The role of a water bug, Sigara striata, in freshwater food webs

. 2014 ; 2 () : e389. [epub] 20140522

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24883250

Freshwater food webs are dominated by aquatic invertebrates whose trophic relationships are often poorly known. Here, I used laboratory experiments to study the role of a water bug, Sigara striata, as a potential predator and prey in food webs of stagnant waters. Multiple-choice predation experiment revealed that Sigara, which had been considered mostly herbivorous, also consumed larvae of Chironomus midges. Because they often occur in high densities and are among the most ubiquitous aquatic insects, Sigara water bugs may be important predators in fresh waters. A second experiment tested the role of Sigara as a potential prey for 13 common invertebrate predators. Mortality of Sigara inflicted by different predators varied widely, especially depending on body mass, foraging mode (ambush/searching) and feeding mode (chewing/suctorial) of the predators. Sigara was highly vulnerable to ambush predators, while searching predators caused on average 8.1 times lower mortality of Sigara. Additionally, suctorial predators consumed on average 6.6 times more Sigara individuals than chewing predators, which supports previous results hinting on potentially different predation pressures of these two types of predators on prey populations. The importance of these two foraging-related traits demonstrates the need to move from body mass based to multiple trait based descriptions of food web structure. Overall, the results suggests that detailed experimental studies of common but insufficiently known species can significantly enhance our understanding of food web structure.

Zobrazit více v PubMed

Alahmed S, Alamr A, Kheir S. Seasonal activity and predatory efficacy of the water bug Sigara hoggarica Poisson (hemiptera: Corixidae) against the mosquito larvae Culex quinquefasciatus (diptera: Culicidae) in Riyadh City, Saudi Arabia. Journal of Entomology. 2009;6:90–95. doi: 10.3923/je.2009.90.95. DOI

Allan AS, Flecker J, McClintock N. Prey preference of stoneflies: sedentary vs. mobile prey. Oikos. 1987;49:323–331. doi: 10.2307/3565768. DOI

Arnér M, Koivisto S, Norberg J, Kautsky N. Trophic interactions in rockpool food webs: regulation of zooplankton and phytoplankton by Notonecta and Daphnia. Freshwater Biology. 1998;39:79–90. doi: 10.1046/j.1365-2427.1998.00262.x. DOI

Bascompte J, Jordano P. Plant-animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics. 2007;38:567–593. doi: 10.1146/annurev.ecolsys.38.091206.095818. DOI

Bascompte J, Jordano P, Melián C, Olesen J. The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:9383–9387. doi: 10.1073/pnas.1633576100. PubMed DOI PMC

Beckerman A, Petchey O, Warren P. Foraging biology predicts food web complexity. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:13745–13749. doi: 10.1073/pnas.0603039103. PubMed DOI PMC

Bendell BE, McNicol DK. Lake acidity, fish predation, and the distribution and abundance of some littoral insects. Hydrobiologia. 1995;302:133–145. doi: 10.1007/BF00027038. DOI

Boukal D, Boukal M, Fikacek M, Hajek J, Klecka J, Skalicky S, Stastny J, Travnicek D. Katalog vodních brouků české republiky/catalogue of water beetles of the Czech Republic. Klapalekiana. 2007;43:1–289.

Brose U, Jonsson T, Berlow E, Warren P, Banasek-Richter C, Bersier LF, Blanchard J, Brey T, Carpenter S, Blandenier MF, Cushing L, Dawah H, Dell T, Edwards F, Harper-Smith S, Jacob U, Ledger M, Martinez N, Memmott J, Mintenbeck K, Pinnegar J, Rall B, Rayner T, Reuman D, Ruess L, Ulrich W, Williams R, Woodward G, Cohen J. Consumer-resource body-size relationships in natural food webs. Ecology. 2006;87:2411–2417. doi: 10.1890/0012-9658(2006)87[2411:CBRINF]2.0.CO;2. PubMed DOI

Brose U, Williams R, Martinez N. Allometric scaling enhances stability in complex food webs. Ecology Letters. 2006;9:1228–1236. doi: 10.1111/j.1461-0248.2006.00978.x. PubMed DOI

Cobbaert D, Bayley S, Greter JL. Effects of a top invertebrate predator (Dytiscus alaskanus; Coleoptera: Dytiscidae) on fishless pond ecosystems. Hydrobiologia. 2010;644:103–114. doi: 10.1007/s10750-010-0100-7. DOI

Cohen J, Briand F, Newman C. Community food webs: data and theory. Berlin: Springer; 1990.

Convey P. Competition for perches between larval damselflies: the influence of perch use on feeding efficiency, growth rate and predator avoidance. Freshwater Biology. 1988;19:15–28. doi: 10.1111/j.1365-2427.1988.tb00323.x. DOI

Cooper S, Smith D, Bence J. Prey selection by freshwater predators with different foraging strategies. Canadian Journal of Fisheries and Aquatic Sciences. 1985;42:1720–1732. doi: 10.1139/f85-216. DOI

Culler L, Lamp W. Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands. Freshwater Biology. 2009;54:2003–2014. doi: 10.1111/j.1365-2427.2009.02230.x. DOI

de Ruiter P, Neutel AM, Moore J. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science. 1995;269:1257–1260. doi: 10.1126/science.269.5228.1257. PubMed DOI

Eklöv P, Diehl S. Piscivore efficiency and refuging prey: the importance of predator search mode. Oecologia. 1994;98:344–353. doi: 10.1007/BF00324223. PubMed DOI

Elton C. Animal ecology. New York: Macmillan Co; 1927.

Foltan P, Sheppard S, Konvicka M, Symondson WO. The significance of facultative scavenging in generalist predator nutrition: detecting decayed prey in the guts of predators using PCR. Molecular Ecology. 2005;14:4147–4158. doi: 10.1111/j.1365-294X.2005.02732.x. PubMed DOI

Fortuna M, Bascompte J. Habitat loss and the structure of plant-animal mutualistic networks. Ecology Letters. 2006;9:278–283. doi: 10.1111/j.1461-0248.2005.00868.x. PubMed DOI

Giller P. The natural diets of waterbugs (Hemiptera-Heteroptera): electrophoresis as a potential method of analysis. Ecological Entomology. 1982;7:233–237. doi: 10.1111/j.1365-2311.1982.tb00662.x. DOI

Giller P. Predator gut state and prey detectability using electrophoretic analysis of gut contents. Ecological Entomology. 1984;9:157–162. doi: 10.1111/j.1365-2311.1984.tb00710.x. DOI

Giller P. The natural diet of the Notonectidae: field trials using electrophoresis. Ecological Entomology. 1986;11:163–172. doi: 10.1111/j.1365-2311.1986.tb00291.x. DOI

Gilljam D, Thierry A, Edwards F, Figueroa D, Ibbotson A, Jones J, Lauridsen R, Petchey O, Woodward G, Ebenman B. Seeing double: size-based and taxonomic views of food web structure. Advances in Ecological Research. 2011;45:67–133.

Günther B, Rall BC, Ferlian O, Scheu S, Eitzinger B. Variations in prey consumption of centipede predators in forest soils as indicated by molecular gut content analysis. Oikos. In press.

Heckmann L, Drossel B, Brose U, Guill C. Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecology Letters. 2012;15:243–250. doi: 10.1111/j.1461-0248.2011.01733.x. PubMed DOI

Horinouchi M, Mizuno N, Jo Y, Fujita M, Sano M, Suzuki Y. Seagrass habitat complexity does not always decrease foraging efficiencies of piscivorous fishes. Marine Ecology Progress Series. 2009;377:43–49. doi: 10.3354/meps07869. DOI

Hutchinson G. A treatise on limnology, Vol. 4, The Zoobenthos. New York: Wiley & Sons; 1993.

Ings T, Montoya J, Bascompte J, Blüthgen N, Brown L, Dormann C, Edwards F, Figueroa D, Jacob U, Jones J, Lauridsen R, Ledger M, Lewis H, Olesen J, Van Veen F, Warren P, Woodward G. Ecological networks—beyond food webs. Journal of Animal Ecology. 2009;78:253–269. doi: 10.1111/j.1365-2656.2008.01460.x. PubMed DOI

Klecka J, Boukal D. Lazy ecologist’s guide to water beetle diversity: Which sampling methods are the best? Ecological Indicators. 2011;11:500–508. doi: 10.1016/j.ecolind.2010.07.005. DOI

Klecka J, Boukal D. Who eats whom in a pool? a comparative study of prey selectivity by predatory aquatic insects. PLoS ONE. 2012;7:e37741. doi: 10.1371/journal.pone.0037741. PubMed DOI PMC

Klecka J, Boukal D. Foraging and vulnerability traits modify predator–prey body mass allometry: freshwater macroinvertebrates as a case study. Journal of Animal Ecology. 2013;82:1031–1041. doi: 10.1111/1365-2656.12078. PubMed DOI

Layer K, Hildrew A, Monteith D, Woodward G. Long-term variation in the littoral food web of an acidified mountain lake. Global Change Biology. 2010;16:3133–3143.

May RM. Will a large complex system be stable? Nature. 1972;238:413–414. doi: 10.1038/238413a0. PubMed DOI

McCann K, Hastings A, Huxel G. Weak trophic interactions and the balance of nature. Nature. 1998;395:794–798. doi: 10.1038/27427. DOI

Melián C, Bascompte J. Food web structure and habitat loss. Ecology Letters. 2002;5:37–46. doi: 10.1046/j.1461-0248.2002.00280.x. DOI

Melián C, Vilas C, Baldó F, González-Ortegón E, Drake P, Williams R. Eco-evolutionary dynamics of individual-based food webs. Advances in Ecological Research. 2011;45:225–268.

Michel MJ, Adams MM. Differential effects of structural complexity on predator foraging behavior. Behavioral Ecology. 2009;20:313–317. doi: 10.1093/beheco/arp005. DOI

Morales ME, Wesson DM, Sutherland IW, Impoinvil DE, Mbogo CM, Githure JI, Beier JC. Determination of Anopheles gambiae larval DNA in the gut of insectivorous dragonfly (libellulidae) nymphs by polymerase chain reaction. Journal of the American Mosquito Control Association. 2003;19:163–165. PubMed

Nakazawa T, Ohba Sy, Ushio M. Predator–prey body size relationships when predators can consume prey larger than themselves. Biology Letters. 2013;9:20121193. doi: 10.1098/rsbl.2012.1193. PubMed DOI PMC

O’Gorman E, Pichler D, Adams G, Benstead J, Cohen H, Craig N, Cross W, Demars B, Friberg N, Gislason G, Gudmundsdottir R, Hawczak A, Hood J, Hudson L, Johansson L, Johansson M, Junker J, Laurila A, Manson J, Mavromati E, Nelson D, Olafsson J, Perkins D, Petchey O, Plebani M, Reuman D, Rall B, Stewart R, Thompson M, Woodward G. Impacts of warming on the structure and functioning of aquatic communities. individual- to ecosystem-level responses. Advances in Ecological Research. 2012;47:81–176.

Ohba SY, Kawada H, Dida GO, Juma D, Sonye G, Minakawa N, Takagi M. Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) larvae in wetlands, western Kenya: confirmation by polymerase chain reaction method. Journal of Medical Entomology. 2010;47:783–787. doi: 10.1603/ME10051. PubMed DOI PMC

Peckarsky BL. Aquatic insect predator–prey relations. BioScience. 1982;32:261–266. doi: 10.2307/1308532. DOI

Petchey O, Beckerman A, Riede J, Warren P. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:4191–4196. doi: 10.1073/pnas.0710672105. PubMed DOI PMC

Petchey O, Brose U, Rall B. Predicting the effects of temperature on food web connectance. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365:2081–2091. doi: 10.1098/rstb.2010.0011. PubMed DOI PMC

Plummer M. Jags: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A, editors. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria; 2003. Available at http://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf (accessed 1 February 2014)

Plummer M. rjags: Bayesian graphical models using MCMC. (R package version 3-11) 2013 Available at http://CRAN.R-project.org/package=rjags .

Plummer M, Best N, Cowles K, Vines K. Coda: convergence diagnosis and output analysis for mcmc. R News. 2006;6:7–11. Available at http://CRAN.R-project.org/doc/Rnews/

Polis G. Complex trophic interactions in deserts: an empirical critique of food-web theory. American Naturalist. 1991;138:123–155. doi: 10.1086/285208. DOI

Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P. Who is eating what: diet assessment using next generation sequencing. Molecular Ecology. 2012;21:1931–1950. doi: 10.1111/j.1365-294X.2011.05403.x. PubMed DOI

Popham EJ, Bryant MT, Savage AA. The role of front legs of british corixid bugs in feeding and mating. Journal of Natural History. 1984;18:445–464. doi: 10.1080/00222938400770381. DOI

R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. Available at http://www.R-project.org/

Rohr R, Scherer H, Kehrli P, Mazza C, Bersier LF. Modeling food webs: exploring unexplained structure using latent traits. American Naturalist. 2010;176:170–177. doi: 10.1086/653667. PubMed DOI

Rossberg A, Brännström Å, Dieckmann U. How trophic interaction strength depends on traits. Theoretical Ecology. 2010;3:13–24. doi: 10.1007/s12080-009-0049-1. DOI

Schilling EG, Loftin CS, Huryn AD. Macroinvertebrates as indicators of fish absence in naturally fishless lakes. Freshwater Biology. 2009;54:181–202. doi: 10.1111/j.1365-2427.2008.02096.x. DOI

Shaalan ES, Canyon D. Aquatic insect predators and mosquito control. Tropical Biomedicine. 2009;26:223–261. PubMed

Symondson W. Molecular identification of prey in predator diets. Molecular Ecology. 2002;11:627–641. doi: 10.1046/j.1365-294X.2002.01471.x. PubMed DOI

Tate AW, Hershey AE. Selective feeding by larval dytiscids (Coleoptera: Dytiscidae) and effects of fish predation on upper littoral zone macroinvertebrate communities of arctic lakes. Hydrobiologia. 2003;497:13–23. doi: 10.1023/A:1025401318921. DOI

Thompson R, Dunne J, Woodward G. Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology. 2012;57:1329–1341. doi: 10.1111/j.1365-2427.2012.02808.x. DOI

Tolonen K, Hämäläinen H, Holopainen I, Mikkonen K, Karjalainen J. Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia. 2003;499:179–190. doi: 10.1023/A:1026325432000. DOI

Warren P. Spatial and temporal variation in the structure of a freshwater food web. Oikos. 1989;55:299–311. doi: 10.2307/3565588. DOI

Williams R, Anandanadesan A, Purves D. The probabilistic niche model reveals the niche structure and role of body size in a complex food web. PLoS ONE. 2010;5:e12092. doi: 10.1371/journal.pone.0012092. PubMed DOI PMC

Williams R, Purves D. The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology. 2011;92:1849–1857. doi: 10.1890/11-0200.1. PubMed DOI

Wirtz K. Who is eating whom? morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Marine Ecology Progress Series. 2012;445:1–12. doi: 10.3354/meps09502. DOI

Woodward G, Hildrew A. Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology. 2002;71:1063–1074. doi: 10.1046/j.1365-2656.2002.00669.x. DOI

Wootton JT. Estimates and tests of per capita interaction strength: diet, abundance, and impact of intertidally foraging birds. Ecological Monographs. 1997;67:45–64. doi: 10.1890/0012-9615(1997)067[0045:EATOPC]2.0.CO;2. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...