Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
PubMed
32341389
PubMed Central
PMC7184739
DOI
10.1038/s41467-020-15907-4
PII: 10.1038/s41467-020-15907-4
Knihovny.cz E-zdroje
- MeSH
- archeologie MeSH
- chov zvířat dějiny MeSH
- dějiny starověku MeSH
- izotopy uhlíku MeSH
- keramika MeSH
- lidé MeSH
- lipidy chemie MeSH
- mléčné výrobky analýza MeSH
- mlékárenství dějiny MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- zemědělství dějiny MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- izotopy uhlíku MeSH
- lipidy MeSH
The introduction of farming had far-reaching impacts on health, social structure and demography. Although the spread of domesticated plants and animals has been extensively tracked, it is unclear how these nascent economies developed within different environmental and cultural settings. Using molecular and isotopic analysis of lipids from pottery, here we investigate the foods prepared by the earliest farming communities of the European Atlantic seaboard. Surprisingly, we find an absence of aquatic foods, including in ceramics from coastal sites, except in the Western Baltic where this tradition continued from indigenous ceramic using hunter-gatherer-fishers. The frequency of dairy products in pottery increased as farming was progressively introduced along a northerly latitudinal gradient. This finding implies that early farming communities needed time to adapt their economic practices before expanding into more northerly areas. Latitudinal differences in the scale of dairy production might also have influenced the evolution of adult lactase persistence across Europe.
Área de Prehistoria Universitat Rovira i Virgili Avinguda de Catalunya 35 E 43002 Tarragona Spain
BioArCh Department of Archaeology University of York Wentworth Way Heslington York YO10 5DD UK
Departamento de Historia Universidad de Oviedo C Amparo Pedregal s n E 33011 Oviedo Spain
Department of Archaeology Max Planck Institute for the Science of Human History 07745 Jena Germany
Faculty of Arts Masaryk University Arne Nováka 1 602 00 Brno střed Czech Republic
INRAP Centre Archéologique de Bourguébus Boulevard de l'Europe 14540 Bourguébus France
INRAP Centre Archéologique du Grand Quevilly 30 boulevard de Verdun 76120 Le Grand Quevilly France
School of Archaeology University of Oxford 1 South Parks Road Oxford OX1 3TG UK
Service Archéologie du Conseil Départemental du Calvados 36 rue Fred Scamaroni 14000 Caen France
Sociedad de Ciencias Aranzadi Zorroagagaina 11 E 20014 Donostia San Sebastian Spain
Zobrazit více v PubMed
Zvelebil M, Rowley-Conwy P. Transition to farming in Northern Europe: a hunter gatherer perspective. Nor. Archaeol. Rev. 1984;17:104–128. doi: 10.1080/00293652.1984.9965402. DOI
Gronenborn, D. in Going Over: The Mesolithic-Neolithic Transition in North-West Europe (eds. Whittle, A. & Cummings, V.) 73–98 (Oxford University Press, Proceedings of the British Academy 144, 2007).
Robb, J. E. & Miracle, P. T. in Going Over: The Mesolithic-Neolithic Transition in North-West Europe (eds. Whittle, A. & Cummings, V.) 99–115 (Oxford University Press, Proceedings of the British Academy 144, 2007).
Omrak A, et al. Genomic evidence establishes Anatolia as the source of the European Neolithic gene pool. Curr. Biol. 2016;26:270–275. doi: 10.1016/j.cub.2015.12.019. PubMed DOI
Olalde I, et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science. 2019;363:1230. doi: 10.1126/science.aav4040. PubMed DOI PMC
Brace S, et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 2019;3:765–771. doi: 10.1038/s41559-019-0871-9. PubMed DOI PMC
Sherratt A. The secondary exploitation of animals in the old world. World Archaeol. 1983;15:90–104. doi: 10.1080/00438243.1983.9979887. DOI
Vigne JD, Helmer D. Was milk a “secondary product” in the old world Neolithisation process? Its role in the domestication of cattle, sheep and goats. Anthropozoologica. 2007;42:9–40.
Evershed RP, et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature. 2008;455:528–531. doi: 10.1038/nature07180. PubMed DOI
Spiteri CD, et al. Regional asynchronicity in dairy production and processing in early farming communities of the northern Mediterranean. Proc. Natl Acad. Sci. USA. 2016;113:13594–13599. doi: 10.1073/pnas.1607810113. PubMed DOI PMC
Craig OE, et al. Did the first farmers of central and eastern Europe produce dairy foods? Antiquity. 2005;79:882–894. doi: 10.1017/S0003598X00115017. DOI
Cramp L, et al. Regional diversity in subsistence among early farmers in Southeast Europe revealed by archaeological organic residues. Proc. R. Soc. B. 2019;286:20182347. doi: 10.1098/rspb.2018.2347. PubMed DOI PMC
Salque M, et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature. 2013;493:522–525. doi: 10.1038/nature11698. PubMed DOI
Salque M, et al. New insights into the Early Neolithic economy and management of animals in Southern and Central Europe revealed using lipid residue analyses of pottery vessels. Anthropozoologica. 2012;47:45–62. doi: 10.5252/az2012n2a4. DOI
Copley MS, et al. Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. J. Archaeol. Sci. 2005;32:523–546. doi: 10.1016/j.jas.2004.08.006. DOI
Craig OE, et al. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. Proc. Natl Acad. Sci. USA. 2011;108:17910–17915. doi: 10.1073/pnas.1107202108. PubMed DOI PMC
Cramp LJE, et al. Neolithic dairy farming at the extreme of agriculture in northern Europe. Proc. R. Soc. B. 2014;281:20140819. doi: 10.1098/rspb.2014.0819. PubMed DOI PMC
Cramp LJE, et al. Immediate replacement of fishing with dairying by the earliest farmers of the northeast Atlantic archipelagos. Proc. R. Soc. B. 2014;281:20132372. doi: 10.1098/rspb.2013.2372. PubMed DOI PMC
Manning K, et al. The origins and spread of stock-keeping: the role of cultural and environmental influences on early Neolithic animal exploitation in Europe. Antiquity. 2013;87:1046–1059. doi: 10.1017/S0003598X00049851. DOI
Smyth J, Evershed RP. Milking the megafauna: using organic residue analysis to understand early farming practice. Environ. Archaeol. 2017;21:214–229. doi: 10.1179/1749631414Y.0000000045. DOI
Gutiérrez-Zugasti FI, et al. Shell middens research in Atlantic Europe: state of the art, research problems and perspectives for the future. Quat. Int. 2011;239:70–85. doi: 10.1016/j.quaint.2011.02.031. DOI
Richards MP, Hedges REM. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic Coast of Europe. J. Archaeol. Sci. 1999;26:717–722. doi: 10.1006/jasc.1998.0387. DOI
Cubas M, et al. Long-term dietary change in Atlantic and Mediterranean Iberia with the introduction of agriculture: a stable isotope perspective. Archaeol. Anthropol. Sci. 2019;11:3825. doi: 10.1007/s12520-018-0752-1. DOI
Guiry EJ, et al. The transition to agriculture in south-western Europe: new isotopic insights from Portugal’s Atlantic coast. Antiquity. 2016;90:604–616. doi: 10.15184/aqy.2016.34. DOI
Milner N, Craig O, Bailey G, Pedersen K, Andersen S. Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic Coastal populations. Antiquity. 2004;78:9–22. doi: 10.1017/S0003598X00092887. DOI
Montgomery J, et al. Strategic and sporadic marine consumption at the onset of the Neolithic: increasing temporal resolution in the isotope evidence. Antiquity. 2013;78:1060–1072. doi: 10.1017/S0003598X00049863. DOI
Zilhão J. Radiocarbon evidence for maritime pioneer colonization at the origins of farming in west Mediterranean Europe. Proc. Natl Acad. Sci. USA. 2001;98:14180–14185. doi: 10.1073/pnas.241522898. PubMed DOI PMC
Marchand, G. in Going Over. The Mesolithic-Neolithic Transition in North-West Europe (eds. Whittle, A. & Cummings, V.) 225–242 (Oxford University Press, Proceedings of the British Academy 144, 2007).
Cubas M, et al. Re-evaluating the Neolithic: the impact and the consolidation of farming practices in the Cantabrian Region (Northern Spain) J. World Prehist. 2016;29:79–116. doi: 10.1007/s10963-016-9091-2. DOI
Lipson M, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551:368–372. doi: 10.1038/nature24476. PubMed DOI PMC
Sheridan, A. in Landscapes in Transition (eds. Finlayson, B. & Warren, G.) 89–105 (Oxbow Books, 2010).
Carvalho AF. When the Mediterranean met the Atlantic. A socio-economic view on Early Neolithic communities in central-southern Portugal. Quat. Int. 2018;470(Part B):472–484. doi: 10.1016/j.quaint.2016.12.045. DOI
Craig OE, et al. Molecular and isotopic demonstration of the processing of aquatic products in Northern European Prehistoric pottery. Archaeometry. 2007;49:135–152. doi: 10.1111/j.1475-4754.2007.00292.x. DOI
Robson, H. K. Evaluating the change of consumption and culinary practices at the transition to agriculture: a multi-disciplinary approach from a Danish kitchen midden. (Unpublished PhD Thesis, University of York, 2015).
Craig OE, et al. Earliest evidence for the use of pottery. Nature. 2013;496:351–354. doi: 10.1038/nature12109. PubMed DOI
Evershed RP. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeol. 2008;40:26–47. doi: 10.1080/00438240801889373. DOI
Copley MS, et al. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl Acad. Sci. USA. 2003;100:1524–1529. doi: 10.1073/pnas.0335955100. PubMed DOI PMC
Craig OE, et al. Distinguishing wild ruminant lipids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2012;26:2359–2364. doi: 10.1002/rcm.6349. PubMed DOI
Dudd SN, Evershed RP. Direct demonstration of milk as an element of archaeological economies. Science. 1998;282:1478–1481. doi: 10.1126/science.282.5393.1478. PubMed DOI
Lucquin A, et al. The impact of environmental change on the use of early pottery by East Asian hunter-gatherers. Proc. Natl Acad. Sci. USA. 2018;115:7931–7936. doi: 10.1073/pnas.1803782115. PubMed DOI PMC
Davis SJM, Gabriel S, Simões T. Animal remains from Neolithic Lameiras, Sintra: the earliest domesticated sheep, goat, cattle and pigs in Portugal and some notes on their evolution. Archaeofauna. 2018;27:93–172. doi: 10.15366/archaeofauna2018.27.006. DOI
Álvarez-Fernández E, et al. Évolution de l’exploitation des ressources animales dans la région cantabrique entre 4500 et 2000 cal BC: la grotte de Los Gitanos (Cantabrie, Espagne) Comptes Rendus Palevol. 2014;13:307–316. doi: 10.1016/j.crpv.2014.01.004. DOI
Fernandes R, et al. Reconstruction of prehistoric pottery use from fatty acid carbon isotope signatures using Bayesian inference. Org. Geochem. 2018;117:31–42. doi: 10.1016/j.orggeochem.2017.11.014. DOI
Valente MJ, Carvalho AF. Zooarchaeology in the Neolithic and Chalcolithic of Southern Portugal. Environ. Archaeol. 2014;19:226–240. doi: 10.1179/1749631414Y.0000000022. DOI
Ethier J, et al. Earliest expansion of animal husbandry beyond the Mediterranean zone in the sixth millennium BC. Sci. Rep. 2017;7:7146. doi: 10.1038/s41598-017-07427-x. PubMed DOI PMC
Fábregas Valcarce R, et al. Vaso con decoración cardial de Cova Eirós. Trabajos de Prehist. 2019;76:147–160. doi: 10.3989/tp.2019.12231. DOI
Marchand, G. Préhistoire Atlantique. Fonctionnement et évolution des sociétés du Paléolithique au Néolithique. (Errance Collection Hespérides, 2014).
Gillis RE, et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc. R. Soc. B. 2017;284:20170905. doi: 10.1098/rspb.2017.0905. PubMed DOI PMC
Crombé, P. in Ceramics Before Farming. The Dispersal of Pottery Among Prehistoric Eurasian Hunter-gatherers (eds. Jordan, P. & Zvelebil, M.) 477–498 (Left Coast Press, 2009).
Garrow D, Sturt F. Grey waters bright with Neolithic argonauts? Maritime connections and the Mesolithic–Neolithic transition within the ‘western seaways’ of Britain, c. 5000–3500 BC. Antiquity. 2015;85:59–72. doi: 10.1017/S0003598X00067430. DOI
Charlton S, et al. New insights into Neolithic milk consumption through proteomic analysis of dental calculus. Archaeol. Anthropol. Sci. 2019;11:6183–6196. doi: 10.1007/s12520-019-00911-7. DOI
Fuller, D. Q. & Lucas, L. in Human Dispersal and Species Movement: From Prehistory to the Present (eds. Petraglia, M., Boivin, N. & Crassard, R.) 304–331 (Cambridge University Press, 2017).
McClure SB. The pastoral effect. Curr. Anthropol. 2015;56:901–910. doi: 10.1086/684102. DOI
Balasse M, Tresset A. Environmental constraints on the reproductive activity of domestic sheep and cattle: what latitude for the herder. Anthropozoologica. 2007;42:71–88.
Balasse M, Boury L, Ughetto-Monfrin J, Tresset A. Stable isotope insights (δ 18O, δ 13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environ. Archaeol. 2012;17:29–44. doi: 10.1179/1461410312Z.0000000003. DOI
Balasse M, Tresset A. Early weaning of Neolithic domestic cattle (Bercy, France) revealed by intra-tooth variation in nitrogen isotope ratios. J. Archaeol. Sci. 2002;29:853–859. doi: 10.1006/jasc.2001.0725. DOI
Brickley MB, Moffat T, Watamaniuk L. Biocultural perspectives of vitamin D deficiency in the past. J. Anthropol. Archaeol. 2014;36:48–59. doi: 10.1016/j.jaa.2014.08.002. DOI
Bishop RR. Did Late Neolithic farming fail or flourish? A Scottish perspective on the evidence for Late Neolithic arable cultivation in the British Isles. World Archaeol. 2015;47:834–855. doi: 10.1080/00438243.2015.1072477. DOI
Stevens CJ, Fuller DQ. Did Neolithic farming fail? The case for a Bronze Age agricultural revolution in the British Isles. Antiquity. 2015;86:707–722. doi: 10.1017/S0003598X00047864. DOI
Fischer, A. in The Neolithisation of Denmark: 150 Years of Debate (eds. Fischer, A. & Kristiansen, K.) 343–393 (J. R. Collis Publications, 2002).
Saul H, et al. A systematic approach to the recovery and identification of starches from carbonised deposits on ceramic vessels. J. Archaeol. Sci. 2012;39:3483–3492. doi: 10.1016/j.jas.2012.05.033. DOI
Plantinga TS, et al. Low prevalence of lactase persistence in Neolithic South-West Europe. Eur. J. Hum. Genet. 2012;20:778–782. doi: 10.1038/ejhg.2011.254. PubMed DOI PMC
Olalde I, et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature. 2018;555:190–196. doi: 10.1038/nature25738. PubMed DOI PMC
Gerbault P, Moret C, Currat M, Sanchez-Mazas A. Impact of selection and demography on the diffusion of lactase persistence. PLoS One. 2009;4:e6369–e6369. doi: 10.1371/journal.pone.0006369. PubMed DOI PMC
Papakosta V, Smittenberg RH, Gibbs K, Jordan P, Isaksson S. Extraction and derivatization of absorbed lipid residues from very small and very old samples of ceramic potsherds for molecular analysis by gas chromatography–mass spectrometry (GC–MS) and single compound stable carbon isotope analysis by gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS) Microchem. J. 2015;123:196–200. doi: 10.1016/j.microc.2015.06.013. DOI
Evershed RP, Heron C, Goad LJ. Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst. 1990;115:1339–1342. doi: 10.1039/an9901501339. DOI
Cramp, L. & Evershed, R. P. in Treatise on Geochemistry 2nd edn, 319–339 (Elsevier, 2014).
Hansel FA, Copley MS, Madureira LAS, Evershed RP. Thermally produced ω-(o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Lett. 2004;45:2999–3002. doi: 10.1016/j.tetlet.2004.01.111. DOI
Lucquin A, Colonese AC, Farrell TFG, Craig OE. Utilising phytanic acid diastereomers for the characterisation of archaeological lipid residues in pottery samples. Tetrahedron Lett. 2016;57:703–707. doi: 10.1016/j.tetlet.2016.01.011. DOI
Hellevang H, Aagaard P. Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model. Sci. Rep. 2015;5:17352. doi: 10.1038/srep17352. PubMed DOI PMC
Fernandes R, Millard AR, Brabec M, Nadeau MJ, Grootes P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS One. 2014;9:e87436. doi: 10.1371/journal.pone.0087436. PubMed DOI PMC
Team RDC. R: a Language and Environment for Statistical Computing. Vienna: Foundation for Statistical Computing; 2013.
Wood SN. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003;65:95–114. doi: 10.1111/1467-9868.00374. DOI
Groß M. Modeling body height in prehistory using a spatio-temporal Bayesian errors-in variables model. AStA Adv. Stat. Anal. 2016;100:289–311. doi: 10.1007/s10182-015-0260-x. DOI
Rosenstock E, et al. Human stature in the Near East and Europe ca. 10,000–1000 BC: its spatiotemporal development in a Bayesian errors-in-variables model. Archaeol. Anthropol. Sci. 2019;11:5657–5690. doi: 10.1007/s12520-019-00850-3. DOI
Yu K, Moyeed RA. Bayesian quantile regression. Stat. Probabil. Lett. 2001;54:437–447. doi: 10.1016/S0167-7152(01)00124-9. DOI
Waldmann E, Kneib T, Yue YR, Lang S, Flexeder C. Bayesian semiparametric additive quantile regression. Stat. Model. 2013;13:223–252. doi: 10.1177/1471082X13480650. DOI
Introducing IsoMad, a compilation of isotopic datasets for Madagascar
Introducing Isotòpia: A stable isotope database for Classical Antiquity
Dairying, diseases and the evolution of lactase persistence in Europe
Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe
Stable isotope evidence for dietary diversification in the pre-Columbian Amazon