Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

. 2015 ; 10 (6) : e0130656. [epub] 20150617

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26083254

Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

Zobrazit více v PubMed

Meissle M, Romeis J, Bigler F. Bt maize and integrated pest management—a European perspective. Pest Manag Sci. 2011; 67: 1049–1058. 10.1002/ps.2221 PubMed DOI

Gray ME, Sappington TW, Miller NJ, Moeser J, Bohn MO. Adaptation and invasiveness of western corn rootworm: Intensifying research on a worsening pest. Annu Rev Entomol. 2009; 54: 303–321. 10.1146/annurev.ento.54.110807.090434 PubMed DOI

Edwards CR, Kiss J. Diabrotica virgifera virgifera LeConte in Europe 2011. IWGO. 2012. Available: http://www.iwgo.org/. Accessed 12 August 2013.

Koubová D. Bázlivec kukuřičný —nebezpečný škůdce kukuřice [Western corn rootworm—dangerous pest of maize]. Institute of Agricultural Economics and Information´s factsheets. Prague: Institute of Agricultural Economics and Information. 2006. Available: http://www.agronavigator.cz/attachments/Bazlivec_kukuricny.pdf. Accessed 12 August 2013.

Meissle M, Romeis J. Insecticidal activity of Cry3Bb1 expressed in Bt maize on larvae of the Colorado potato beetle, Leptinotarsa decemlineata . Entomol Exp Appl. 2009; 131: 308–319.

Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, et al. A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci. 2005; 45: 931–938.

Clark TL, Frank DL, French BW, Meinke LJ, Moellenbeck D, Vaughn TT, et al. Mortality impact of MON863 transgenic maize roots on western corn rootworm larvae in the field. J Appl Entomol. 2012; 136: 721–729.

Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW. Field-evolved resistance to Bt maize by western corn rootworm. PLOS ONE. 2011; 6: e22629 10.1371/journal.pone.0022629 PubMed DOI PMC

Nguyen H, Jehle JA. Expression of Cry3Bb1 in transgenic corn MON88017. J Agric Food Chem. 2009; 57: 9990–9996. 10.1021/jf901115m PubMed DOI

EU Register of authorised GMOs. European Commision. Available: http://ec.europa.eu/food/dyna/gm_register/index_en.cfm. Accessed 12 August 2013.

Duan JJ, Head G, McKee MJ, Nickson TE, Martin JW, Sayegh FS. Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bb1 protein on a non-target ladybird beetle, Coleomegilla maculata . Entomol Exp Appl. 2002; 104: 271–280.

Lundgren JG, Wiedenmann RN. Coleopteran-specific Cry3Bb toxin from transgenic corn pollen does not affect the fitness of a nontarget species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Environ Entomol. 2002; 31: 1213–1218.

Lundgren JG, Wiedenmann RN. Tritrophic interactions among Bt (Cry3Bb1) corn, aphid prey, and the predator Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol. 2005; 34: 1621–1625.

Ahmad A, Wilde GE, Whitworth RJ, Zolnerowich G. Effect of corn hybrids expressing the coleopteran-specific Cry3Bb1 protein for corn rootworm control on aboveground insect predators. J Econ Entomol. 2006; 99: 1085–1095. PubMed

Duan JJ, Paradise MS, Lundgren JG, Bookout JT, Jiang CJ, Wiedenmann RN. Assessing nontarget impacts of Bt corn resistant to corn rootworms: Tier-1 testing with larvae of Poecilus chalcites (Coleoptera: Carabidae). Environ Entomol. 2006; 35: 135–142.

Shirai Y. Laboratory evaluation of effects of transgenic Bt corn pollen on two non-target herbivorous beetles, Epilachna vigintioctopunctata (Coccinellidae) and Galerucella vittaticollis (Chrysomelidae). Appl Entomol Zool. 2006; 41: 607–611.

Duan JJ, Teixeira D, Huesing JE, Jiang CJ. Assessing the risk to nontarget organisms from Bt corn resistant to corn rootworms (Coleoptera: Chrysomelidae): Tier-I testing with Orius insidiosus (Heteroptera: Anthocoridae). Environ Entomol. 2008; 37: 838–844. PubMed

Li Y, Meissle M, Romeis J. Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae). PLOS ONE. 2008; 3: e2909 10.1371/journal.pone.0002909 PubMed DOI PMC

Meissle M, Romeis J. The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotechnol J. 2009; 7: 645–656.

Li Y, Romeis J. Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum . Biol Control. 2010; 53: 337–344. PubMed

Álvarez-Alfageme F, Bigler F, Romeis J. Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design. Transgenic Res. 2011; 20: 467–479. 10.1007/s11248-010-9430-5 PubMed DOI PMC

Rauschen S, Schultheis E, Pagel-Wieder S, Schuphan I, Eber S. Impact of Bt-corn MON88017 in comparison to three conventional lines on Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) field densities. Transgenic Res. 2009; 18: 203–214. 10.1007/s11248-008-9207-2 PubMed DOI

Marshall A. Drought-tolerant varieties begin global march. Nat Biotechnol. 2014; 32: 308 10.1016/j.biotechadv.2013.10.012 PubMed DOI

Romeis J, Meissle M, Brunner S, Tschamper D, Winzeler M. Plant biotechnology: research behind fence. Trends Biotechnol. 2013; 31: 222–224. 10.1016/j.tibtech.2013.01.020 PubMed DOI

Marris C. Public views on GMOs: deconstructing the myths. EMBO Rep. 2001; 2: 545–548. PubMed PMC

James C. Global status of commercialized biotech/GM crops: 2012 ISAAA Brief No. 44: Executive Summary. Ithaca: ISAAA; 2012.

Shelton AM, Zhao JZ, Roush RT. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol. 2002; 47: 845–881. PubMed

Naranjo SE. Impacts of Bt crops on non-target organisms and insecticide use patterns. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2009; 4: 10.1079/PAVSNNR20094011 PubMed DOI PMC

Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science. 2010; 330 222–225. 10.1126/science.1190242 PubMed DOI

Brookes G, Barfoot P. The income and production effects of biotech crops globally 1996–2010. GM Crops Food. 2012; 3: 265–272. 10.4161/gmcr.20097 PubMed DOI

Bhatti MA, Duan J, Head G, Jiang C, Mckee MJ, Nickson T. Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)—protected Bt corn on foliage-dwelling arthropods. Environ Entomol. 2005; 34: 1336–1345.

Svobodová Z, Habuštová O, Sehnal F, Holec M, Hussein HM. Epigeic spiders are not affected by the genetically modified maize MON 88017. J Appl Entomol. 2013; 137: 56–67.

Lancashire PD, Bleiholder H, van den Boom T, Langelüddecke P, Stauss R, Weber E, et al. An uniform decimal code for growth stages of crops and weeds. Ann Appl Biol. 1991; 119: 561–601.

Habuštová O, Doležal P, Spitzer L, Svobodová Z, Hussein HM, Sehnal F. Impact of Cry1Ab toxin expression on the non-target insects dwelling on maize plants. J Appl Entomol. 2014; 138: 164–172.

Meissle M, Lang A. Comparing methods to evaluate the effects of Bt maize and insecticide on spider assemblages. Agric Ecosyst Environ. 2005; 107: 359–370.

Traps developed for catching Diabrotica v virgifera The Plant Protection Institute Centre for Agricultural Research of the Hungarian Academy of Sciences. Available: http://www.csalomontraps.com/7diabroticatraps/diabroticatraps.htm#pals. Accessed 12 August 2013.

Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press; 2003.

Meissle M, Álvarez-Alfageme F, Malone LA, Romeis J. Establishing a database of bio-ecological information on non-target arthropod species to support the environmental risk assessment of genetically modified crops in the EU. Supporting Publications 2012: EN-334. European Food Safety Authority (EFSA); 2012. Available: http://www.efsa.europa.eu/en/supporting/pub/334e.htm. Accessed 19 January 2015.

Al-Deeb MA, Wilde GE. Effect of Bt corn expressing the Cry3Bb1 toxin for corn rootworm control on aboveground nontarget arthropods. Environ Entomol. 2003; 32: 1164–1170.

Sanvido O, Romeis J, Bigler F. An approach for post-market monitoring of potential environmental effects of Bt-maize expressing Cry1Ab on natural enemies. J Appl Entomol. 2009; 133: 236–248.

Romeis J, Meissle M. Non-target risk assessment of Bt crops—Cry protein uptake by aphids. J Appl Entomol. 2011; 135: 1–6.

Jasinski JB, Eisley JB, Young CE, Kovach J, Willson H. Select nontarget arthropod abundance in transgenic and nontransgenic field crops in Ohio. Environ Entomol. 2003; 32: 407–411.

de la Poza M, Pons X, Farinós GP, López C, Ortego F, Eizaguirre M, et al. Impact of farm-scale Bt maize on abundance of predatory arthropods in Spain. Crop Prot. 2005; 24: 677–684.

Comas C, Lumbierres B, Pons X, Albajes R. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res. 2014; 23: 135–143. 10.1007/s11248-013-9737-0 PubMed DOI

Lumbierres B, Albajes R, Pons X. Positive effect of Cry1Ab-expressing Bt maize on the development and reproduction of the predator Orius majusculus under laboratory conditions. Biol Control. 2012; 63: 150–156.

Obrycki JJ, Kring TJ. Predaceous Coccinellidae in biological control. Annu Rev Entomol. 1998; 43: 295–321. PubMed

McManus BL, Fuller BW, Boetel MA, French BW, Ellsbury MM, Head GP. Abundance of Coleomegilla maculata (Coleoptera: Coccinellidae) in corn rootworm-resistant Cry3Bb1 maize. J Econ Entomol. 2005; 98: 1992–1998. PubMed

Steinbrecher I. Effects of Bt transgenes on herbivorous insect-parasitoid interactions. Doctoral Thesis. University of Göttingen. 2004. Available: https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0006-AB4C-3/steinbrecher.pdf?sequence=1.

Schuler TH, Potting RPJ, Denholm I, Clark SJ, Clark AJ, Stewart CN, et al. Tritrophic choice experiments with Bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae . Transgenic Res. 2003; 12: 351–361. PubMed

Chen M, Zhao J-Z, Collins HL, Earle ED, Cao J, Shelton AM. A Critical assessment of the effects of Bt transgenic plants on parasitoids. PLOS ONE. 2008; 3: e2284 10.1371/journal.pone.0002284 PubMed DOI PMC

Marchetti E, Alberghini S, Battisti A, Squartini A, Dindo ML. Susceptibility of adult Exorista larvarum to conventional and transgenic Bacillus thuringiensis galleriae toxin. Bull Insectology. 2012; 65: 133–137.

Lumbierres B, Starý P, Pons X. Effect of Bt maize on the plant-aphid-parasitoid trithrophic relationships. BioControl. 2011; 56: 133–143.

Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS. Bt crop effects on functional guilds of non-target arthropods: A Meta-analysis. PLOS ONE. 2008; 3: e2118 10.1371/journal.pone.0002118 PubMed DOI PMC

Bugg R, Colfer RG, Chaney WE, Smith HA, Cannon J. Flower flies (Syrphidae) and other biological control agents for aphids in vegetable crops. Oakland: The Regents of the University of California Division of Agriculture and Natural Resources; 2008. Available: http://anrcatalog.ucdavis.edu/pdf/8285.pdf. Accessed 28 August 2013.

Bhatti MA, Duan J, Head G, Jiang C, Mckee MJ, Nickson TE, et al. Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)–protected Bt corn on ground-dwelling invertebrates. Environ Entomol. 2005; 34: 1325–1335.

Franz TM. Effect of nitrogen on Bt gene expression in corn roots, resulting trait performance against corn rootworms (Diabrotica spp.), and transgenic hybrid performance. M. Sc. Thesis, University of Minnesota. 2013. Available: http://conservancy.umn.edu/bitstream/handle/11299/162342/Franz_umn_0130M_13473.pdf?sequence=1&isAllowed=y.

Prihoda KR, Coats JR. Fate of Bacillus thuringiensis (Bt) Cry3Bb1 protein in a soil microcosm. Chemosphere. 2008; 73: 1102–1107. 10.1016/j.chemosphere.2008.07.025 PubMed DOI

Kroutil P. Výsledky průzkumu výskytu bázlivce kukuřičného (Diabrotica virgifera virgifera) v ČR v roce 2011 [Results of D v virgifera monitoring in the Czech Republic in 2011]. Annual report of State Phytosanitary administration of the Czech Republic. Prague: State Phytosanitary administration of the Czech Republic. 2011. Available: http://eagri.cz/public/web/file/140765/Bazlivec_kukuricny_v_CR_v_roce_2011_final.pdf. Accessed 12 August 2013.

Kuhlmann U, van der Burgt WACM. Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol News and Information. 1998; 19: 59N–68N.

Naranjo SE. Long-term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community. Environ Entomol. 2005; 34: 1211–1223.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...