The Exposome and Toxicology: A Win-Win Collaboration

. 2022 Feb 28 ; 186 (1) : 1-11.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34878125

Grantová podpora
U2C ES030163 NIEHS NIH HHS - United States

The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.

Zobrazit více v PubMed

Aguayo-Orozco A., Audouze K., Siggaard T., Barouki R., Brunak S., Taboureau O. (2019). sAOP: Linking chemical stressors to adverse outcomes pathway networks. Bioinforma. Oxf. Engl  35, 5391–5392. PubMed PMC

Ashauer R., O'Connor I., Escher B. I. (2017). Toxic mixtures in time—The sequence makes the poison. Environ. Sci. Technol. 51, 3084–3092. PubMed

Asimina S., Chapizanis D., Karakitsios S., Kontoroupis P., Asimakopoulos D. N., Maggos T., Sarigiannis D. (2018). Assessing and enhancing the utility of low-cost activity and location sensors for exposure studies. Environ. Monit. Assess. 190, 155. PubMed

Athersuch T. J., Keun H. C. (2015). Metabolic profiling in human exposome studies. Mutagenesis  30, 755–762. PubMed

Bajard L., Melymuk L., Blaha L. (2019). Prioritization of hazards of novel flame retardants using the mechanistic toxicology information from ToxCast and adverse outcome pathways. Environ. Sci. Eur. 31, Article number 14.

Barouki R. (2010). Linking long-term toxicity of xeno-chemicals with short-term biological adaptation. Biochimie  92, 1222–1226. PubMed

Barouki R., Audouze K., Coumoul X., Demenais F., Gauguier D. (2018). Integration of the human exposome with the human genome to advance medicine. Biochimie  152, 155–158. PubMed

Barouki R., Gluckman P. D., Grandjean P., Hanson M., Heindel J. J. (2012). Developmental origins of non-communicable disease: Implications for research and public health. Environ. Health Glob. Access Sci. Source  11, 42. PubMed PMC

Barouki R., Melén E., Herceg Z., Beckers J., Chen J., Karagas M., Puga A., Xia Y., Chadwick L., Yan W., et al. (2018). Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ. Int. 114, 77–86. PubMed PMC

Birgersson L., Borbély G., Caporale N., Germain P.-L., Leemans M., Rendel F., D’Agostino G. A., Bressan R. B., Cavallo F., Chorev N. E., et al. (2017). From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Mol. Biol. PREPRINT. PubMed

Bopp S. K., Barouki R., Brack W., Dalla Costa S., Dorne J.-L. C. M., Drakvik P. E., Faust M., Karjalainen T. K., Kephalopoulos S., van Klaveren J., et al. (2018). Current EU research activities on combined exposure to multiple chemicals. Environ. Int. 120, 544–562. PubMed PMC

Bouvier E., Brouillard F., Molet J., Claverie D., Cabungcal J.-H., Cresto N., Doligez N., Rivat C., Do K. Q., Bernard C., et al. (2017). Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol. Psychiatry  22, 1701–1713. PubMed

Buck Louis G. M., Smarr M. M., Patel C. J. (2017). The exposome research paradigm: An opportunity to understand the environmental basis for human health and disease. Curr. Environ. Health Rep. 4, 89–98. PubMed PMC

Calistri P., Iannetti S., L. Danzetta M., Narcisi V., Cito F., Di Sabatino D., Bruno R., Sauro F., Atzeni M., Carvelli A., et al. (2013). The components of ‘one world - one health’ approach. Transbound. Emerg. Dis. 60, 4–13. PubMed

Carvaillo J.-C., Barouki R., Coumoul X., Audouze K. (2019). Linking bisphenol S to adverse outcome pathways using a combined text mining and systems biology approach. Environ. Health Perspect. 127, 47005. PubMed PMC

Chung F. F.-L., Herceg Z. (2020). The promises and challenges of toxico-epigenomics: Environmental chemicals and their impacts on the epigenome. Environ. Health Perspect. 128, 15001. PubMed PMC

Chung M. K., Rappaport S. M., Wheelock C. E., Nguyen V. K., van der Meer T. P., Miller G. W., Vermeulen R., Patel C. J. (2021). Utilizing a biology-driven approach to map the exposome in health and disease: An essential investment to drive the next generation of environmental discovery. Environ. Health Perspect. 129, 85001. PubMed PMC

Committee on Human and Environmental Exposure Science in the 21st Century, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council. (2012). Exposure Science in the 21st Century: A Vision and a Strategy. National Academies Press (US; ), Washington, DC. PubMed

DeMarini D. M. (2004). Genotoxicity of tobacco smoke and tobacco smoke condensate: A review. Mutat. Res. 567, 447–474. PubMed

Denison M. S., Nagy S. R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309–334. PubMed

Dennis K. K., Auerbach S. S., Balshaw D. M., Cui Y., Fallin M. D., Smith M. T., Spira A., Sumner S., Miller G. W. (2016). The importance of the biological impact of exposure to the concept of the exposome. Environ. Health Perspect. 124, 1504–1510. PubMed PMC

Drakvik E., Altenburger R., Aoki Y., Backhaus T., Bahadori T., Barouki R., Brack W., Cronin M. T. D., Demeneix B., Hougaard Bennekou S., et al. (2020). Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 134, 105267. PubMed PMC

Duval C., Teixeira-Clerc F., Leblanc A. F., Touch S., Emond C., Guerre-Millo M., Lotersztajn S., Barouki R., Aggerbeck M., Coumoul X. (2017). Chronic exposure to low doses of dioxin promotes liver fibrosis development in the C57BL/6J diet-induced obesity mouse model. Environ. Health Perspect. 125, 428–436. PubMed PMC

Escher B. I., Hackermüller J., Polte T., Scholz S., Aigner A., Altenburger R., Böhme A., Bopp S. K., Brack W., Busch W., et al. (2017). From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ. Int. 99, 97–106. PubMed PMC

Escher B. I., Stapleton H. M., Schymanski E. L. (2020). Tracking complex mixtures of chemicals in our changing environment. Science  367, 388–392. PubMed PMC

Francis G. A., Fayard E., Picard F., Auwerx J. (2003). Nuclear receptors and the control of metabolism. Annu. Rev. Physiol. 65, 261–311. PubMed

Fuller C. H., Feeser K. R., Sarnat J. A., O'Neill M. S. (2017). Air pollution, cardiovascular endpoints and susceptibility by stress and material resources: A systematic review of the evidence. Environ. Health  16, 58. PubMed PMC

Gao P. (2021). The exposome in the era of one health. Environ. Sci. Technol. 55, 2790–2799. PubMed

Garí M., Grimalt J. O., Torrent M., Sunyer J. (2013). Influence of socio-demographic and diet determinants on the levels of mercury in preschool children from a Mediterranean island. Environ. Pollut.  182, 291–298. PubMed

González-Bosch C., Boorman E., Zunszain P. A., Mann G. E. (2021). Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol. 47, 102165. PubMed PMC

Goodchild C. G., Simpson A. M., Minghetti M., DuRant S. E. (2019). Bioenergetics-adverse outcome pathway: Linking organismal and suborganismal energetic endpoints to adverse outcomes. Environ. Toxicol. Chem. 38, 27–45. PubMed

Grandjean P., Barouki R., Bellinger D. C., Casteleyn L., Chadwick L. H., Cordier S., Etzel R. A., Gray K. A., Ha E.-H., Junien C., et al. (2015). Life-long implications of developmental exposure to environmental stressors: New perspectives. Endocrinology  156, 3408–3415. PubMed PMC

Hajat A., MacLehose R. F., Rosofsky A., Walker K. D., Clougherty J. E. (2021). Confounding by socioeconomic status in epidemiological studies of air pollution and health: Challenges and opportunities. Environ. Health Perspect. 129, 65001. PubMed PMC

Hanson M. A., Skinner M. K. (2016). Developmental origins of epigenetic transgenerational inheritance. Environ. Epigenetics  2, dvw002. PubMed PMC

Hartung T. (2009). Toxicology for the twenty-first century. Nature  460, 208–212. PubMed

He Y., Lakhani C. M., Manrai A. K., Patel C. J. (2019). Poly-exposure and poly-genomic scores implicate prominent roles of non-genetic and demographic factors in four common diseases in the UK. Bioinformatics. PREPRINT.

He Y., Lakhani C. M., Rasooly D., Manrai A. K., Tzoulaki I., Patel C. J. (2021). Comparisons of polyexposure, polygenic, and clinical risk scores in risk prediction of type 2 diabetes. Diabetes Care  44, 935–943. PubMed PMC

Hines D. E., Edwards S. W., Conolly R. B., Jarabek A. M. (2018). A case study application of the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks to facilitate the integration of human health and ecological end points for cumulative risk assessment (CRA). Environ. Sci. Technol. 52, 839–849. PubMed PMC

Hommen U., Forbes V., Grimm V., Preuss T. G., Thorbek P., Ducrot V. (2016). How to use mechanistic effect models in environmental risk assessment of pesticides: Case studies and recommendations from the SETAC workshop MODELINK: MODELINK workshop summary. Integr. Environ. Assess. Manage. 12, 21–31. PubMed

Hooper M. J., Ankley G. T., Cristol D. A., Maryoung L. A., Noyes P. D., Pinkerton K. E. (2013). Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ. Toxicol. Chem. 32, 32–48. PubMed PMC

Joffin N., Noirez P., Antignac J.-P., Kim M.-J., Marchand P., Falabregue M., Le Bizec B., Forest C., Emond C., Barouki R., et al. (2018). Release and toxicity of adipose tissue-stored TCDD: Direct evidence from a xenografted fat model. Environ. Int. 121, 1113–1120. PubMed

Jornod F., Jaylet T., Blaha L., Sarigiannis D., Tamisier L., Audouze K. (2021). AOP-helpFinder webserver: A tool for comprehensive analysis of the literature to support adverse outcome pathways development. Bioinforma. Oxf. Engl btab750. 10.1093/bioinformatics/btab750. Accessed May 28, 2020. PubMed DOI PMC

Jornod F., Rugard M., Tamisier L., Coumoul X., Andersen H. R., Barouki R., Audouze K. (2020). AOP4EUpest: Mapping of pesticides in adverse outcome pathways using a text mining tool. Bioinformatics  36, 4379–4381. PubMed PMC

Kochmanski J., Marchlewicz E. H., Savidge M., Montrose L., Faulk C., Dolinoy D. C. (2017). Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice. Reprod. Toxicol. Elmsford N. 68, 154–163. PubMed PMC

Kodama S., Koike C., Negishi M., Yamamoto Y. (2004). Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol. Cell. Biol. 24, 7931–7940. PubMed PMC

Kongsbak K., Hadrup N., Audouze K., Vinggaard A. M. (2014). Applicability of computational systems biology in toxicology. Basic Clin. Pharmacol. Toxicol. 115, 45–49. PubMed

Konno Y., Negishi M., Kodama S. (2008). The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab. Pharmacokinet. 23, 8–13. PubMed

Kramer V. J., Etterson M. A., Hecker M., Murphy C. A., Roesijadi G., Spade D. J., Spromberg J. A., Wang M., Ankley G. T. (2011). Adverse outcome pathways and ecological risk assessment: Bridging to population-level effects. Environ. Toxicol. Chem. 30, 64–76. PubMed

Krewski D., Andersen M. E., Tyshenko M. G., Krishnan K., Hartung T., Boekelheide K., Wambaugh J. F., Jones D., Whelan M., Thomas R., et al. (2020). Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Arch. Toxicol. 94, 1–58. PubMed

La Merrill M., Emond C., Kim M. J., Antignac J.-P., Le Bizec B., Clément K., Birnbaum L. S., Barouki R. (2013). Toxicological function of adipose tissue: Focus on persistent organic pollutants. Environ. Health Perspect. 121, 162–169. PubMed PMC

Leist M., Ghallab A., Graepel R., Marchan R., Hassan R., Bennekou S. H., Limonciel A., Vinken M., Schildknecht S., Waldmann T., et al. (2017). Adverse outcome pathways: Opportunities, limitations and open questions. Arch. Toxicol. 91, 3477–3505. PubMed

Li N., Friedrich R., Maesano C. N., Medda E., Brescianini S., Stazi M. A., Sabel C. E., Sarigiannis D., Annesi-Maesano I. (2019). Lifelong exposure to multiple stressors through different environmental pathways for European populations. Environ. Res. 179, 108744. PubMed

Liu J., Lahousse L., Nivard M. G., Bot M., Chen L., van Klinken J. B., Thesing C. S., Beekman M., van den Akker E. B., Slieker R. C., et al. (2020). Integration of epidemiologic, pharmacologic, genetic and gut microbiome data in a drug–metabolite atlas. Nat. Med. 26, 110–117. PubMed

Liu Y., Chen F., Odle J., Lin X., Zhu H., Shi H., Hou Y., Yin J. (2013). Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge. J. Nutr. 143, 1331–1339. PubMed

Loh M., Sarigiannis D., Gotti A., Karakitsios S., Pronk A., Kuijpers E., Annesi-Maesano I., Baiz N., Madureira J., Oliveira Fernandes E., et al. (2017). How sensors might help define the external exposome. Int. J. Environ. Res. Public. Health  14, 434. PubMed PMC

Mach M., Grubbs R. D., Price W. A., Nagaoka M., Dubovický M., Lucot J. B. (2008). Delayed behavioral and endocrine effects of sarin and stress exposure in mice. J. Appl. Toxicol. 28, 132–139. PubMed

Manrai A. K., Cui Y., Bushel P. R., Hall M., Karakitsios S., Mattingly C. J., Ritchie M., Schmitt C., Sarigiannis D. A., Thomas D. C., et al. (2017). Informatics and data analytics to support exposome-based discovery for public health. Annu. Rev. Public Health  38, 279–294. PubMed PMC

Martin O., Scholze M., Ermler S., McPhie J., Bopp S. K., Kienzler A., Parissis N., Kortenkamp A. (2021). Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environ. Int. 146, 106206. PubMed

McGowan J. A. (1996). Bone: Target and source of environmental pollutant exposure. Otolaryngol. Head Neck Surg.  114, 220–223. PubMed

McHale C. M., Osborne G., Morello-Frosch R., Salmon A. G., Sandy M. S., Solomon G., Zhang L., Smith M. T., Zeise L. (2018). Assessing health risks from multiple environmental stressors: Moving from G×E to I×E. Mutat. Res. 775, 11–20. PubMed PMC

Miller G. W., Jones D. P. (2014). The nature of nurture: Refining the definition of the exposome. Toxicol. Sci.  137, 1–2. PubMed PMC

Murray M. (2006). Altered CYP expression and function in response to dietary factors: Potential roles in disease pathogenesis. Curr. Drug Metab. 7, 67–81. PubMed

National Research Council (U.S.). (Ed.) (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. National Academies Press, Washington, DC. PubMed

Naville D., Labaronne E., Vega N., Pinteur C., Canet-Soulas E., Vidal H., Le Magueresse-Battistoni B. (2015). Metabolic outcome of female mice exposed to a mixture of low-dose pollutants in a diet-induced obesity model. PLoS One  10, e0124015. PubMed PMC

Niedzwiecki M. M., Walker D. I., Vermeulen R., Chadeau-Hyam M., Jones D. P., Miller G. W. (2019). The exposome: Molecules to populations. Annu. Rev. Pharmacol. Toxicol. 59, 107–127. PubMed

Pallotta M. T., Fallarino F., Matino D., Macchiarulo A., Orabona C. (2014). AhR-mediated, non-genomic modulation of IDO1 function. Front. Immunol. 5, 497. PubMed PMC

Papaioannou N., Distel E., de Oliveira E., Gabriel C., Frydas I. S., Anesti O., Attignon E. A., Odena A., Díaz R., Aggerbeck Μ., et al. (2021). Multi-omics analysis reveals that co-exposure to phthalates and metals disturbs urea cycle and choline metabolism. Environ. Res. 192, 110041. PubMed

Pedro L., Rudewicz P. J. (2020). Analysis of live single cells by confocal microscopy and high-resolution mass spectrometry to study drug uptake, metabolism, and drug-induced phospholipidosis. Anal. Chem. 92, 16005–16015. PubMed

Perkins E. J., Ashauer R., Burgoon L., Conolly R., Landesmann B., Mackay C., Murphy C. A., Pollesch N., Wheeler J. R., Zupanic A., et al. (2019). Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment. Environ. Toxicol. Chem. 38, 1850–1865. PubMed PMC

Pino A., Chiarotti F., Calamandrei G., Gotti A., Karakitsios S., Handakas E., Bocca B., Sarigiannis D., Alimonti A. (2017). Human biomonitoring data analysis for metals in an Italian adolescents cohort: An exposome approach. Environ. Res. 159, 344–354. PubMed

Pizzurro D. M., Seeley M., Kerper L. E., Beck B. D. (2019). Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regul. Toxicol. Pharmacol.  106, 239–250. PubMed

Polańska K., Hanke W., Jurewicz J., Sobala W., Madsen C., Nafstad P., Magnus P. (2011). Polish mother and child cohort study (REPRO_PL)–methodology of follow-up of the children. Int. J. Occup. Med. Environ. Health  24, 391–398. PubMed

Posma J. M., Garcia-Perez I., Frost G., Aljuraiban G. S., Chan Q., Van Horn L., Daviglus M., Stamler J., Holmes E., Elliott P., et al. (2020). Nutriome–metabolome relationships provide insights into dietary intake and metabolism. Nat. Food  1, 426–436. PubMed PMC

Pourchet M., Debrauwer L., Klanova J., Price E. J., Covaci A., Caballero-Casero N., Oberacher H., Lamoree M., Damont A., Fenaille F., et al. (2020). Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environ. Int. 139, 105545. PubMed

Price E. J., Vitale C. M., Miller G. W., David A., Barouki R., Audouze K., Walker D. I., Antignac J.-P., Coumoul X., Bessonneau V., et al. (2021). Merging the exposome in an integrated framework for “omic” sciences. 10.5281/ZENODO.5363305. Accessed March 24, 2020. PubMed DOI PMC

Price P. S., Jarabek A. M., Burgoon L. D. (2020). Organizing mechanism-related information on chemical interactions using a framework based on the aggregate exposure and adverse outcome pathways. Environ. Int. 138, 105673. PubMed PMC

Rappaport S. M. (2018). Redefining environmental exposure for disease etiology. NPJ Syst. Biol. Appl. 4, 30. PubMed PMC

Rappaport S. M., Smith M. T. (2010). Epidemiology. Environment and disease risks. Science  330, 460–461. PubMed PMC

Repouskou A., Papadopoulou A.-K., Panagiotidou E., Trichas P., Lindh C., Bergman Å., Gennings C., Bornehag C.-G., Rüegg J., Kitraki E., et al. (2020). Long term transcriptional and behavioral effects in mice developmentally exposed to a mixture of endocrine disruptors associated with delayed human neurodevelopment. Sci. Rep. 10, 9367. PubMed PMC

Rivetti C., Allen T. E. H., Brown J. B., Butler E., Carmichael P. L., Colbourne J. K., Dent M., Falciani F., Gunnarsson L., Gutsell S., et al. (2020). Vision of a near future: Bridging the human health–environment divide. Toward an integrated strategy to understand mechanisms across species for chemical safety assessment. Toxicol. In Vitro  62, 104692. PubMed

Rugard M., Coumoul X., Carvaillo J.-C., Barouki R., Audouze K. (2020). Deciphering adverse outcome pathway network linked to bisphenol f using text mining and systems toxicology approaches. Toxicol. Sci.  173, 32–40. PubMed PMC

Sarigiannis D. A. (2017). Assessing the impact of hazardous waste on children’s health: The exposome paradigm. Environ. Res. 158, 531–541. PubMed

Sarigiannis D. A., Karakitsios S. P., Handakas E., Simou K., Solomou E., Gotti A. (2016). Integrated exposure and risk characterization of bisphenol-A in Europe. Food Chem. Toxicol.  98, 134–147. PubMed

Scholz S., Nichols J. W., Escher B. I., Ankley G. T., Altenburger R., Blackwell B., Brack W., Burkhard L., Collette T. W., Doering J. A., et al. (2021). The Eco‐Exposome concept: Supporting an integrated assessment of mixtures of environmental chemicals. Environ. Toxicol. Chem.  10.1002/etc.5242. Accessed October 29, 2021. PubMed DOI PMC

Schreier H. M., Hsu H.-H., Amarasiriwardena C., Coull B. A., Schnaas L., Téllez-Rojo M. M., Tamayo y Ortiz M., Wright R. J., Wright R. O. (2015). Mercury and psychosocial stress exposure interact to predict maternal diurnal cortisol during pregnancy. Environ. Health  14, 10.1186/s12940-015-0016-9. Accessed March 27, 2015. PubMed DOI PMC

Sikdar S., Joehanes R., Joubert B. R., Xu C.-J., Vives-Usano M., Rezwan F. I., Felix J. F., Ward J. M., Guan W., Richmond R. C., et al. (2019). Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics  11, 1487–1500. PubMed PMC

Skinner M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics  6, 838–842. PubMed PMC

Steckling N., Gotti A., Bose-O'Reilly S., Chapizanis D., Costopoulou D., De Vocht F., Garí M., Grimalt J. O., Heath E., Hiscock R., et al. (2018). Biomarkers of exposure in environment-wide association studies - Opportunities to decode the exposome using human biomonitoring data. Environ. Res. 164, 597–624. PubMed

Tamayo y Ortiz M., Téllez-Rojo M. M., Trejo-Valdivia B., Schnaas L., Osorio-Valencia E., Coull B., Bellinger D., Wright R. J., Wright R. O. (2017). Maternal stress modifies the effect of exposure to lead during pregnancy and 24-month old children’s neurodevelopment. Environ. Int. 98, 191–197. PubMed PMC

Tamayo-Uria I., Maitre L., Thomsen C., Nieuwenhuijsen M. J., Chatzi L., Siroux V., Aasvang G. M., Agier L., Andrusaityte S., Casas M., et al. (2019). The early-life exposome: Description and patterns in six European countries. Environ. Int. 123, 189–200. PubMed PMC

Thayer K. A., Heindel J. J., Bucher J. R., Gallo M. A. (2012). Role of environmental chemicals in diabetes and obesity: A National Toxicology Program workshop review. Environ. Health Perspect. 120, 779–789. PubMed PMC

Thurber G. M., Yang K. S., Reiner T., Kohler R. H., Sorger P., Mitchison T., Weissleder R. (2013). Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 4, 1504. PubMed PMC

Tollefsen K. E., Scholz S., Cronin M. T., Edwards S. W., de Knecht J., Crofton K., Garcia-Reyero N., Hartung T., Worth A., Patlewicz G. (2014). Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul. Toxicol. Pharmacol. 70, 629–640. PubMed

Tralau T., Oelgeschläger M., Gürtler R., Heinemeyer G., Herzler M., Höfer T., Itter H., Kuhl T., Lange N., Lorenz N., et al. (2015). Regulatory toxicology in the twenty-first century: Challenges, perspectives and possible solutions. Arch. Toxicol. 89, 823–850. PubMed

Vandenberg L. N., Colborn T., Hayes T. B., Heindel J. J., Jacobs D. R., Lee D.-H., Shioda T., Soto A. M., vom Saal F. S., Welshons W. V., et al. (2012). Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 33, 378–455. PubMed PMC

Vermeulen R., Schymanski E. L., Barabási A.-L., Miller G. W. (2020). The exposome and health: Where chemistry meets biology. Science  367, 392–396. PubMed PMC

Vesterinen H. M., Morello-Frosch R., Sen S., Zeise L., Woodruff T. J. (2017). Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence. PLoS One  12, e0176331. PubMed PMC

Vineis P., Chadeau-Hyam M., Gmuender H., Gulliver J., Herceg Z., Kleinjans J., Kogevinas M., Kyrtopoulos S., Nieuwenhuijsen M., Phillips D. H., et al. (2017). The exposome in practice: Design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health  220, 142–151., PubMed PMC

Vogel C. F. A., Van Winkle L. S., Esser C., Haarmann-Stemmann T. (2020). The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol. 34, 101530. PubMed PMC

Walker C. L. (2016). Minireview: Epigenomic plasticity and vulnerability to EDC exposures. Mol. Endocrinol.  30, 848–855. PubMed PMC

Wan H. T., Cheung L. Y., Chan T. F., Li M., Lai K. P., Wong C. K. C. (2021). Characterization of PFOS toxicity on in-vivo and ex-vivo mouse pancreatic islets. Environ. Pollut.  289, 117857. PubMed

Wang J.-J., Tian Y., Li M.-H., Feng Y.-Q., Kong L., Zhang F.-L., Shen W. (2021). Single-cell transcriptome dissection of the toxic impact of di (2-ethylhexyl) phthalate on primordial follicle assembly. Theranostics  11, 4992–5009. PubMed PMC

Wei J., Lin Y., Li Y., Ying C., Chen J., Song L., Zhou Z., Lv Z., Xia W., Chen X., et al. (2011). Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology  152, 3049–3061. PubMed

Whitmee S., Haines A., Beyrer C., Boltz F., Capon A. G., de Souza Dias B. F., Ezeh A., Frumkin H., Gong P., Head P., et al. (2015). Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet  386, 1973–2028. PubMed

Wild C. P. (2005). Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev.  14, 1847–1850. PubMed

Wright E. C., Johnson S. A., Hao R., Kowalczyk A. S., Greenberg G. D., Ordoñes Sanchez E., Laman-Maharg A., Trainor B. C., Rosenfeld C. S. (2017). Exposure to extrinsic stressors, social defeat or bisphenol A, eliminates sex differences in DNA methyltransferase expression in the amygdala. J. Neuroendocrinol. 29. 10.1111/jne.12475. Accessed April 12, 2017. PubMed DOI PMC

Wu Q., Achebouche R., Audouze K. (2020). Computational systems biology as an animal-free approach to characterize toxicological effects of persistent organic pollutants. ALTEX  37, 287–299. PubMed

Zhang Q., Caudle W. M., Pi J., Bhattacharya S., Andersen M. E., Kaminski N. E., Conolly R. B. (2019). Embracing systems toxicology at single-cell resolution. Curr. Opin. Toxicol. 16, 49–57. PubMed PMC

Zhao C., Xie P., Yong T., Wang H., Chung A. C. K., Cai Z. (2018). MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol S-induced nephrotoxicity. Anal. Chem. 90, 3196–3204. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace