Diversity of major histocompatibility complex (MHC) and natural killer cell receptor (NKR) genes and their interactions in domestic horses
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
DSP_2022_4
VETUNI Brno
Ceitec/Horin/ITA/2020
VETUNI Brno
PubMed
38358031
DOI
10.1111/tan.15387
Knihovny.cz E-zdroje
- Klíčová slova
- MHC genes, NKR genes, horse, immunogenome,
- MeSH
- alely MeSH
- chov MeSH
- hlavní histokompatibilní komplex * genetika MeSH
- koně genetika MeSH
- lidé MeSH
- polymorfismus genetický * MeSH
- receptory buněk NK genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory buněk NK MeSH
The immunogenome is the part of the genome that underlies immune mechanisms and evolves under various selective pressures. Two complex regions of the immunogenome, major histocompatibility complex (MHC) and natural killer cell receptor (NKR) genes, play an important role in the response to selective pressures of pathogens. Their importance is expressed by their genetic polymorphism at the molecular level, and their diversity associated with different types of diseases at the population level. Findings of associations between specific combinations of MHC/NKR haplotypes with different diseases in model species suggest that these gene complexes did not evolve independently. No such associations have been described in horses so far. The aim of the study was to detect associations between MHC and NKR gene/microsatellite haplotypes in three horse breed groups (Camargue, African, and Romanian) by statistical methods; chi-square test, Fisher's exact test, Pearson's goodness-of-fit test and logistic regression. Associations were detected for both MHC/NKR genes and microsatellites; the most significant associations were found between the most variable KLRA3 gene and the EQCA-1 or EQCA-2 genes. This finding supports the assumption that the KLRA3 is an important receptor for MHC I and that interactions of these molecules play important roles in the horse immunity and reproduction. Despite some limitations of the study such as low numbers of horses or lack of knowledge of the selected genes functions, the results were consistent across different statistical methods and remained significant even after overconservative Bonferroni corrections. We therefore consider them biologically plausible.
Zobrazit více v PubMed
Akkaya M, Barclay AN. How do pathogens drive the evolution of paired receptors? Eur J Immunol. 2013;43(2):303-313. doi:10.1002/eji.201242896
Tizard IR. Chapter 7 - The mammalian major histocompatibility complex. In: Tizard IR, ed. Comparative Mammalian Immunology. Developments in Immunology. Academic Press; 2023:89-99. doi:10.1016/B978-0-323-95219-4.00011-3
Murphy K, Weaver C. Janeway's Immunobiology. 9th ed. Garland Science. Taylor & Francis Group; 2017.
Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet. 2013;14(1):301-323. doi:10.1146/annurev-genom-091212-153455
Debebe BJ, Boelen L, Lee JC, et al. Identifying the immune interactions underlying HLA class I disease associations. eLife. 2020;9:e54558. doi:10.7554/eLife.54558
Gao X, Nelson GW, Karacki P, et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med. 2001;344(22):1668-1675. doi:10.1056/NEJM200105313442203
Takeshima S-n, Sasaki S, Meripet P, Sugimoto Y, Aida Y. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load. Retrovirology. 2017;14:24. doi:10.1186/s12977-017-0348-3
Rastislav M, Mangesh B. BoLA-DRB3 exon 2 mutations associated with paratuberculosis in cattle. Vet J. 2012;192(3):517-519. doi:10.1016/j.tvjl.2011.07.005
Minias P, Vinkler M. Selection balancing at innate immune genes: adaptive polymorphism maintenance in toll-like receptors. Mol Biol Evol. 2022;39(5):msac102. doi:10.1093/molbev/msac102
Niskanen AK, Kennedy LJ, Ruokonen M, et al. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol Ecol. 2014;23(4):875-889. doi:10.1111/mec.12647
Rock KL, Reits E, Neefjes J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 2016;37(11):724-737. doi:10.1016/j.it.2016.08.010
Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity. 2001;15(3):363-374. doi:10.1016/s1074-7613(01)00197-2
Sambrook JG, Beck S. Evolutionary vignettes of natural killer cell receptors. Curr Opin Immunol. 2007;19(5):553-560. doi:10.1016/j.coi.2007.08.002
Brown MG, Scalzo AA. NK gene complex dynamics and selection for NK cell receptors. Semin Immunol. 2008;20(6):361-368. doi:10.1016/j.smim.2008.06.004
Kelley J, Walter L, Trowsdale J. Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet. 2005;1(2):129-139. doi:10.1371/journal.pgen.0010027
Prugnolle F, Manica A, Charpentier M, Guégan JF, Guernier V, Balloux F. Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol. 2005;15(11):1022-1027. doi:10.1016/j.cub.2005.04.050
Khor CC, Hibberd ML. Host-pathogen interactions revealed by human genome-wide surveys. Trends Genet. 2012;28(5):233-243. doi:10.1016/j.tig.2012.02.001
Orgul G, Dalva K, Dalva-Aydemir S, et al. Significance of inhibitory maternal killer-cell immunoglobulin-like receptor (KIR) and fetal KIR ligand genotype combinations in placenta related obstetric complications. J Reprod Immunol. 2021;148:103425. doi:10.1016/j.jri.2021.103425
Todd ET, Thomson PC, Hamilton NA, et al. A genome-wide scan for candidate lethal variants in Thoroughbred horses. Sci Rep. 2020;10:13153. doi:10.1038/s41598-020-68946-8
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev. 2015;267(1):259-282. doi:10.1111/imr.12326
de Groot NG, Blokhuis JH, Otting N, Doxiadis GGM, Bontrop RE. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol Rev. 2015;267(1):228-245. doi:10.1111/imr.12313
Wroblewski EE, Parham P, Guethlein LA. Two to tango: co-evolution of hominid natural killer cell receptors and MHC. Front Immunol. 2019;10:177. doi:10.3389/fimmu.2019.00177
Kelley J, Trowsdale J. Features of MHC and NK gene clusters. Transpl Immunol. 2005;14(3-4):129-134. doi:10.1016/j.trim.2005.03.001
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of killer cell immunoglobulin-like receptor (KIR) and HLA class I: coevolution and consequences for human health. J Allergy Clin Immunol Pract. 2022;10(7):1763-1775. doi:10.1016/j.jaip.2022.04.036
Kalbfleisch TS, Rice ES, DePriest MS, et al. EquCab3, an Updated Reference Genome for the Domestic Horse. 306928. Published online April 25 2018. doi:10.1101/306928
Plasil M, Oppelt J, Klumplerova M, et al. Newly identified variability of the antigen binding site coding sequences of the equine major histocompatibility complex class I and class II genes. HLA. 2023;102(4):489-500. doi:10.1111/tan.15078
Takahashi T, Yawata M, Raudsepp T, et al. Natural killer cell receptors in the horse: evidence for the existence of multiple transcribed LY49 genes. Eur J Immunol. 2004;34(3):773-784. doi:10.1002/eji.200324695
Futas J, Horin P. Natural killer cell receptor genes in the family Equidae: not only Ly49. PloS One. 2013;8(5):e64736. doi:10.1371/journal.pone.0064736
Futas J, Oppelt J, Janova E, Musilova P, Horin P. Complex variation in the KLRA (LY49) immunity-related genomic region in horses. HLA. 2020;96(3):257-267. doi:10.1111/tan.13939
Horecky C, Horecka E, Futas J, Janova E, Horin P, Knoll A. Microsatellite markers for evaluating the diversity of the natural killer complex and major histocompatibility complex genomic regions in domestic horses. HLA. 2018;91(4):271-279. doi:10.1111/tan.13211
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564-567. doi:10.1111/j.1755-0998.2010.02847.x
Fasano ME, Rendine S, Pasi A, et al. The distribution of KIR-HLA functional blocks is different from North to South of Italy. Tissue Antigens. 2014;83(3):168-173. doi:10.1111/tan.12299
Guinan KJ, Cunningham RT, Meenagh A, et al. Signatures of natural selection and coevolution between killer cell immunoglobulin-like receptors (KIR) and HLA class I genes. Genes Immun. 2010;11(6):467-478. doi:10.1038/gene.2010.9
Pelak K, Need AC, Fellay J, et al. Copy number variation of KIR genes influences HIV-1 control. PLoS Biol. 2011;9(11):e1001208. doi:10.1371/journal.pbio.1001208
Chaisri S, Jayaraman J, Mongkolsapaya J, et al. KIR copy number variations in dengue-infected patients from northeastern Thailand. Hum Immunol. 2022;83(4):328-334. doi:10.1016/j.humimm.2022.01.005
Kulminski AM. Complex phenotypes and phenomenon of genome-wide inter-chromosomal linkage disequilibrium in the human genome. Exp Gerontol. 2011;46(12):979-986. doi:10.1016/j.exger.2011.08.010
Mora-Bitria L, Asquith B. Innate receptors modulating adaptive T cell responses: KIR-HLA interactions and T cell-mediated control of chronic viral infections. Immunogenetics. 2023;75(3):269-282. doi:10.1007/s00251-023-01293-w
Hollenbach JA, Pando MJ, Caillier SJ, Gourraud PA, Oksenberg JR. The killer immunoglobulin-like receptor KIR3DL1 in combination with HLA-Bw4 is protective against multiple sclerosis in African Americans. Genes Immun. 2016;17(3):199-202. doi:10.1038/gene.2016.5
Khakoo SI, Thio CL, Martin MP, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science. 2004;305(5685):872-874. doi:10.1126/science.1097670
Hiby SE, Apps R, Chazara O, et al. Maternal KIR in combination with paternal HLA-C2 regulate human birth weight. J Immunol. 2014;192(11):5069-5073. doi:10.4049/jimmunol.1400577
Parham P, Abi-Rached L, Matevosyan L, et al. Primate-specific regulation of natural killer cells. J Med Primatol. 2010;39(4):194-212. doi:10.1111/j.1600-0684.2010.00432.x
Stenzel A, Lu T, Koch WA, et al. Patterns of linkage disequilibrium in the MHC region on human chromosome 6p. Hum Genet. 2004;114(4):377-385. doi:10.1007/s00439-003-1075-5
Almawi WY, Nemr R, Finan RR, Saldhana FL, Hajjej A. HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in Lebanese and their relatedness to neighboring and distant populations. BMC Genomics. 2022;23(1):456. doi:10.1186/s12864-022-08682-7
Jiang X, Peng Y, Liu L, et al. MAIT cells ameliorate liver fibrosis by enhancing the cytotoxicity of NK cells in cholestatic murine models. Liver Int Off J Int Assoc Study Liver. 2022;42(12):2743-2758. doi:10.1111/liv.15445
Vacchini A, Chancellor A, Spagnuolo J, Mori L, De Libero G. MR1-restricted T cells are unprecedented cancer fighters. Front Immunol. 2020;11: 751. Accessed July 28, 2023. https://www.frontiersin.org/articles/10.3389/fimmu.2020.00751