Newly identified variability of the antigen binding site coding sequences of the equine major histocompatibility complex class I and class II genes
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37106476
DOI
10.1111/tan.15078
Knihovny.cz E-resources
- Keywords
- Eqca, Equus caballus, MHC, MHC class I, MHC class II, MSATs,
- MeSH
- Alleles MeSH
- Exons genetics MeSH
- Genes, MHC Class II * MeSH
- Major Histocompatibility Complex MeSH
- Horses genetics MeSH
- Histocompatibility Antigens Class I * MeSH
- Histocompatibility Antigens Class II genetics MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histocompatibility Antigens Class I * MeSH
- Histocompatibility Antigens Class II MeSH
The major histocompatibility complex (MHC) with its class I and II genes plays a crucial role in the immune response to pathogens by presenting oligopeptide antigens to various immune response effector cells. In order to counteract the vast variability of infectious agents, MHC class I and II genes usually retain high levels of SNPs mainly concentrated in the exons encoding the antigen binding sites. The aim of the study was to reveal new variability of selected MHC genes with a special focus on MHC class I physical haplotypes. Long-range NGS to was used to identify exon 2-exon 3 alleles in three genetically distinct horse breeds. A total of 116 allelic variants were found in the MHC class I genes Eqca-1, Eqca-2, Eqca-7 and Eqca-Ψ, 112 of which were novel. The MHC class II DRA locus was confirmed to comprise five exon 2 alleles, and no new sequences were observed. Additional variability in terms of 15 novel exon 2 alleles was identified in the DQA1 locus. Extensive overall variability across the entire MHC region was confirmed by an analysis of MHC-linked microsatellite loci. Both diversifying and purifying selection were detected within the MHC class I and II loci analyzed.
See more in PubMed
Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 2020;36(4):298-311. doi:10.1016/j.tig.2020.01.008
Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B Biol Sci. 2010;277(1684):979-988. doi:10.1098/rspb.2009.2084
Klein J, Sato A, Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet. 2007;41:281-304. doi:10.1146/annurev.genet.41.110306.130137
Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823-836.
Williams DB, Barber BH, Flavell RA, Allen H. Role of beta 2-microglobulin in the intracellular transport and surface expression of murine class I histocompatibility molecules. J Immunol. 1989;142(8):2796-2806.
D'Souza MP, Adams E, Altman JD, et al. Casting a wider net: Immunosurveillance by nonclassical MHC molecules. PLoS Pathog. 2019;15(2):e1007567. doi:10.1371/journal.ppat.1007567
Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol. 2003;16(3):363-377.
Abualrous ET, Sticht J, Freund C. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Curr Opin Immunol. 2021;70:95-104. doi:10.1016/j.coi.2021.04.009
Yuhki N, Beck T, Stephens RM, Nishigaki Y, Newmann K, O'Brien SJ. Comparative genome organization of human, murine, and feline MHC class II region. Genome Res. 2003;13(6A):1169-1179. doi:10.1101/gr.976103
Alcaide M, Edwards SV, Negro JJ. Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey. J Mol Evol. 2007;65(5):541-554. doi:10.1007/s00239-007-9033-9
Ballingall KT, Rocchi MS, McKeever DJ, Wright F. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep. PLoS One. 2010;5(6):e11402. doi:10.1371/journal.pone.0011402
Mikko S, Røed K, Schmutz S, Andersson L. Monomorphism and polymorphism at Mhc DRB loci in domestic and wild ruminants. Immunol Rev. 1999;167(1):169-178.
Deakin JE, Papenfuss AT, Belov K, et al. Evolution and comparative analysis of the MHC class III inflammatory region. BMC Genomics. 2006;7:281. doi:10.1186/1471-2164-7-281
Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics. 2006;58(9):701-713. doi:10.1007/s00251-006-0142-1
da Silva AP, Gallardo RA. The chicken MHC: insights into genetic resistance, immunity, and inflammation following infectious bronchitis virus infections. Vaccine. 2020;8(4):637. doi:10.3390/vaccines8040637
Dukkipati VSR, Blair HT, Garrick DJ, Murray A. “Ovar-Mhc”-ovine major histocompatibility complex: structure and gene polymorphisms. Genet Mol Res GMR. 2006;5(4):581-608.
Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017;18(1):76.
Babik W. Methods for MHC genotyping in non-model vertebrates. Mol Ecol Resour. 2010;10(2):237-251. doi:10.1111/j.1755-0998.2009.02788.x
Brown J j, Thomson W, Clegg P, et al. Polymorphisms of the equine major histocompatibility complex class II DRA locus. Tissue Antigens. 2004;64(2):173-179. doi:10.1111/j.1399-0039.2004.00269.x
Klumplerova M, Splichalova P, Oppelt J, et al. Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae. BMC Genomics. 2020;21(1):677. doi:10.1186/s12864-020-07089-6
Kalbfleisch TS, Rice ES, DePriest MS, et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun Biol. 2018;1(1):1-8. doi:10.1038/s42003-018-0199-z
Tallmadge RL, Lear TL, Antczak DF. Genomic characterization of MHC class I genes of the horse. Immunogenetics. 2005;57(10):763-774. doi:10.1007/s00251-005-0034-9
Gustafson AL, Tallmadge RL, Ramlachan N, et al. An ordered BAC contig map of the equine major histocompatibility complex. Cytogenet Genome Res. 2003;102(1-4):189-195.
Tallmadge RL, Campbell JA, Miller DC, Antczak DF. Analysis of MHC class I genes across horse MHC haplotypes. Immunogenetics. 2010;62(3):159-172. doi:10.1007/s00251-009-0420-9
Cheng Y, Grueber C, Hogg CJ, Belov K. Improved high-throughput MHC typing for non-model species using long-read sequencing. Mol Ecol Resour. 2022;22(3):862-876. doi:10.1111/1755-0998.13511
Horecky C, Horecka E, Futas J, Janova E, Horin P, Knoll A. Microsatellite markers for evaluating the diversity of the natural killer complex and major histocompatibility complex genomic regions in domestic horses. HLA. 2018;91(4):271-279. doi:10.1111/tan.13211
Janova E, Matiasovic J, Vahala J, Vodicka R, Dyk E, Horin P. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. Immunogenetics. 2009;61(7):513-527. doi:10.1007/s00251-009-0380-0
Vranova M, Alloggio I, Qablan M, et al. Genetic diversity of the class II major histocompatibility DRA locus in European, Asiatic and African domestic donkeys. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2011;11(5):1136-1141. doi:10.1016/j.meegid.2011.04.010
Stejskalova K, Cvanova M, Oppelt J, et al. Genetic susceptibility to West Nile virus infection in Camargue horses. Res Vet Sci. 2019;124:284-292. doi:10.1016/j.rvsc.2019.04.004
Stejskalova K, Janova E, Horecky C, et al. Associations between the presence of specific antibodies to the West Nile virus infection and candidate genes in Romanian horses from the Danube delta. Mol Biol Rep. 2019;46(4):4453-4461. doi:10.1007/s11033-019-04900-w
Untergasser A, Cutcutache I, Koressaar T, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. doi:10.1093/nar/gks596
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722-736.
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-3100. doi:10.1093/bioinformatics/bty191
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078-2079.
Jun G, Wing MK, Abecasis GR, Kang HM. An efficient and scalable analysis framework for variant extraction and refinement from population scale DNA sequence data. Genome Res. 2015;25(6):918-25. doi:10.1101/gr.176552.114
Martin M, Patterson M, Garg S, et al. WhatsHap: fast and accurate read-based phasing. bioRxiv. 2016;085050. doi:10.1101/085050
Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10(2):giab008. doi:10.1093/gigascience/giab008
Bubenikova J, Vychodilova L, Stejskalova K, et al. The population diversity of candidate genes for resistance/susceptibility to coronavirus infection in domestic cats: an inter-breed comparison. Pathogens. 2021;10(6):778. doi:10.3390/pathogens10060778
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120.
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv Prepr. 2013;ArXiv1303:3997.
Breese MR, Liu Y. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29(4):494-496.
McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303.
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2015;32(2):292-294.
Poplin R, Ruano-Rubio V, DePristo MA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2017;201178.
Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568-576.
Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-2158.
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinforma Oxf Engl. 2012;28(19):2537-2539. doi:10.1093/bioinformatics/bts460
Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 2018;35(3):773-777. doi:10.1093/molbev/msx335
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2):254-267. doi:10.1093/molbev/msj030
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. doi:10.1093/molbev/msab120
Ballingall KT, Bontrop RE, Ellis SA, et al. Comparative MHC nomenclature: report from the ISAG/IUIS-VIC committee 2018. Immunogenetics. 2018;70(10):625-632. doi:10.1007/s00251-018-1073-3
Maccari G, Robinson J, Ballingall K, et al. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex. Nucleic Acids Res. 2017;45(D1):D860-D864. doi:10.1093/nar/gkw1050
Schwartz JC, Maccari G, Heimeier D, Hammond JA. Highly-contiguous bovine genomes underpin accurate functional analyses and updated nomenclature of MHC class I. HLA. 2022;99(3):167-182. doi:10.1111/tan.14494
Yuhki N, Mullikin JC, Beck T, Stephens R, O'Brien SJ. Sequences, annotation and single nucleotide polymorphism of the major histocompatibility complex in the domestic cat. PLoS One. 2008;3(7):e2674. doi:10.1371/journal.pone.0002674
Andersson LS, Swinbune JE, Meadows JRS, et al. The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations. Immunogenetics. 2012;64(3):201-208. doi:10.1007/s00251-011-0573-1
Miller D, Tallmadge RL, Binns M, et al. Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes. Immunogenetics. 2017;69(3):145-156. doi:10.1007/s00251-016-0964-4
Fan S, Wang Y, Wang S, et al. Polymorphism and peptide-binding specificities of porcine major histocompatibility complex (MHC) class I molecules. Mol Immunol. 2018;93:236-245. doi:10.1016/j.molimm.2017.06.024
Sadeghi R, Moradi-Shahrbabak M, Miraei Ashtiani SR, Miller DC, Antczak DF. MHC haplotype diversity in Persian Arabian horses determined using polymorphic microsatellites. Immunogenetics. 2018;70(5):305-315. doi:10.1007/s00251-017-1039-x
Berber N, Gaouar S, Leroy G, Kdidi S, Tabet Aouel N, Saïdi MN. Molecular characterization and differentiation of five horse breeds raised in Algeria using polymorphic microsatellite markers. J Anim Breed Genet. 2014;131(5):387-394. doi:10.1111/jbg.12092
Machmoum M, Boujenane I, Azelhak R, Badaoui B, Petit D, Piro M. Genetic diversity and population structure of Arabian horse populations using microsatellite markers. J Equine Vet Sci. 2020;93:103200. doi:10.1016/j.jevs.2020.103200
Olerup O, Troye-Blomberg M, Schreuder GM, Riley EM. HLA-DR and -DQ gene polymorphism in west Africans is twice as extensive as in north European Caucasians: evolutionary implications. Proc Natl Acad Sci. 1991;88(19):8480-8484. doi:10.1073/pnas.88.19.8480
Prugnolle F, Manica A, Charpentier M, Guégan JF, Guernier V, Balloux F. Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol. 2005;15(11):1022-1027. doi:10.1016/j.cub.2005.04.050
GX E, Chen LP, Zhou DK, et al. Evolutionary relationship and population structure of domestic Bovidae animals based on MHC-linked and neutral autosomal microsatellite markers. Mol Immunol. 2020;124:83-90. doi:10.1016/j.molimm.2020.05.005
Kamath PL, Getz WM. Unraveling the effects of selection and demography on immune gene variation in free-Ranging Plains zebra (Equus quagga) populations. PLoS One. 2012;7(12):e50971. doi:10.1371/journal.pone.0050971
Yao S, Liu J, Qi J, et al. Structural illumination of equine MHC class I molecules highlights unconventional epitope presentation manner that is evolved in equine leukocyte antigen alleles. J Immunol. 2016;196(4):1943-1954. doi:10.4049/jimmunol.1501352