, 2020. PubMed DOI PMC
Jornod F., Rugard M., Tamisier L., Coumoul X., Andersen H. R., Barouki R., Audouze K. (2020). AOP4EUpest: Mapping of pesticides in adverse outcome pathways using a text mining tool. Bioinformatics 36, 4379–4381. PubMed PMC
Kochmanski J., Marchlewicz E. H., Savidge M., Montrose L., Faulk C., Dolinoy D. C. (2017). Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice. Reprod. Toxicol. Elmsford N. 68, 154–163. PubMed PMC
Kodama S., Koike C., Negishi M., Yamamoto Y. (2004). Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol. Cell. Biol. 24, 7931–7940. PubMed PMC
Kongsbak K., Hadrup N., Audouze K., Vinggaard A. M. (2014). Applicability of computational systems biology in toxicology. Basic Clin. Pharmacol. Toxicol. 115, 45–49. PubMed
Konno Y., Negishi M., Kodama S. (2008). The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab. Pharmacokinet. 23, 8–13. PubMed
Kramer V. J., Etterson M. A., Hecker M., Murphy C. A., Roesijadi G., Spade D. J., Spromberg J. A., Wang M., Ankley G. T. (2011). Adverse outcome pathways and ecological risk assessment: Bridging to population-level effects. Environ. Toxicol. Chem. 30, 64–76. PubMed
Krewski D., Andersen M. E., Tyshenko M. G., Krishnan K., Hartung T., Boekelheide K., Wambaugh J. F., Jones D., Whelan M., Thomas R., et al. (2020). Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Arch. Toxicol. 94, 1–58. PubMed
La Merrill M., Emond C., Kim M. J., Antignac J.-P., Le Bizec B., Clément K., Birnbaum L. S., Barouki R. (2013). Toxicological function of adipose tissue: Focus on persistent organic pollutants. Environ. Health Perspect. 121, 162–169. PubMed PMC
Leist M., Ghallab A., Graepel R., Marchan R., Hassan R., Bennekou S. H., Limonciel A., Vinken M., Schildknecht S., Waldmann T., et al. (2017). Adverse outcome pathways: Opportunities, limitations and open questions. Arch. Toxicol. 91, 3477–3505. PubMed
Li N., Friedrich R., Maesano C. N., Medda E., Brescianini S., Stazi M. A., Sabel C. E., Sarigiannis D., Annesi-Maesano I. (2019). Lifelong exposure to multiple stressors through different environmental pathways for European populations. Environ. Res. 179, 108744. PubMed
Liu J., Lahousse L., Nivard M. G., Bot M., Chen L., van Klinken J. B., Thesing C. S., Beekman M., van den Akker E. B., Slieker R. C., et al. (2020). Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug–metabolite atlas. Nat. Med. 26, 110–117. PubMed
Liu Y., Chen F., Odle J., Lin X., Zhu H., Shi H., Hou Y., Yin J. (2013). Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge. J. Nutr. 143, 1331–1339. PubMed
Loh M., Sarigiannis D., Gotti A., Karakitsios S., Pronk A., Kuijpers E., Annesi-Maesano I., Baiz N., Madureira J., Oliveira Fernandes E., et al. (2017). How sensors might help define the external exposome. Int. J. Environ. Res. Public. Health 14, 434. PubMed PMC
Mach M., Grubbs R. D., Price W. A., Nagaoka M., Dubovický M., Lucot J. B. (2008). Delayed behavioral and endocrine effects of sarin and stress exposure in mice. J. Appl. Toxicol. 28, 132–139. PubMed
Manrai A. K., Cui Y., Bushel P. R., Hall M., Karakitsios S., Mattingly C. J., Ritchie M., Schmitt C., Sarigiannis D. A., Thomas D. C., et al. (2017). Informatics and data analytics to support exposome-based discovery for public health. Annu. Rev. Public Health 38, 279–294. PubMed PMC
Martin O., Scholze M., Ermler S., McPhie J., Bopp S. K., Kienzler A., Parissis N., Kortenkamp A. (2021). Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environ. Int. 146, 106206. PubMed
McGowan J. A. (1996). Bone: Target and source of environmental pollutant exposure. Otolaryngol. Head Neck Surg. 114, 220–223. PubMed
McHale C. M., Osborne G., Morello-Frosch R., Salmon A. G., Sandy M. S., Solomon G., Zhang L., Smith M. T., Zeise L. (2018). Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. Mutat. Res. 775, 11–20. PubMed PMC
Miller G. W., Jones D. P. (2014). The nature of nurture: Refining the definition of the exposome. Toxicol. Sci. 137, 1–2. PubMed PMC
Murray M. (2006). Altered CYP expression and function in response to dietary factors: Potential roles in disease pathogenesis. Curr. Drug Metab. 7, 67–81. PubMed
National Research Council (U.S.). (Ed.) (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. National Academies Press, Washington, DC. PubMed
Naville D., Labaronne E., Vega N., Pinteur C., Canet-Soulas E., Vidal H., Le Magueresse-Battistoni B. (2015). Metabolic outcome of female mice exposed to a mixture of low-dose pollutants in a diet-induced obesity model. PLoS One 10, e0124015. PubMed PMC
Niedzwiecki M. M., Walker D. I., Vermeulen R., Chadeau-Hyam M., Jones D. P., Miller G. W. (2019). The exposome: Molecules to populations. Annu. Rev. Pharmacol. Toxicol. 59, 107–127. PubMed
Pallotta M. T., Fallarino F., Matino D., Macchiarulo A., Orabona C. (2014). AhR-mediated, non-genomic modulation of IDO1 function. Front. Immunol. 5, 497. PubMed PMC
Papaioannou N., Distel E., de Oliveira E., Gabriel C., Frydas I. S., Anesti O., Attignon E. A., Odena A., Díaz R., Aggerbeck Μ., et al. (2021). Multi-omics analysis reveals that co-exposure to phthalates and metals disturbs urea cycle and choline metabolism. Environ. Res. 192, 110041. PubMed
Pedro L., Rudewicz P. J. (2020). Analysis of live single cells by confocal microscopy and high-resolution mass spectrometry to study drug uptake, metabolism, and drug-induced phospholipidosis. Anal. Chem. 92, 16005–16015. PubMed
Perkins E. J., Ashauer R., Burgoon L., Conolly R., Landesmann B., Mackay C., Murphy C. A., Pollesch N., Wheeler J. R., Zupanic A., et al. (2019). Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment. Environ. Toxicol. Chem. 38, 1850–1865. PubMed PMC
Pino A., Chiarotti F., Calamandrei G., Gotti A., Karakitsios S., Handakas E., Bocca B., Sarigiannis D., Alimonti A. (2017). Human biomonitoring data analysis for metals in an Italian adolescents cohort: An exposome approach. Environ. Res. 159, 344–354. PubMed
Pizzurro D. M., Seeley M., Kerper L. E., Beck B. D. (2019). Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regul. Toxicol. Pharmacol. 106, 239–250. PubMed
Polańska K., Hanke W., Jurewicz J., Sobala W., Madsen C., Nafstad P., Magnus P. (2011). Polish mother and child cohort study (REPRO_PL)–methodology of follow-up of the children. Int. J. Occup. Med. Environ. Health 24, 391–398. PubMed
Posma J. M., Garcia-Perez I., Frost G., Aljuraiban G. S., Chan Q., Van Horn L., Daviglus M., Stamler J., Holmes E., Elliott P., et al. (2020). Nutriome–metabolome relationships provide insights into dietary intake and metabolism. Nat. Food 1, 426–436. PubMed PMC
Pourchet M., Debrauwer L., Klanova J., Price E. J., Covaci A., Caballero-Casero N., Oberacher H., Lamoree M., Damont A., Fenaille F., et al. (2020). Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environ. Int. 139, 105545. PubMed
Price E. J., Vitale C. M., Miller G. W., David A., Barouki R., Audouze K., Walker D. I., Antignac J.-P., Coumoul X., Bessonneau V., et al. (2021). Merging the exposome in an integrated framework for “omic” sciences. 10.5281/ZENODO.5363305. Accessed March 24, 2020. PubMed DOI PMC
Price P. S., Jarabek A. M., Burgoon L. D. (2020). Organizing mechanism-related information on chemical interactions using a framework based on the aggregate exposure and adverse outcome pathways. Environ. Int. 138, 105673. PubMed PMC
Rappaport S. M. (2018). Redefining environmental exposure for disease etiology. NPJ Syst. Biol. Appl. 4, 30. PubMed PMC
Rappaport S. M., Smith M. T. (2010). Epidemiology. Environment and disease risks. Science 330, 460–461. PubMed PMC
Repouskou A., Papadopoulou A.-K., Panagiotidou E., Trichas P., Lindh C., Bergman Å., Gennings C., Bornehag C.-G., Rüegg J., Kitraki E., et al. (2020). Long term transcriptional and behavioral effects in mice developmentally exposed to a mixture of endocrine disruptors associated with delayed human neurodevelopment. Sci. Rep. 10, 9367. PubMed PMC
Rivetti C., Allen T. E. H., Brown J. B., Butler E., Carmichael P. L., Colbourne J. K., Dent M., Falciani F., Gunnarsson L., Gutsell S., et al. (2020). Vision of a near future: Bridging the human health–environment divide. Toward an integrated strategy to understand mechanisms across species for chemical safety assessment. Toxicol. In Vitro 62, 104692. PubMed
Rugard M., Coumoul X., Carvaillo J.-C., Barouki R., Audouze K. (2020). Deciphering adverse outcome pathway network linked to bisphenol f using text mining and systems toxicology approaches. Toxicol. Sci. 173, 32–40. PubMed PMC
Sarigiannis D. A. (2017). Assessing the impact of hazardous waste on children’s health: The exposome paradigm. Environ. Res. 158, 531–541. PubMed
Sarigiannis D. A., Karakitsios S. P., Handakas E., Simou K., Solomou E., Gotti A. (2016). Integrated exposure and risk characterization of bisphenol-A in Europe. Food Chem. Toxicol. 98, 134–147. PubMed
Scholz S., Nichols J. W., Escher B. I., Ankley G. T., Altenburger R., Blackwell B., Brack W., Burkhard L., Collette T. W., Doering J. A., et al. (2021). The Eco‐Exposome concept: Supporting an integrated assessment of mixtures of environmental chemicals. Environ. Toxicol. Chem. 10.1002/etc.5242. Accessed October 29, 2021. PubMed DOI PMC
Schreier H. M., Hsu H.-H., Amarasiriwardena C., Coull B. A., Schnaas L., Téllez-Rojo M. M., Tamayo y Ortiz M., Wright R. J., Wright R. O. (2015). Mercury and psychosocial stress exposure interact to predict maternal diurnal cortisol during pregnancy. Environ. Health 14, 10.1186/s12940-015-0016-9. Accessed March 27, 2015. PubMed DOI PMC
Sikdar S., Joehanes R., Joubert B. R., Xu C.-J., Vives-Usano M., Rezwan F. I., Felix J. F., Ward J. M., Guan W., Richmond R. C., et al. (2019). Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics 11, 1487–1500. PubMed PMC
Skinner M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6, 838–842. PubMed PMC
Steckling N., Gotti A., Bose-O'Reilly S., Chapizanis D., Costopoulou D., De Vocht F., Garí M., Grimalt J. O., Heath E., Hiscock R., et al. (2018). Biomarkers of exposure in environment-wide association studies - Opportunities to decode the exposome using human biomonitoring data. Environ. Res. 164, 597–624. PubMed
Tamayo y Ortiz M., Téllez-Rojo M. M., Trejo-Valdivia B., Schnaas L., Osorio-Valencia E., Coull B., Bellinger D., Wright R. J., Wright R. O. (2017). Maternal stress modifies the effect of exposure to lead during pregnancy and 24-month old children’s neurodevelopment. Environ. Int. 98, 191–197. PubMed PMC
Tamayo-Uria I., Maitre L., Thomsen C., Nieuwenhuijsen M. J., Chatzi L., Siroux V., Aasvang G. M., Agier L., Andrusaityte S., Casas M., et al. (2019). The early-life exposome: Description and patterns in six European countries. Environ. Int. 123, 189–200. PubMed PMC
Thayer K. A., Heindel J. J., Bucher J. R., Gallo M. A. (2012). Role of environmental chemicals in diabetes and obesity: A National Toxicology Program workshop review. Environ. Health Perspect. 120, 779–789. PubMed PMC
Thurber G. M., Yang K. S., Reiner T., Kohler R. H., Sorger P., Mitchison T., Weissleder R. (2013). Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504. PubMed PMC
Tollefsen K. E., Scholz S., Cronin M. T., Edwards S. W., de Knecht J., Crofton K., Garcia-Reyero N., Hartung T., Worth A., Patlewicz G. (2014). Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul. Toxicol. Pharmacol. 70, 629–640. PubMed
Tralau T., Oelgeschläger M., Gürtler R., Heinemeyer G., Herzler M., Höfer T., Itter H., Kuhl T., Lange N., Lorenz N., et al. (2015). Regulatory toxicology in the twenty-first century: Challenges, perspectives and possible solutions. Arch. Toxicol. 89, 823–850. PubMed
Vandenberg L. N., Colborn T., Hayes T. B., Heindel J. J., Jacobs D. R., Lee D.-H., Shioda T., Soto A. M., vom Saal F. S., Welshons W. V., et al. (2012). Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 33, 378–455. PubMed PMC
Vermeulen R., Schymanski E. L., Barabási A.-L., Miller G. W. (2020). The exposome and health: Where chemistry meets biology. Science 367, 392–396. PubMed PMC
Vesterinen H. M., Morello-Frosch R., Sen S., Zeise L., Woodruff T. J. (2017). Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence. PLoS One 12, e0176331. PubMed PMC
Vineis P., Chadeau-Hyam M., Gmuender H., Gulliver J., Herceg Z., Kleinjans J., Kogevinas M., Kyrtopoulos S., Nieuwenhuijsen M., Phillips D. H., et al. (2017). The exposome in practice: Design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health 220, 142–151., PubMed PMC
Vogel C. F. A., Van Winkle L. S., Esser C., Haarmann-Stemmann T. (2020). The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol. 34, 101530. PubMed PMC
Walker C. L. (2016). Minireview: Epigenomic plasticity and vulnerability to EDC exposures. Mol. Endocrinol. 30, 848–855. PubMed PMC
Wan H. T., Cheung L. Y., Chan T. F., Li M., Lai K. P., Wong C. K. C. (2021). Characterization of PFOS toxicity on in-vivo and ex-vivo mouse pancreatic islets. Environ. Pollut. 289, 117857. PubMed
Wang J.-J., Tian Y., Li M.-H., Feng Y.-Q., Kong L., Zhang F.-L., Shen W. (2021). Single-cell transcriptome dissection of the toxic impact of di (2-ethylhexyl) phthalate on primordial follicle assembly. Theranostics 11, 4992–5009. PubMed PMC
Wei J., Lin Y., Li Y., Ying C., Chen J., Song L., Zhou Z., Lv Z., Xia W., Chen X., et al. (2011). Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 152, 3049–3061. PubMed
Whitmee S., Haines A., Beyrer C., Boltz F., Capon A. G., de Souza Dias B. F., Ezeh A., Frumkin H., Gong P., Head P., et al. (2015). Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet 386, 1973–2028. PubMed
Wild C. P. (2005). Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850. PubMed
Wright E. C., Johnson S. A., Hao R., Kowalczyk A. S., Greenberg G. D., Ordoñes Sanchez E., Laman-Maharg A., Trainor B. C., Rosenfeld C. S. (2017). Exposure to extrinsic stressors, social defeat or bisphenol A, eliminates sex differences in DNA methyltransferase expression in the amygdala. J. Neuroendocrinol. 29. 10.1111/jne.12475. Accessed April 12, 2017. PubMed DOI PMC
Wu Q., Achebouche R., Audouze K. (2020). Computational systems biology as an animal-free approach to characterize toxicological effects of persistent organic pollutants. ALTEX 37, 287–299. PubMed
Zhang Q., Caudle W. M., Pi J., Bhattacharya S., Andersen M. E., Kaminski N. E., Conolly R. B. (2019). Embracing systems toxicology at single-cell resolution. Curr. Opin. Toxicol. 16, 49–57. PubMed PMC
Zhao C., Xie P., Yong T., Wang H., Chung A. C. K., Cai Z. (2018). MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol S-induced nephrotoxicity. Anal. Chem. 90, 3196–3204. PubMed
Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding
Merging the exposome into an integrated framework for "omics" sciences