Could the Presence of Thrips AFFECT the Yield Potential of Genetically Modified and Conventional Maize?

. 2022 Jul 19 ; 14 (7) : . [epub] 20220719

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35878240

Maize pests like Ostrinia nubilalis and Diabrotica virgifera virgifera are eradicated using genetically modified maize. This study's goal was to see if the genetically modified maize MON810 is also toxic to thrips communities on maize. The impact of Bt maize on thrips diversity and abundance, as well as yield losses, was studied in the field in Borovce for three years (Slovakia). The study used 10 Bt and 10 non-Bt maize cultivars. Thrips were monitored every two weeks during the season using transparent sticky traps installed on the experimental plots (one per plot, 20 per year). In total, 3426 thrips were caught. Thrips populations usually peak around the end of July at BBCH55. Among the species identified were Limothrips denticornis, Limothrips cerealium, Haplothrips aculeatus, Frankliniella schultzei, Frankliniella occidentalis, Thrips tabaci, Aeolothrips fasciatus, Frankliniella tenuicornis, and Chirothrips spp. We found that MON810 maize had no effect on the occurrence or composition of thrips. Their presence was affected by the maize growth phase and growing seasons and partially by the weather. The direct effect on the grain yield was not confirmed. Our research contributed to scientific knowledge of thrips communities found on maize plants in Central Europe, including Bt maize.

Zobrazit více v PubMed

Vasconcelos M.J.V., Carneiro A.A., Valicente F.H. Estudo de caso em milho Bt. In: Borém A., Almeida G.D., editors. Plantas Geneticamente Modificadas: Desafios e Oportunidades Para Regiões Tropicais. Universidade Federal de Viçosa; Viçosa, Brazil: 2011. pp. 311–332.

Resende D.C., Mendes S.M., Marucci R.C., Silva A.C., Campanha M.M., Waquil J.M. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Rev. Bras. Entomol. 2016;60:82–93. doi: 10.1016/j.rbe.2015.12.001. DOI

Muñóz-Garay C., Portugal L., Padro-López L., Jimenéz-Juárez N., Arenas I., Gómez I., Sánchez-López R., Arroyo R., Holzenburg A., Sawa C.G., et al. Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects. Biochim. Biophys. Acta Biomembr. 2009;1788:2229–2237. doi: 10.1016/j.bbamem.2009.06.014. PubMed DOI

Václavík L., Ovesná J., Kučera L., Hodek J., Demnerová K., Hajšlová J. Application of Ultra-high Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) Metabolomic Fingerprinting to Characterise GM and Conventional Maize Varieties. Czech J. Food Sci. 2013;31:368–375. doi: 10.17221/177/2013-CJFS. DOI

Bravo A., Gill S.S., Soberón M. Mode of action of Bacillus thuringiensis toxins and their potential for insect control. Toxicon. 2007;49:423–435. doi: 10.1016/j.toxicon.2006.11.022. PubMed DOI PMC

Yaqoob A., Sahid A.A., Samiullah T.R., Rao A.Q., Khan M.A.U., Tahir S., Mirza S.A., Husnain T. Risk assessment of Bt crops on the non-target plant-associated insects and soil organisms. J. Sci. Food Agric. 2016;96:2613–2619. doi: 10.1002/jsfa.7661. PubMed DOI

Romeis J., Naranjo S.E., Meissle M., Shelton A.M. Genetically engineered crops help support conservation biological control. Biol. Control. 2019;130:136–154. doi: 10.1016/j.biocontrol.2018.10.001. DOI

Bernal J.S., Griset J.G., Gillogly P.O. Impacts of developing on Bt maize-intoxicated hosts on fitness parameters of a stemborer parasitoid. J. Entomol. Sci. 2002;37:27–34. doi: 10.18474/0749-8004-37.1.27. DOI

Yin Y., Xu Y., Cao K., Qin Z., Zhao X., Dong X., Shi W. Impact assessment of Bt maize expressing the Cry1Ab and Cry2Ab protein simultaneously on non-target arthropods. Environ. Sci. Pollut. Res. Int. 2020;27:21552–21559. doi: 10.1007/s11356-020-08665-9. PubMed DOI

Chen M., Zhao J.Z., Collins H.L., Earle E.D., Cao J., Shelton A.M. A critical assessment of the effects of Bt transgenic pants on parasitoids. PLoS ONE. 2008;3:e2284. doi: 10.1371/journal.pone.0002284. PubMed DOI PMC

Rodríguez-Almazán C., Zavala L.E., Muñoz-Garay C., Jiménez-Juárez N., Pacheco S., Masson L., Soberón M., Bravo A. Dominant Negative Mutants of Bacillus thuringiensis Cry1Ab Toxin Function as Anti-Toxins: Demonstration of the Role of Oligomerization in Toxicity. PLoS ONE. 2009;4:e5545. doi: 10.1371/journal.pone.0005545. Correction PLoS ONE 2013, 8. https://doi.org/10.1371/annotation/0f267db9-6773-449d-b3c3-8f6c50e637ec. PubMed DOI PMC

Schmitz G., Bartsch D. Biozoenotische Untersuchungen in Maisfeldern bei Bonn und Aachen. Mitt. Der Dtsch. Ges. Für Allg. Und Angew. Entomol. 2001;13:615–618.

Steffey K.L., Rice M.E., All J., Andow D.A., Gray M.E., Van Duyn J.W. Handbook of Corn Insects. Entomological Society of America; Lanham, MD, USA: 1999. p. 164.

Ramkat R.C., Wangai A.W., Ouma J.P., Rapando P.N., Lelgut D.K. Cropping system influences Tomato spotted wilt virus disease development, thrips population and yield of tomato (Lycopersicon esculentum) Ann. Appl. Biol. 2008;153:373–380. doi: 10.1111/j.1744-7348.2008.00268.x. DOI

Parsons M.W., Munkvold G.P. Relationships of immature and adult thrips with silk-cut, fusarium ear rot and fumonisin B1 contamination of corn in California and Ha-waii. Plant Pathol. 2010;59:1099–1106. doi: 10.1111/j.1365-3059.2010.02339.x. DOI

Bereś P.K., Kucharczyk H., Górski D. Effects of Insecticides Used against the European Corn Borer on Thrips Abundance on Maize. Plant Protect. Sci. 2017;53:44–49. doi: 10.17221/78/2016-PPS. DOI

Lisowicz F. The occurrence of economically important maize pests in south-eastern Poland. J. Plant Prot. Res. 2001;41:250–255.

Dutton A., Obrist L., D’Aleksandro M., Diener L., Müller M., Romeis J., Bigler F. Tracking Bt-toxin in transgenic maize to assess the risks on non-target arthropods. IOBC/WPRS Bull. 2004;27:57–63.

Górecka J. Ph.D. Thesis. Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences; Warsaw, Poland: 2010. The Evaluation of Unintended Effects of Growing Genetically Modified Varieties on Chosed Non-Target Arthropod Species and Tri-Trophic Relations.170p

Montano J.D., Fuchs F., Nault B.A., Fail J., Shelton A.M. Onion thrips (Thysanoptera: Thripidae): A global pest of increasing concern in Onion. J. Econ. Entomol. 2011;104:1–13. doi: 10.1603/EC10269. PubMed DOI

Syed T.S., Khanzada M.S., Khanzada S.R., Abro G.H., Salman M., Sarwar M., Dayo S.H., Anwar S., Su W. Population Dynamics of Thrips, Whiteflies and Their Natural Enemies on Mustard (Brassica campestris L.) Crop in Different Localities of Sindh, Pakista. [(accessed on 10 February 2021)];J. Entomol. Zool. Stud. 2016 4:7–16. Available online: https://www.entomoljournal.com/archives/2016/vol4issue1/PartA/3-5-26.pdf.

Parikka P., Hakala K., Tiilikkala K. Expected shifts in Fusarium species’ composition on cereal grain in North-ern Europe due to climatic change. Food Addit. Cont. Part A. 2012;29:1543–1555. doi: 10.1080/19440049.2012.680613. PubMed DOI

Lewis T. Thrips, Their Biology, Ecology, and Economic Importance. Academic Press; London, UK: New York, NY, USA: 1973. 349p.

Nault B.A., Shelton A.M., Gangloff-Kaufmann J.L., Clark M.E., Werren J.L., Cabrera-La Rosa J.C. Reproductive modes in onion thrips (Thysanoptera: Thripidae) population from New York onion fields. Environ. Entomol. 2006;35:1264–1271. doi: 10.1093/ee/35.5.1264. DOI

Rőth F., Gall Z., Tóth M., Fail J., Jenser G. The Hypothesized Visual System of Thrips tabaci (Lindeman) and Frankliniella occidentalis (Pergande) Based on Different Coloured Traps’ Catches. [(accessed on 22 February 2021)];North-West. J. Zool. 2016 12:40–49. Available online: http://real.mtak.hu/42607/1/2016_NWJZ.pdf.

He Z., Guo J.F., Reitz S.R., Lei Z.R., Wu S.Y. A global invasion by the thrips, Frankliniella occidentalis: Current virus vector status and its management. Insect Sci. 2020;27:626–645. doi: 10.1111/1744-7917.12721. PubMed DOI PMC

Šefrová H. Třásněnkovití (Thysanoptera: Thripidae) škodící na řepě. [(accessed on 3 March 2021)];Listy Cukrov. Řepař. 2015 131:142–144. Available online: http://www.cukr-listy.cz/on_line/2015/PDF/142-144.pdf.

Larsson H. Ph.D. Thesis. Swedish University of Agricultural Sciences; Uppsala, Sweden: 2005. Aphids and Thrips: The Dynamics and Bio-Economics of Cereal Pests.42p.

Bergant K., Trdan S., Žnidarčič D., Črepinšek Z., Kajfež-Bogataj L. Impact of Climate Change on Developmental Dynamics of Thrips tabaci (Thysanoptera: Thripidae): Can It Be Quantified? Environ. Entomol. 2005;34:755–766. doi: 10.1603/0046-225X-34.4.755. DOI

Pinto-Zevallos D.M., Vänninen I. Yellow sticky traps for decision-making in whitefly management: What has been achieved? Crop Prot. 2013;47:74–84. doi: 10.1016/j.cropro.2013.01.009. DOI

Abdullah Z.S., Greenfield B.P.J., Ficken K.J., Taylor J.W.D., Wood M., Butt T.M. A new attractant for monitoring western flower thrips, Frankliniella occidentalis in protected crops. Springer Plus. 2015;4:89. doi: 10.1186/s40064-015-0864-3. PubMed DOI PMC

Lisowicz F. Theoretical and practical bases for applications of integrated pest control protecting corn from damages. Pract. Nauk. Inst. Ochr. Roślin. 1996;36:5–46.

Kucharczyk H., Bereś P.K., Dabrowski Z.T. The Species Composition and Seasonal Dynamics of Thrips (Thysanoptera) Populations on Maize (Zea mays L.) in Southeastern Poland. J. Plant Prot. Res. 2011;51:210–216. doi: 10.2478/v10045-011-0036-6. DOI

Habuštová O., Doležal P., Spitzer L., Svobodová Z., Hussein H., Sehnal F. Impact of Cry1Ab toxin expression on the non-target insects dwelling on maize plants. J. Appl. Entomol. 2014;138:164–172. doi: 10.1111/jen.12004. DOI

Cagáň L., Praslička J., Huszár J., Šrobárová A., Roháčik T., Hudec K., Tancik J., Bokor P., Tóth P., Tóthová M., et al. Choroby a Škodcovia Poľných Plodín. 1st ed. SAU; Nitra Skovakia, Slovakia: 2010. pp. 345–399.

Zawirska I., Wałkowski W. Fauna and Importance of Thrips (Thysanoptera) for Rye and Winter Wheat in Poland. Part I. Fauna of Thysanoptera on Rye and Winter Wheat in Poland. [(accessed on 3 March 2021)];J. Plant Prot. Res. 2000 40:35–55. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-caf2486c-4f47-490a-bed7-8076d34f837e.

Zawirska I. Fauna Thysanoptera na kukurydzy (Zea mays L.) w Polsce. Pr. Nauk. Inst. Ochr. Roślin. 1969;11:81–88.

Habuštová O., Sehnal F. Results of a four-year study of the Bt corn impact on arthropod communities. Kosmos Probl. Nauk Biol. 2007;56:275–284.

James C. Global Status of Commercialized Biotech/GM Crops. ISAAA Brief—International Service for the Acquisition of Agri-Biotech Applications; Ithaca, NY, USA: 2011. 324p Brief No. 43.

Bourguet D., Chaufaux J., Micoud A., Delos M., Naibo B., Bombarde F., Marque G., Eychenne N., Pagliari C. Ostrinia nubilalis parasitism and the field abundance of non-target insect in transgenic Bacillus thuringiensis corn (Zea mays) Environ. Biosaf. Res. 2002;1:49–60. doi: 10.1051/ebr:2002005. PubMed DOI

Obrist L.B., Klein H., Dutton A., Bigler F. Effects of Bt maize on Frankliniella tenuicornisand exposure of thrips predators to prey-mediated Bt toxin. Entomol. Exp. Appl. 2005;115:409–416. doi: 10.1111/j.1570-7458.2005.00298.x. DOI

Malchau W. The preimaginal development of Frankliniella tenuicornis (Uzel, 1895) (Thysanoptera) Entomol. Nachr. Ber. 1990;34:129–134.

Lancashire P.D., Bleiholder H., Langeluddecke P., Stauss R., van den Boom T., Weber E., Witzen-Berger A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991;119:561–601. doi: 10.1111/j.1744-7348.1991.tb04895.x. DOI

Svobodová Z., Skoková Habuštová O., Hutchison W.D., Hussein H.M., Sehnal F. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic. PLoS ONE. 2015;10:e0130656. doi: 10.1371/journal.pone.0130656. PubMed DOI PMC

Yu H.L., Li Y.H., Wu K.M. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms. J. Integr. Plant Biol. 2011;53:520–538. doi: 10.1111/j.1744-7909.2011.01047.x. PubMed DOI

Graham S.H., Stewart S.D. Field Study Investigating Cry51Aa2.834_16 in Cotton for Control of Thrips (Thysanoptera: Thripidae) and Tarnished Plant Bugs (Hemiptera: Miridae) J. Econ. Entomol. 2018;111:2717–2726. doi: 10.1093/jee/toy250. PubMed DOI PMC

Bereś P.K., Kucharczyk H., Kucharczyk M. Thrips Abundance on Sweet Corn in Southeastern Poland and the Impact of Weather Conditions on Their Population Dynamics. [(accessed on 2 February 2021)];Bull. Insectol. 2013 66:143–152. Available online: https://www.researchgate.net/publication/240004014_Thrips_abundance_on_sweet_corn_in_southeastern_Poland_and_the_impact_of_weather_conditions_on_their_population_dynamic.

Reitz S.R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomol. 2009;92:7–13. doi: 10.1653/024.092.0102. DOI

Logan J.A., Wollkind D.J., Hoyt S.C., Tanigoshi L.K. An analytical model for description of temperature dependent rate phenomenon in arthropods. Environ. Entomol. 1976;24:68–75.

Sharpe P.J.H., Demichele D.W. Reaction kinetics of poikilotherm development. J. Theor. Biol. 1977;64:649–670. doi: 10.1016/0022-5193(77)90265-X. PubMed DOI

Briere J.F., Pracros P. Comparison of temperature- dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae) Environ. Entomol. 1998;27:94–101. doi: 10.1093/ee/27.1.94. DOI

Patterson D.T., Westbrook J.K., Joyce R.J.V., Lingren P.D., Rogasik J. Weeds, insects, and diseases. Clim. Change. 1999;43:711–727. doi: 10.1023/A:1005549400875. DOI

Harrington R., Fleming R., Woiwod I. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric. For. Entomol. 2001;3:233–240. doi: 10.1046/j.1461-9555.2001.00120.x. DOI

Varikou K., Tsitsipis J.A., Alexandrakis V., Hoddle M. Effect of temperature on the development and longevity of Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae) Ann. Entomol. Soc. Am. 2009;102:835–841. doi: 10.1603/008.102.0510. DOI

Dintenfass L.P., Bartell D.P., Scott M.A. Predicting resurgence of western flower thrips (Thysanoptera: Thripidae) on onions after insecticide application in the Texas high plains. J. Econ. Entomol. 1987;80:502–506. doi: 10.1093/jee/80.2.502. DOI

Varadharajan S., Veeraval R. Populáciou dynamics of chilli thrips, Scirtothrips dorsalis Hood. Indian J. Ecol. 1995;22:27–30.

Waiganjo M.M., Mueke J.M., Gitonga L.M. Susceptible onion growth stages for selective and economic protection from onion thrips infestation. Acta Hort. 2008;767:193–200. doi: 10.17660/ActaHortic.2008.767.19. DOI

Lorini I., Junior V.M. Population fluctuations of Thrips tabaci L. (Thysanoptera: Thripidae) on garlic crop. An. Soc. Entomol. Brasil. 1990;19:367–371. doi: 10.37486/0301-8059.v19i2.666. DOI

Hamdy M.K., Salem M. The effect of plantation dates of onion, temperature and relative humidity on the population density of the onion thrips, Thrips tabaci Lind. Ann. Agric. Sci. Univ. Ain. Shams. 1994;V39:417–424.

Pierre J.S., Dedryvér C.A. Un model de prevision des pullullations du puceron Sitobion avenae sur blé d’hiver. Acta Oecologica Oecologia Appl. 1984;V5:152–172.

Lewis T. Flight and dispersal. In: Lewis T., editor. Thrips as Crop Pests. CABI; Oxon, UK: 1997. pp. 175–195.

Moanaro L., Choudhary J. Influence of weather parameters on population dynamics of thrips and mites on summer season cowpea in Eastern Plateau and Hill region of India. J. Agrometeorol. 2016;18:296–299. doi: 10.54386/jam.v18i2.954. DOI

Khan S.M., Ullah Z. Population dynamics of insect pests of cotton in Dera Ismail Khan. Sarhad. J. Agric. 1994;10:285–290.

Harris H.M., Drake C.J., Tate H.D. Observation on the onion thrips (Thrips tabaci Lind) Iowa St. Coll. J. Sci. 1936;10:155–172.

Smith E.A., Shields E.J., Nault B.A. Impact of Abiotic Factors on Onion Thrips (Thysanoptera: Thripidae) Aerial Dispersal in an Onion Ecosystem. Environ. Entomol. 2016;45:1115–1122. doi: 10.1093/ee/nvw089. PubMed DOI

North R.C., Shelton A.M. Ecology of Thysanoptera within cabbage fields. Environ. Entomol. 1986;15:520–526. doi: 10.1093/ee/15.3.520. DOI

Cluever J.D., Smith H.A. A Photo-Based Key of Thrips (Thysanoptera) Associated with Horticultural Crops in Florida. Fla. Entomol. 2017;100:454–467. doi: 10.1653/024.100.0208. DOI

Mound L.A., Collins D.W., Hastings A. Thysanoptera Britannica et Hibernica—Thrips of the British Isles. Lucidcentral. Org, Identic Pty Ltd.; Queensland, Australia: 2018. [(accessed on 12 January 2021)]. Available online: https://keys.lucidcentral.org/keys/v3/british_thrips/

Mound L.A., Tree D.J., Paris D. OZ Thrips, Thysanoptera in Australia. 2022. [(accessed on 16 January 2022)]. Available online: http://www.ozthrips.org/

Reed J.T., Allen C., Bagwell R., Cook D., Burris E., Freeman B., Leonard R., Lentz G. A Key to the Thrips on Seedling Cotton in the Midsouthern United States. Bulletin 1156 was Published by the Office of Agricultural Communications, a Unit of the Division of Agriculture, Forestry, and Veterinary Medicine at Mississippi State University. [(accessed on 2 February 2021)]. Available online: https://www.mafes.msstate.edu/publications/bulletins/b1156.pdf.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...