Genetic susceptibility to sarcoid in Arabian horses: associations with MHC class II and compound MHC class I/KLRA genotypes
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
40310488
PubMed Central
PMC12045807
DOI
10.1007/s11259-025-10748-2
PII: 10.1007/s11259-025-10748-2
Knihovny.cz E-resources
- Keywords
- Association, Horse, KLRA, MHC, Sarcoid,
- MeSH
- Genetic Predisposition to Disease * MeSH
- Genotype MeSH
- Genes, MHC Class I * genetics MeSH
- Genes, MHC Class II * genetics MeSH
- Horses MeSH
- Histocompatibility Antigens Class II genetics MeSH
- Microsatellite Repeats genetics MeSH
- Horse Diseases * genetics immunology MeSH
- Sarcoidosis * veterinary genetics immunology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Histocompatibility Antigens Class II MeSH
Although the Major Histocompatibility Complex (MHC) has been repeatedly associated with susceptibility to equine sarcoid, a disease associated with bovine papillomavirus infection, the role of the MHC in the mechanisms of the disease is not fully understood. The objectives of our work were to analyze associations between polymorphic markers of the MHC genomic subregions and of the Natural Killer Complex (NKC) genomic region and the presence of sarcoid in Arabian horses. Microsatellite loci located in the MHC class I, II and III subregions and two MHC class II genes (DRA, DQA1), along with a set of NKC (KLRA, CLEC subregions) microsatelllite markers were genotyped. Fifteen microsatellites of the standard parentage kit, located outside the MHC and NKC regions, were tested as controls. Standard chi-square and Fisher tests with Bonferroni corrections were used for association analyses. Significant associations of MHC class II and MHC class I_KLRA polymorphic markers with the presence of clinical sarcoid were observed. These findings are consistent with biological theory and indicate a role of MHC class I, class II and KLRA molecules in adaptive as well as in innate immune responses to equine sarcoid. Although limited to Arabian horses, these data point to an as yet unadressed hypothesis regarding the possible roles of NK cells in the pathogenesis of equine sarcoid.
Faculty of Agronomy Mendel University Brno Czech Republic
RG Animal Immunogenomics CEITEC VETUNI University of Veterinary Sciences Brno Brno Czech Republic
See more in PubMed
Angelos J, Oppenheim Y, Rebhun W et al (1988) Evaluation of breed as a risk factor for sarcoid and uveitis in horses. Anim Genet 19:417–425. 10.1111/j.1365-2052.1988.tb00833 PubMed
Bao X, Hanson AL, Madeleine MM et al (2018) HLA and KIR associations of cervical neoplasia. J Infect Dis 218:2006–2015. 10.1093/infdis/jiy483 PubMed PMC
Bogaert L, Martens A, De Baere C, Gasthuys F (2005) Detection of bovine papillomavirus DNA on the normal skin and in the habitual surroundings of horses with and without equine sarcoids. Res Vet Sci 79:253–258. 10.1016/j.rvsc.2004.12.003 PubMed
Brinkmeyer-Langford CL, Cai JJ, Gill CA, Skow LC (2013) Microsatellite variation in the equine MHC. Anim Genet 44:267–275. 10.1111/age.12003 PubMed
Broström H (1995) Equine sarcoids. A clinical and epidemiological study in relation to equine leucocyte antigens (ELA). Acta Vet Scand 36:223–236. 10.1186/BF03547691 PubMed PMC
Broström H, Fahlbrink E, Dubath ML, Lazary S (1988) Association between equine leucocyte antigens (ELA) and equine sarcoid tumors in the population of Swedish halfbreds and some of their families. Vet Immunol Immunopathol 19:215–223. 10.1016/0165-2427(88)90109-2 PubMed
Bubenikova J, Plasil M, Futas J et al (2024) Diversity of major histocompatibility complex (MHC) and natural killer cell receptor (NKR) genes and their interactions in domestic horses. HLA 103:e15387. 10.1111/tan.15387 PubMed
Carr EA, Théon AP, Madewell BR et al (2001) Expression of a transforming gene (E5) of bovine papillomavirus in sarcoids obtained from horses. Am J Vet Res 62:1212–1217. 10.2460/ajvr.2001.62.1212 PubMed
Carrington M, Wang S, Martin MP et al (2005) Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci. J Exp Med 201:1069–1075. 10.1084/jem.20042158 PubMed PMC
Chambers G, Ellsmore VA, O’Brien PM et al (2003) Association of bovine papillomavirus with the equine sarcoid. J Gen Virol 84:1055–1062. 10.1099/vir.0.18947-0 PubMed
Chuang LC, Hu CY, Chen HC et al (2012) Associations of human leukocyte antigen class II genotypes with human papillomavirus 18 infection and cervical intraepithelial neoplasia risk. Cancer 118:223–231. 10.1002/cncr.26227 PubMed
de Wit E, van Helden PD, Hoal EG (2011) Gene-gene interaction between tuberculosis candidate genes in a South African population. Mamm Genome 22:100–110. 10.1007/s00335-010-9280-8 PubMed
Dhatchinamoorthy K, Colbert JD, Rock KL (2021) Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol 12:636568. 10.3389/fimmu.2021.636568 PubMed PMC
Espinoza H, Ha KT, Pham TT, Espinoza JL (2021) Genetic predisposition to persistent human papillomavirus-infection and virus-induced cancers. Microorganisms 9:2092. 10.3390/microorganisms9102092 PubMed PMC
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567. 10.1111/j.1755-0998.2010.02847.x PubMed
Futas J, Oppelt J, Janova E et al (2020) Complex variation in the KLRA (LY49) immunity-related genomic region in horses. HLA 96:257–267. 10.1111/tan.13939 PubMed
Guethlein LA, Norman PJ, Hilton HG, Parham P (2015) Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 267:259–282. 10.1111/imr.12326 PubMed PMC
Haspeslagh M, Gerber V, Knottenbelt DC et al (2018) The clinical diagnosis of equine sarcoids—Part 2: assessment of case features typical of equine sarcoids and validation of a diagnostic protocol to guide equine clinicians in the diagnosis of equine sarcoids. Vet J 240:14–18. 10.1016/j.tvjl.2018.08.010 PubMed
Horecky C, Horecka E, Futas J et al (2018) Microsatellite markers for evaluating the diversity of the natural killer complex and major histocompatibility complex genomic regions in domestic horses. HLA 91:271–279. 10.1111/tan.13211 PubMed
Hörnaeus K (2013) The molecular background of equine sarcoids. Master thesis, Swedish University of Agricultural Sciences
Jandova V, Klukowska-Rötzler J, Dolf G et al (2012) Whole genome scan identifies several chromosomal regions linked to equine sarcoids. Schweiz Arch Tierheilkd 154:19–25. 10.1024/0036-7281/a000288 PubMed
Janova E, Matiasovic J, Vahala J et al (2009) Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics 61:513–527. 10.1007/s00251-009-0380-0 PubMed
Jindra C, Hainisch EK, Brandt S (2023) Immunotherapy of equine sarcoids—from early approaches to innovative vaccines. Vaccines 11:769. 10.3390/vaccines11040769 PubMed PMC
Kamath PL, Getz WM (2011) Adaptive molecular evolution of the major histocompatibility complex genes, DRA and DQA, in the genus Equus. BMC Evol Biol 11:128. 10.1186/1471-2148-11-128 PubMed PMC
Knottenbelt DC (2005) A suggested clinical classification for the equine sarcoid. Clin Tech Equine Pract 4:278–295. 10.1053/j.ctep.2005.10.008
Knowles EJ, Tremaine WH, Pearson GR, Mair TS (2016) A database survey of equine tumours in the united Kingdom. Equine Vet J 48:280–284. 10.1111/evj.12421 PubMed
Kulski JK, Shiina T, Dijkstra JM (2019) Genomic diversity of the major histocompatibility complex in health and disease. Cells 8:1270. 10.3390/cells8101270 PubMed PMC
Lazary S, Marti E, Szalai G et al (1994) Studies on the frequency and associations of equine leucocyte antigens in sarcoid and summer dermatitis. Anim Genet 25:75–80. 10.1111/j.1365-2052.1994.tb00406.x PubMed
Leo PJ, Madeleine MM, Wang S et al (2017) Defining the genetic susceptibility to cervical neoplasia—A genome-wide association study. PLoS Genet 13:e1006866. 10.1371/journal.pgen.1006866 PubMed PMC
Maccari G, Robinson J, Ballingall K et al (2017) IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Res 45:860–864. 10.1093/nar/gkw1050 PubMed PMC
Mählmann K, Hamza E, Marti E et al (2014) Increased FOXP3 expression in tumour-associated tissues of horses affected with equine sarcoid disease. Vet J 202:516–521. 10.1016/j.tvjl.2014.09.003 PubMed
Marchetti B, Gault EA, Cortese MS et al (2009) Bovine papillomavirus type 1 oncoprotein E5 inhibits equine MHC class I and interacts with equine MHC I heavy chain. J Gen Virol 90:2865–2870. 10.1099/vir.0.014746-0 PubMed
Martens A, De Moor A, Demeulemeester J, Peelman L (2001) Polymerase chain reaction analysis of the surgical margins of equine sarcoids for bovine papilloma virus DNA. Vet Surg 30:460–467. 10.1053/jvet.2001.25874 PubMed
Marti E, Lazary S, Antczak DF, Gerber H (1993) Report of the first international workshop on equine sarcoid*. Equine Vet J 25:397–407. 10.1111/j.2042-3306.1993.tb02981.x PubMed
Meredith D, Elser AH, Wolf B et al (1986) Equine leukocyte antigens: relationships with sarcoid tumors and laminitis in two pure breeds. Immunogenetics 23:221–225. 10.1007/BF00373016 PubMed
Metcalfe S, Roger M, Faucher MC et al (2013) The association between human leukocyte antigen (HLA)-G polymorphisms and human papillomavirus (HPV) infection in Inuit women of Northern Quebec. Hum Immunol 74:1610–1615. 10.1016/j.humimm.2013.08.279 PubMed
Mittmann HE, Wrede J, Pook J, Distl O (2010) Identification of 21 781 equine microsatellites on the horse genome assembly 2.0. Anim Genet 41:222. 10.1111/j.1365-2052.2009.01970.x PubMed
Mohammed HO, Rebhun WC, Antczak DF (1992) Factors associated with the risk of developing sarcoid tumours in horses. Equine Vet J 24:165–168. 10.1111/j.2042-3306.1992.tb02808.x PubMed
Nasir L, Campo MS (2008) Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of Bovids and equids. Vet Dermatol 19:243–254. 10.1111/j.1365-3164.2008.00683.x PubMed
Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769. 10.1086/383251 PubMed PMC
O’Brien PM, Saveria Campo M (2002) Evasion of host immunity directed by papillomavirus-encoded proteins. Virus Res 88:103–117. 10.1016/S0168-1702(02)00123-5 PubMed
Ogłuszka M, Starzyński RR, Pierzchała M et al (2021) Equine sarcoids—causes, molecular changes, and clinicopathologic features: A review. Vet Pathol 58:472–482. 10.1177/0300985820985114 PubMed
Orgul G, Dalva K, Dalva-Aydemir S et al (2021) Significance of inhibitory maternal killer-cell immunoglobulin-like receptor (KIR) and fetal KIR ligand genotype combinations in placenta related obstetric complications. J Reprod Immunol 148:103425. 10.1016/j.jri.2021.103425 PubMed
Pawlina K, Gurgul A, Szmatoła T et al (2017) Comprehensive characteristics of MicroRNA expression profile of equine sarcoids. Biochimie 137:20–28. 10.1016/j.biochi.2017.02.017 PubMed
Plasil M, Oppelt J, Klumplerova M et al (2023) Newly identified variability of the antigen binding site coding sequences of the equine major histocompatibility complex class I and class II genes. HLA 102:489–500. 10.1111/tan.15078 PubMed
Pollock NR, Harrison GF, Norman PJ (2022) Immunogenomics of killer cell immunoglobulin-like receptor (KIR) and HLA class I: Coevolution and consequences for human health. J Allergy Clin Immunol: Pract 10:1763–1775. 10.1016/j.jaip.2022.04.036 PubMed PMC
Ragland WL, Keown GH, Spencer GR (1970) Equine sarcoid. Equine Vet J 2:2–11. 10.1111/j.2042-3306.1970.tb04145.x
Rajagopalan S, Long EO (2005) Understanding how combinations of HLA and KIR genes influence disease. J Exp Med 201:1025–1029. 10.1084/jem.20050499 PubMed PMC
RNAcentral Consortium (2021) RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res 49:212–220. 10.1093/nar/gkaa921 PubMed PMC
Sayers EW, Bolton EE, Brister JR et al (2021) Database resources of the National center for biotechnology information. Nucleic Acids Res 50:20–26. 10.1093/nar/gkab1112 PubMed PMC
Schwartz JC, Gibson MS, Heimeier D et al (2017) The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation. Immunogenetics 69:255–269. 10.1007/s00251-017-0973-y PubMed PMC
Semik E, Gurgul A, Ząbek T et al (2017) Transcriptome analysis of equine sarcoids. Vet Comp Oncol 15:1370–1381. 10.1111/vco.12279 PubMed
Semik-Gurgul E, Gurgul A, Szmatoła T (2023) Transcriptome and methylome sequencing reveals altered long non-coding RNA genes expression and their aberrant DNA methylation in equine sarcoids. Funct Integr Genomics 23:268. 10.1007/s10142-023-01200-2 PubMed PMC
Staiger EA, Tseng CT, Miller D et al (2016) Host genetic influence on papillomavirus-induced tumors in the horse. Int J Cancer 139:784–792. 10.1002/ijc.30120 PubMed
Stejskalova K, Cvanova M, Oppelt J et al (2019) Genetic susceptibility to West nile virus infection in Camargue horses. Res Vet Sci 124:284–292. 10.1016/j.rvsc.2019.04.004 PubMed
Takahashi T, Yawata M, Raudsepp T et al (2004) Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed LY49 genes. Eur J Immunol 34:773–784. 10.1002/eji.200324695 PubMed
Tembhurne AK, Maheshwari A, Warke H et al (2023) Killer cell immunoglobulin-like receptor (KIR) gene contents: are they associated with cervical cancer? J Med Virol 95:e27873. 10.1002/jmv.27873 PubMed
Tozaki T, Swinburne J, Hirota K, Hasegawa T, Ishida N, Tobe T (2007) Improved resolution of the comparative horse-human map: investigating markers with in Silico and linkage mapping approaches. Gene 392:181–186. 10.1016/j.gene.2006.12.018 PubMed
Tseng CT, Miller D, Cassano J (2010) Identification of equine major histocompatibility complex haplotypes using polymorphic microsatellites. Anim Genet 41:150–153. 10.1111/j.1365-2052.2010.02125.x PubMed PMC
Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. 10.1093/nar/gks596 PubMed PMC
Valentine BA (2006) Survey of equine cutaneous neoplasia in the Pacific Northwest. J Vet Diagn Invest 18:123–126. 10.1177/104063870601800121 PubMed
van Dyk E, Oosthuizen MC, Bosman AM et al (2009) Detection of bovine papillomavirus DNA in sarcoid-affected and healthy free-roaming zebra (Equus zebra) populations in South Africa. J Virol Methods 158:141–151. 10.1016/j.jviromet.2009.02.008 PubMed
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A (2024) Natural killer cells and cytotoxic T cells: complementary partners against microorganisms and cancer. Microorganisms 22:230. 10.3390/microorganisms12010230 PubMed PMC
Wobeser BK, Davies JL, Hill JE et al (2010) Epidemiology of equine sarcoids in horses in Western Canada. Can Vet J 51:1103–1108 PubMed PMC
Yuan ZQ, Nicolson L, Marchetti B et al (2008) Transcriptional changes induced by bovine papillomavirus type 1 in equine fibroblasts. J Virol 82:6481–6491. 10.1128/jvi.00429-08 PubMed PMC