Differences in Charge Distribution in Leishmania tarentolae Leishmanolysin Result in a Reduced Enzymatic Activity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IOC-023-FIO-18-2-34
Oswaldo Cruz Foundation
0001
Coordenação de Aperfeicoamento de Pessoal de Nível Superior
407046/2018-6
National Council for Scientific and Technological Development
E-26/010.101089/2018
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
19-15-00054
Russian Science Foundation
PubMed
35887004
PubMed Central
PMC9321319
DOI
10.3390/ijms23147660
PII: ijms23147660
Knihovny.cz E-zdroje
- Klíčová slova
- cloning, comparative modeling, leishmaniasis, molecular dynamics, proteolytic activity,
- MeSH
- fylogeneze MeSH
- Leishmania * genetika metabolismus MeSH
- leishmanióza * parazitologie MeSH
- metaloendopeptidasy metabolismus MeSH
- paraziti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glycoprotein gp63, Leishmania MeSH Prohlížeč
- metaloendopeptidasy MeSH
Leishmania tarentolae is a non-pathogenic trypanosomatid isolated from lizards widely used for heterologous protein expression and extensively studied to understand the pathogenic mechanisms of leishmaniasis. The repertoire of leishmanolysin genes was reported to be expanded in L. tarentolae genome, but no proteolytic activity was detected. Here, we analyzed L. tarentolae leishmanolysin proteins from the genome to the structural levels and evaluated the enzymatic activity of the wild-type and overexpressing mutants of leishmanolysin. A total of 61 leishmanolysin sequences were retrieved from the L. tarentolae genome. Five of them were selected for phylogenetic analysis, and for three of them, we built 3D models based on the crystallographic structure of L. major ortholog. Molecular dynamics simulations of these models disclosed a less negative electrostatic potential compared to the template. Subsequently, L. major LmjF.10.0460 and L. tarentolae LtaP10.0650 leishmanolysins were cloned in a pLEXSY expression system into L. tarentolae. Proteins from the wild-type and the overexpressing parasites were submitted to enzymatic analysis. Our results revealed that L. tarentolae leishmanolysins harbor a weak enzymatic activity about three times less abundant than L. major leishmanolysin. Our findings strongly suggest that the less negative electrostatic potential of L. tarentolae leishmanolysin can be the reason for the reduced proteolytic activity detected in this parasite.
Coleção de Protozários da Fundação Oswaldo Cruz Rio de Janeiro 21040 900 Brazil
Life Science Research Centre Faculty of Science University of Ostrava 70200 Ostrava Czech Republic
Zobrazit více v PubMed
Ennes-Vidal V., Santos A.L.S., Branquinha M.H., d’Avila-Levy M.H. Proteolytic inhibitors as alternative medicines to treat trypanosomatid-caused diseases: Experience with calpain inhibitors. Mem. Inst. Oswaldo Cruz. 2022;117:e220017. doi: 10.1590/0074-02760220017. PubMed DOI PMC
WHO Leishmaniasis. 8 January 2022. [(accessed on 17 February 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.
Sacks D.L. Metacyclogenesis in Leishmania promastigotes. Exp. Parasitol. 1989;69:100–103. doi: 10.1016/0014-4894(89)90176-8. PubMed DOI
Teixeira D.E., Benchimol M., Rodrigues J.C., Crepaldi P.H., Pimenta P.F., de Souza W. The cell biology of Leishmania: How to teach using animations. PLoS Pathog. 2013;9:e1003594. doi: 10.1371/journal.ppat.1003594. PubMed DOI PMC
Sangenito L.S., da Silva Santos V., d’Avila-Levy C.M., Branquinha M.H., Santos A.L.S., de Oliveira S.S.C. Leishmaniasis and Chagas Disease—Neglected Tropical Diseases: Treatment Updates. Curr. Top Med. Chem. 2019;19:174–177. doi: 10.2174/156802661903190328155136. PubMed DOI
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Espinosa O.A., Serrano M.G., Camargo E.P., Teixeira M.M.G., Shaw J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145:430–442. doi: 10.1017/S0031182016002092. PubMed DOI
Elwasila M. Leishmania tarentolae Wenyon, 1921 from the gecko Tarentolaannularis in the Sudan. Parasitol. Res. 1988;74:591–592. doi: 10.1007/BF00531640. PubMed DOI
Simpson L., Holz G. The status of Leishmania tarentolae/Trypanosoma platydactyli. Parasitol. Today. 1988;4:115–118. doi: 10.1016/0169-4758(88)90043-9. PubMed DOI
Taylor V.M., Muñoz D.L., Cedeño D.L., Vélez I.D., Jones M.A., Robledo S.M. Leishmania tarentolae: Utility as an in vitro model for screening of antileishmanial agents. Parasitol. Res. 2010;126:471–475. doi: 10.1016/j.exppara.2010.05.016. PubMed DOI
Ouellete M., Hettema E., Wüst D., Fase-Fowler F., Borst P. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 1991;10:1009–1016. doi: 10.1002/j.1460-2075.1991.tb08035.x. PubMed DOI PMC
Simpson L., Aphasizhev R., Gao G., Kang X. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA. 2004;10:159–170. doi: 10.1261/rna.5170704. PubMed DOI PMC
Basile G., Peticca M. Recombinant protein expression in Leishmania tarentolae. Mol. Biotechnol. 2009;43:273–278. doi: 10.1007/s12033-009-9213-5. PubMed DOI
Breton M., Tremblay M.J., Ouellette M., Papadopoulou B. Live non-pathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect. Immun. 2005;73:6372–6382. doi: 10.1128/IAI.73.10.6372-6382.2005. PubMed DOI PMC
Raymond F., Boisvert S., Roy G., Ritt J.F., Légaré D., Isnard A., Stanke M., Olivier M., Tremblay M.J., Papadopoulou B., et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–1147. doi: 10.1093/nar/gkr834. PubMed DOI PMC
d’Avila-Levy C.M., Altoé E.C., Uehara L.A., Branquinha M.H., Santos A.L. GP63 function in the interaction of trypanosomatids with the invertebrate host: Facts and prospects. Subcell. Biochem. 2014;74:253–270. doi: 10.1007/978-94-007-7305-9_11. PubMed DOI
Yao C. Major surface protease of trypanosomatids: One size fi ts all? Infect. Immun. 2010;78:22–31. doi: 10.1128/IAI.00776-09. PubMed DOI PMC
Olivier M., Atayde V.D., Isnard A., Hassani K., Shio M.T. Leishmania virulence factors: Focus on the metalloprotease GP63. Microbes Infect. 2012;14:1377–1389. doi: 10.1016/j.micinf.2012.05.014. PubMed DOI
Soares R.P., Altoé E.C.F., Ennes-Vidal V., da Costa S.M., Rangel E.F., de Souza N.A., da Silva V.C., Volf P., d’Avila-Levy C.M. In Vitro inhibition of Leishmania attachment to sandfly midguts and LL-5 cells by divalent metal chelators, anti-gp63 and phosphoglycans. Protist. 2017;168:326–334. doi: 10.1016/j.protis.2017.03.004. PubMed DOI
Berman H., Henrick K., Nakamura H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003;10:980. doi: 10.1038/nsb1203-980. PubMed DOI
Schlagenhauf E., Etges R., Metcalf P. The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63) Structure. 1998;6:1035–1046. doi: 10.1016/S0969-2126(98)00104-X. PubMed DOI
Sutter A., Antunes D., Silva-Almeida M., Costa M.G.S., Caffarena E.R. Structural insights into leishmanolysins encoded on chromosome 10 of Leishmania(Viannia) braziliensis. Mem. Inst. Oswaldo Cruz. 2017;112:617–625. doi: 10.1590/0074-02760160522. PubMed DOI PMC
Valdivia H.O., Scholte L.L.S., Oliveira G., Gabaldón T., Bartholomeu D.C. The Leishmania metaphylome: A comprehensive survey of Leishmania protein phylogenetic relationships. BMC Genom. 2015;16:887. doi: 10.1186/s12864-015-2091-2. PubMed DOI PMC
Orlando T.C., Rubio M.A.T., Sturm N.R., Campbell D.A., Floeter-Winter L.M. Intergenic and external transcribed spacers of ribosomal RNA genes in lizard-infecting Leishmania: Molecular structure and phylogenetic relationship to mammal-infecting Leishmania in the subgenus Leishmania (Leishmania) Mem. Inst. Oswaldo Cruz. 2002;97:695–701. doi: 10.1590/S0074-02762002000500020. PubMed DOI
Zamarreño F., Herrera F.E., Córsico B., Costabel M.D. Similar structures but different mechanisms: Prediction of FABPs-membrane interaction by electrostatic calculation. Biochim. Biophys. Acta. 2012;1818:1691–1697. doi: 10.1016/j.bbamem.2012.03.003. PubMed DOI
Galassi V.V., Villarreal M.A., Posada V., Montich G.G. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation. Biochim. Biophys. Acta. 2014;1838:910–920. doi: 10.1016/j.bbamem.2013.11.008. PubMed DOI
Talasaz A.H., Nemat-Gorgani M., Liu Y., Ståhl P., Dutton R.W., Ronaghi M., Davis R.W. Prediction of protein orientation upon immobilisation on biological and nonbiological surfaces. Proc. Natl. Acad. Sci. USA. 2006;103:14773–14778. doi: 10.1073/pnas.0605841103. PubMed DOI PMC
Klatt S., Simpson L., Maslov D.A., Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl. Trop. Dis. 2019;13:e0007424. doi: 10.1371/journal.pntd.0007424. PubMed DOI PMC
d’Avila-Levy C.M., Santos A.L.S., Cuervo P., de Jesus J.B., Branquinha M.H. Applications of Zymography (Substrate-SDSPAGE) for Peptidase Screening in a Post-Genomic Era. In: Magdeldin S., editor. Gel Electrophoresis—Advanced Techniques. IntechOpen; London, UK: 2012. DOI
Branquinha M.H., Vermelho A.B., Goldenberg S., Bonaldo M.C. Characterization of proteinases in trypanosomatids. Braz. J. Med. Biol. Res. 1994;27:495–499. PubMed
Rebello K.M., Uehara L.A., Ennes-Vidal V., Garcia-Gomes A.S., Britto C., Azambuja P., Menna-Barreto R.F.S., Santos A.L.S., Branquinha M.H., d’Avila-Levy C.M. Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodniusprolixus. Parasitology. 2019;146:1075–1082. doi: 10.1017/S0031182019000441. PubMed DOI PMC
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X., et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38:D457–D462. doi: 10.1093/nar/gkp851. PubMed DOI PMC
Eswar N., Eramian D., Webb B., Shen M.Y., Sali A. Protein structure modeling with MODELLER. Methods Mol. Biol. 2008;426:145–159. doi: 10.1007/978-1-60327-058-8_8. PubMed DOI
Feig M. Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD. J Chem. Inf. Model. 2016;56:1304–1312. doi: 10.1021/acs.jcim.6b00222. PubMed DOI PMC
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Joshi P.B., Sacks D.L., Modi G., McMaster W.R. Targeted gene deletion of Leishmania major genes encoding developmental stage-specific leishmanolysin (GP63) Mol. Microbiol. 1998;27:519–530. doi: 10.1046/j.1365-2958.1998.00689.x. PubMed DOI
Boucinha C., Andrade-Neto V.V., Ennes-Vidal V., Branquinha M.H., Santos A.L.S., Torres-Santos E.C., d’Avila-Levy C.M. A Stroll Through the History of Monoxenous Trypanosomatids Infection in Vertebrate Hosts. Front. Cell. Infect. Microbiol. 2022;12:804707. doi: 10.3389/fcimb.2022.804707. PubMed DOI PMC