Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35145268
PubMed Central
PMC8913360
DOI
10.1038/s41559-021-01652-4
PII: 10.1038/s41559-021-01652-4
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- mor * epidemiologie dějiny mikrobiologie MeSH
- pandemie dějiny MeSH
- starobylá DNA MeSH
- Yersinia pestis * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Názvy látek
- starobylá DNA MeSH
The Black Death (1347-1352 CE) is the most renowned pandemic in human history, believed by many to have killed half of Europe's population. However, despite advances in ancient DNA research that conclusively identified the pandemic's causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, 'big data palaeoecology', which, starting from palynological data, evaluates the scale of the Black Death's mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death's mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.
ArchaeoBioCenter Ludwig Maximilians Universität München München Germany
Bolin Centre for Climate Research Stockholm University Stockholm Sweden
Center for Accelerator Mass Spectrometry Lawrence Livermore National Laboratory Lawrence CA USA
Centre for Climate Change Research Nicolaus Copernicus University Toruń Poland
Climate Change Ecology Research Unit Adam Mickiewicz University Poznań Poland
CNRS Université Clermont Auvergne GEOLAB Clermont Ferrand France
Department of Agriculture and Forest Sciences University of Tuscia Viterbo Italy
Department of Archaeology University of Reading Reading UK
Department of Biology Georgetown University Washington DC USA
Department of Botany University of Granada Granada Spain
Department of Botany University of Innsbruck Innsbruck Austria
Department of Earth Science Sapienza University of Rome Rome Italy
Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy
Department of Environmental Biology Sapienza University of Rome Rome Italy
Department of Environmental Geography GEODE UMR 5602 Jean Jaurès University Toulouse France
Department of Geography Universidad Autónoma de Madrid Madrid Spain
Department of Geography University of Latvia Riga Latvia
Department of Geography University of Nevada Reno USA
Department of Geography Urban and Regional Planning Universidad de Cantabria Santander Spain
Department of Geology Tallinn University of Technology Tallinn Estonia
Department of History Georgetown University Washington DC USA
Department of History Stockholm University Stockholm Sweden
Department of Palaeobiology Faculty of Biology University of Białystok Białystok Poland
Department of Physical Geography and Ecosystem Science Lund University Lund Sweden
Department of Quaternary Research Institute of Geography Russian Academy of Science Moscow Russia
Environmental Archaeology Research Group Institute of History CSIC Madrid Spain
Faculty of Arts Masaryk University Brno Czech Republic
Faculty of Geography Lomonosov Moscow State University Moscow Russia
Faculty of History and International Relations University of Bialystok Bialystok Poland
Institute of Archaeology Faculty of History Nicolaus Copernicus University Toruń Poland
Institute of Archeology Academy of Sciences of the Czech Republic Prague Czech Republic
Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Institute of Geography University of Cologne Cologne Germany
Institute of Geological Sciences Polish Academy of Sciences Warsaw Poland
Institute of Geosciences University of Potsdam Potsdam Germany
Institute of History Jagiellonian University in Krakow Krakow Poland
Institute of Latvian History University of Latvia Riga Latvia
ISEM UMR 5554 Université Montpellier CNRS EPHE IRD Montpellier France
Leibniz Institute for the History and Culture of Eastern Europe Leipzig Germany
Max Planck Institute for the Science of Human History Jena Germany
Museum of Archaeology University of Stavanger Stavanger Norway
Nature Research Centre Institute of Geology and Geography Vilnius Lithuania
School of Archaeology University of Oxford Oxford UK
School of Geography Earth and Environmental Science University of Plymouth Plymouth UK
School of Natural and Built Environment Queen's University Belfast Northern Ireland
Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden
Swedish Collegium for Advanced Study Uppsala Sweden
The Archaeologists National Historical Museums Lund Sweden
Viscum Pollenanalys and Miljöhistoria Nässjö Sweden
W Szafer Institute of Botany Polish Academy of Sciences Kraków Poland
Zobrazit více v PubMed
Benedictow, O. L. The Black Death 1346–1353: The Complete History (Boydell, 2004).
Mohammed, M. Peste, Contagion et Martyre: Histoire du Fléau en Occident Médiéval (Publisud, 2005).
Varlik, N. Plague and Empire in the Early Modern Mediterranean World: the Ottoman Experience, 1347–1600 (Cambridge Univ. Press, 2015).
Aberth, J. The Black Death: A New History of the Great Mortality in Europe, 1347–1500 (Oxford Univ. Press, 2021).
Bos KI, et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478:506–510. doi: 10.1038/nature10549. PubMed DOI PMC
Spyrou, M. A. et al. Phylogeography of the second plague pandemic revealed through analysis of historical Yersinia pestis genomes. Nat. Commun. 10, 4470 (2019). PubMed PMC
Herlihy D. Climate and documentary sources: a comment. J. Interdiscip. Hist. 1980;10:713–717. doi: 10.2307/203066. DOI
Campbell, B. The Great Transition: Climate, Disease and Society in the Late-Medieval World (Cambridge Univ. Press, 2016).
Chouin GL. Reflections on plague in African history (14th–19th c.) Afriques. 2018;9:2228.
Roosen J, Curtis DR. Dangers of noncritical use of historical plague data. Emerg. Infect. Dis. 2018;24:103–110. doi: 10.3201/eid2401.170477. DOI
Barker H. Laying the corpses to rest: grain, embargoes, and Yersinia pestis in the Black Sea, 1346–48. Speculum. 2020;96:97–126. doi: 10.1086/711596. DOI
Green M. The four black deaths. Am. Historical Rev. 2020;125:1601–1631. doi: 10.1093/ahr/rhaa511. DOI
Hecker, J. Der Schwarze Tod (1832).
Hatcher, J. Plague, Population, and the English Economy, 1348–1530 (Macmillan, 1977).
Ormrod, W. M. & Lindley, P. G. The Black Death in England, 1348–1500 (Paul Watkins, 1996).
Roosen J, Curtis DR. The ‘light touch’ of the Black Death in the Southern Netherlands: an urban trick? Economic Hist. Rev. 2019;72:32–56. doi: 10.1111/ehr.12667. PubMed DOI PMC
Wray, S. K. Communities and Crisis. Bologna During the Black Death (Brill, 2009).
Biraben, J. N. Les Hommes et la Peste en France et Dans les Pays Européens et Méditerranéens (Mouton, 1975).
Dubyanskiy, V. M. & Yeszhanov, A. B. Ecology of Yersinia pestis and the Epidemiology of Plague. in Yersinia pestis: Retrospective and Perspective (eds. Yang, R. & Anisimov, A.) 101–170 (Springer Netherlands, 2016). PubMed
Christakos, G. Interdisciplinary Public Health Reasoning and Epidemic Modelling: The Case of Black Death (Springer, 2005).
Olea RA, Christakos G. Duration of urban mortality for the 14th-century Black Death epidemic. Hum. Biol. 2005;77:291–303. doi: 10.1353/hub.2005.0051. PubMed DOI
Alfani G. Plague in seventeenth-century Europe and the decline of Italy: an epidemiological hypothesis. Eur. Rev. Economic Hist. 2013;17:408–430. doi: 10.1093/ereh/het013. DOI
Neithard, B. in Histoire des Populations de l’Europe (eds. Dupâquier, J. & Bardet, J.-P.) 168–184 (Fayard, 1997).
Echenberg, M. Plague Ports: The Global Urban Impact of Bubonic Plague,1894–1901 (NYU Press, 2007).
Tumbe, C. Pandemics and Historical Mortality in India (IIMA, 2020).
Lagerås, P. et al. in Environment, Society and the Black Death: An Interdisciplinary Approach to the Late-Medieval Crisis in Sweden (ed. Lagerås, P.) 30–68 (Oxbow Books, 2016).
Małowist, M. Western Europe, Eastern Europe and World Development, 13th-18th centuries: Collection of Essays of Marian Małowist (Brill, 2010).
Guzowski, P., Kuklo, C. & Poniat, R. in Epidemie w dziejach Europy: konsekwencje społeczne, gospodarcze i kulturowe (eds. Polek, K. & Sroka, Ł. T.) 119–144 (Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, 2016).
Myrdal, J. in When Disease Makes History: Epidemics and Great Historical Turning Points (ed. Hämäläinen, P.) 141–186 (Helsinki Univ. Press, 2006).
Myrdal, J. in Living with the Black Death (eds. Bisgaard, L. & Søndergaard, L.) 63–84 (Univ. Press of Southern Denmark, 2011).
Poos, L. Rural Society after the Black Death (Cambridge Univ. Press, 2011).
Slavin, P. Out of the West: formation of a permanent plague reservoir in South-Central Germany (1349–1356) and its implications. Past Present252, 3–51 (2021).
Xu L, et al. Nonlinear effect of climate on plague during the third pandemic in China. Proc. Natl Acad. Sci. USA. 2011;108:10214–10219. doi: 10.1073/pnas.1019486108. PubMed DOI PMC
Xu L, et al. Wet climate and transportation routes accelerate spread of human plague. Proc. Biol. Sci. 2014;281:20133159. PubMed PMC
DeWitte S. Stature and frailty during the Black Death: the effect of stature on risks of epidemic mortality in London, A.D. 1348–1350. J. Arch. Sci. 2012;39:1412–1419. doi: 10.1016/j.jas.2012.01.019. PubMed DOI PMC
Crespo F, Lawrenz MB. Heterogeneous immunological landscapes and medieval plague: an invitation to a new dialogue between historians and immunologists. Medieval Globe. 2014;1:229–258. doi: 10.17302/TMG.1-1.9. DOI
Pinto G. Firenze e la carestia del 1346-47: Aspetti e problemi delle crisi annonarie alla metà del ’300. Archivio Stor. Ital. 1972;130:3–84.
Faugeron, F. Nourrir la ville: ravitaillement, marchés et métiers de l’alimentation à Venise dans les derniers siècles du Moyen Âge (2014).
Luterbacher J, et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016;11:024001. doi: 10.1088/1748-9326/11/2/024001. DOI
Esper J, et al. Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Clim. Dyn. 2020;54:1367–1382. doi: 10.1007/s00382-019-05063-x. DOI
Campbell, B. The European Mortality Crises of 1346-52 and Advent of the Little Ice Age. in Famines During the ʻLittle Ice Ageʼ (1300-1800) Socionatural Entanglements in Premodern Societies 19–41 (Springer, 2017).
Bauch, M. & Engel, A. Die 1340er Jahre als Schlüsseljahrzehnt der ‚Great Transition‘. Eine klimahistorische Perspektive auf den Vorabend des Schwarzen Todes. in Pest! Sonderausstellung des LWL-Museums für Archäologie - Westfälisches Landesmuseum Herne (eds. Berner, A., Leenen, S. & Maus, S.). 76–82 (WBG, 2019).
Hübner, H.-J. Quia bonum sit anticipare tempus. Die kommunale Versorgung Venedigs mit Brot und Getreide vom späten 12. bis ins 15. Jahrhundert (Lang, 1998).
Del Panta, L. Le epidemie nella storia demografica italiana. (secoli XIV-XIX) (Loescher, 1980).
Santoro, C. Gli offici del Comune di Milano e del Dominio visconteo-sforzesco <1216-1515> (Giuffrè, 1968).
Ljungqvist FC, et al. Linking European building activity with plague history. J. Archaeol. Sci. 2018;98:81–92. doi: 10.1016/j.jas.2018.08.006. DOI
McConnell JR, et al. Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate, and conflict. Proc. Natl Acad. Sci. USA. 2019;116:14910–14915. doi: 10.1073/pnas.1904515116. PubMed DOI PMC
Lewis C. Disaster recovery: new archaeological evidence for the long-term impact of the ‘calamitous’ fourteenth century. Antiquity. 2016;90:777–797. doi: 10.15184/aqy.2016.69. DOI
Lamentowicz M, et al. How Joannites’ economy eradicated primeval forest and created anthroecosystems in medieval Central Europe. Sci. Rep. 2020;10:18775. doi: 10.1038/s41598-020-75692-4. PubMed DOI PMC
Czerwiński S, et al. Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of paleoecological and historical data. Quat. Sci. Rev. 2021;259:106902. doi: 10.1016/j.quascirev.2021.106902. DOI
Izdebski A, Słoczyński T, Bonnier A, Koloch G, Kouli K. Landscape change and trade in ancient Greece: evidence from pollen data. Economic J. 2020;130:2596–2618. doi: 10.1093/ej/ueaa026. DOI
Hamilton, R. et al. Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific. Nat. Ecol. Evol.5, 1174–1184 (2021). PubMed PMC
Izdebski, A. A Rural Economy in Transition: Asia Minor from Late Antiquity into the Early Middle Ages (Taubenschlag Foundation, 2013).
Roberts N, et al. Europe’s lost forests: a pollen-based synthesis for the last 11,000 years. Sci. Rep. 2018;8:716. doi: 10.1038/s41598-017-18646-7. PubMed DOI PMC
Bevan, A. et al. The changing face of the Mediterranean – Land cover, demography and environmental change: Introduction and overview. Holocene29, 703–707 (2019).
Yeloff D, Van Geel B. Abandonment of farmland and vegetation succession following the Eurasian plague pandemic of ad 1347–52. J. Biogeogr. 2007;34:575–582. doi: 10.1111/j.1365-2699.2006.01674.x. DOI
Razi, Z. Life, Marriage, and Death in a Medieval Parish: Economy, Society, and Demography in Halesowen, 1270–1400 (University Press, 1980).
DeWitte SN. Age patterns of mortality during the Black Death in London, A.D. 1349–1350. J. Archaeol. Sci. 2010;37:3394–3400. doi: 10.1016/j.jas.2010.08.006. PubMed DOI PMC
Broadberry, S. N. British Economic Growth, 1270–1870 (University Press, 2015).
Cortonesi, A. in Medioevo delle campagne: rapporti di lavoro, politica agraria, protesta contadina (eds. Cortonesi, A. & Piccinni, G.) 15–56 (Viella, 2011).
Abel, W. Agrarkrisen und Agrarkonjunktur. Eine Geschichte der Land- und Ernährungswirtschaft Mitteleuropas seit dem hohen Mittelalter (Parey, 1978).
Fyfe R, et al. The European Pollen Database: past efforts and current activities. Vegetation Hist. Archaeobotany. 2009;18:417–424. doi: 10.1007/s00334-009-0215-9. DOI
Kuneš P, Abraham V, Kovářík O, Kopecký M. Czech Quaternary Palynological Database – PALYCZ: review and basic statistics of the data. Preslia. 2009;81:209–238.
Florenzano A, Marignani M, Rosati L, Fascetti S, Mercuri AM. Are Cichorieae an indicator of open habitats and pastoralism in current and past vegetation studies? Plant Biosyst. 2015;149:154–165. doi: 10.1080/11263504.2014.998311. DOI
Smit A. A scanning electron microscopical study of the pollen morphology in the genus Quercus. Acta Botanica Neerlandica. 1973;22:655–665. doi: 10.1111/j.1438-8677.1973.tb00888.x. DOI
Ellenberg H, et al. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobotanica. 1992;18:1–258.
Dzwonko Z. Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J. Appl. Ecol. 2001;38:942–951. doi: 10.1046/j.1365-2664.2001.00649.x. DOI
Diekmann M, Lawesson JE. Shifts in ecological behaviour of herbaceous forest species along a transect from northern central to North Europe. Folia Geobotanica. 1999;34:127–141. doi: 10.1007/BF02803080. DOI
Gégout J-C, Krizova E. Comparison of indicator values of forest understory plant species in Western Carpathians (Slovakia) and Vosges Mountains (France) For. Ecol. Manag. 2003;182:1–11. doi: 10.1016/S0378-1127(03)00068-9. DOI
Hájková P, Hájek M, Apostolova I, Zelený D, Dítě D. Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires. J. Biogeogr. 2008;35:282–294.
Wasof S, et al. Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe. Glob. Ecol. Biogeogr. 2013;22:1130–1140. doi: 10.1111/geb.12073. DOI
Hill, M., Mountford, J., Roy, D. & Bunce, R. Ellenberg’s indicator Values for British Plants Vol. 2 Technical Annex. (Institute of Terrestrial Ecology, 1999).
Chytrý M, Tichý L, Dřevojan P, Sádlo J, Zelený D. Ellenberg-type indicator values for the Czech flora. Preslia. 2018;90:83–103. doi: 10.23855/preslia.2018.083. DOI
Böhling N, Greuter W, Raus T. Zeigerwerte der Gefäßpflanzen der Südägäis (Griechenland). Indicator values of the vascular plants in the Southern Aegean (Greece) Braun-Blanquetia. 2002;32:1–106.
Pignatti S, Menegoni P, Pietrosanti S. Biondicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia. 2005;39:1–97.
Diekmann M. Use and improvement of Ellenberg’s indicator values in deciduous forests of the Boreo-nemoral zone in Sweden. Ecography. 1995;18:178–189. doi: 10.1111/j.1600-0587.1995.tb00339.x. DOI
Niinemets Ü, Valladares F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 2006;76:521–547. doi: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2. DOI
Hall P. Theoretical comparison of bootstrap confidence intervals. Ann. Stat. 1988;16:927–953.
Cubas M, et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 2020;11:2036. doi: 10.1038/s41467-020-15907-4. PubMed DOI PMC
Wood SN. Thin plate regression splines. J. R. Stat. Soc. Ser. B. 2003;65:95–114. doi: 10.1111/1467-9868.00374. DOI
Groß M. Modeling body height in prehistory using a spatio-temporal Bayesian errors-in variables model. Adv. Stat. Anal. 2016;100:289–311. doi: 10.1007/s10182-015-0260-x. DOI
Ten simple rules to bridge ecology and palaeoecology by publishing outside palaeoecological journals