Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
35729167
PubMed Central
PMC9213510
DOI
10.1038/s41597-022-01462-8
PII: 10.1038/s41597-022-01462-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Here we present the Compendium Isotoporum Medii Aevi (CIMA), an open-access database gathering more than 50,000 isotopic measurements for bioarchaeological samples located within Europe and its margins, and dating between 500 and 1500 CE. This multi-isotope (δ13C, δ15N, δ34S, δ18O, and 87Sr/86Sr) archive of measurements on human, animal, and plant archaeological remains also includes a variety of supporting information that offer, for instance, a taxonomic characterization of the samples, their location, and chronology, in addition to data on social, religious, and political contexts. Such a dataset can be used to identify data gaps for future research and to address multiple research questions, including those related with studies on medieval human lifeways (i.e. human subsistence, spatial mobility), characterization of paleo-environmental and -climatic conditions, and on plant and animal agricultural management practices. Brief examples of such applications are given here and we also discuss how the integration of large volumes of isotopic data with other types of archaeological and historical data can improve our knowledge of medieval Europe.
Arne Faculty of Arts Masaryk University Nováka 1 602 00 Brno Czech Republic
School of Archaeology University of Oxford 1 Parks Road OX1 3TG Oxford UK
Zobrazit více v PubMed
Backman, C. R. The worlds of medieval Europe. (Oxford University Press, 2003).
Brown, P. The World of Late Antiquity. From Marcus Aurelius to Muhammad. (Thames & Hudson, 1971).
Brown, P. The Making of Late Antiquity. (Harvard University Press, 1978).
Holmes, G. The Oxford History of Medieval Europe. (Oxford University Press, 2002).
Hoffmann, R. C. An environmental history of medieval Europe. (Cambridge University Press, 2014).
Ward-Perkins, B. The Fall of Rome: And the End of Civilization. (Oxford University Press, 2006).
Wickham, C. Framing the Early Middle Ages: Europe and the Mediterranean, 400–800. (Oxford University Press, 2006).
Wickham, C. The inheritance of Rome: a history of Europe from 400 to 1000. (Penguin Books, 2010).
Wickham, C. Medieval Europe. (Yale University Press, 2016).
Halsall, G. The sources and their interpretations. In The New Cambridge Medieval History, Volume 1 c.500–c.700 (ed. Fouracre, P.) 56–92 (Cambridge University Press, 2005).
Alexander MM, Gerrard CM, Gutiérrez A, Millard AR. Diet, society, and economy in late medieval Spain: Stable isotope evidence from Muslims and Christians from Gandía, Valencia. Am. J. Phys. Anthropol. 2015;156:263–273. doi: 10.1002/ajpa.22647. PubMed DOI PMC
Alexander MM, Gutiérrez A, Millard AR, Richards MP, Gerrard CM. Economic and socio-cultural consequences of changing political rule on human and faunal diets in medieval Valencia (c. fifth–fifteenth century AD) as evidenced by stable isotopes. Archaeol. Anthropol. Sci. 2019;11:3875–3893. doi: 10.1007/s12520-019-00810-x. DOI
Dotsika E, Michael DE, Iliadis E, Karalis P, Diamantopoulos G. Isotopic reconstruction of diet in Medieval Thebes (Greece) J. Archaeol. Sci. Rep. 2018;22:482–491.
Francisci G, et al. Strontium and oxygen isotopes as indicators of Longobards mobility in Italy: an investigation at Povegliano Veronese. Sci. Rep. 2020;10:11678. doi: 10.1038/s41598-020-67480-x. PubMed DOI PMC
Guede I, et al. Isotope analyses to explore diet and mobility in a medieval Muslim population at Tauste (NE Spain) PLOS ONE. 2017;12:e0176572. doi: 10.1371/journal.pone.0176572. PubMed DOI PMC
Hakenbeck S, McManus E, Geisler H, Grupe G, O’Connell T. Diet and mobility in Early Medieval Bavaria: A study of carbon and nitrogen stable isotopes. Am. J. Phys. Anthropol. 2010;143:235–249. doi: 10.1002/ajpa.21309. PubMed DOI
Hughes SS, Millard AR, Chenery CA, Nowell G, Pearson DG. Isotopic analysis of burials from the early Anglo-Saxon cemetery at Eastbourne, Sussex, U.K. J. Archaeol. Sci. Rep. 2018;19:513–525.
Kaupová SD, et al. Diet in transitory society: isotopic analysis of medieval population of Central Europe (ninth–eleventh century AD, Czech Republic) Archaeol. Anthropol. Sci. 2018;10:923–942. doi: 10.1007/s12520-016-0427-8. DOI
Lamb AL, Evans J, Buckley R, Appleby J. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. J. Archaeol. Sci. 2014;50:559–565. doi: 10.1016/j.jas.2014.06.021. DOI
López-Costas O, Müldner G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 2016;161:141–154. doi: 10.1002/ajpa.23016. PubMed DOI
Lubritto C, et al. New Dietary Evidence on Medieval Rural Communities of the Basque Country (Spain) and Its Surroundings from Carbon and Nitrogen Stable Isotope Analyses: Social Insights, Diachronic Changes and Geographic Comparison: Palaeodietary Evidence on Medieval Basque Rural Communities. Int. J. Osteoarchaeol. 2017;27:984–1002. doi: 10.1002/oa.2610. DOI
MacRoberts RA, et al. Diet and mobility during the Christian conquest of Iberia: The multi-isotopic investigation of a 12th–13th century military order in Évora. Portugal. J. Archaeol. Sci. Rep. 2020;30:102210.
Miclon V, et al. Social characterization of the medieval and modern population from Joué-lès-Tours (France): Contribution of oral health and diet. BMSAP. 2017;31:77–92. doi: 10.3166/bmsap-2018-0025. DOI
Mion L, et al. The influence of religious identity and socio-economic status on diet over time, an example from medieval France. Archaeol. Anthropol. Sci. 2019;11:3309–3327. doi: 10.1007/s12520-018-0754-z. DOI
Müldner G, Richards MP. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 2007;133:682–697. doi: 10.1002/ajpa.20561. PubMed DOI
Price TD, Peets J, Allmäe R, Maldre L, Oras E. Isotopic provenancing of the Salme ship burials in Pre-Viking Age Estonia. Antiquity. 2016;90:1022–1037. doi: 10.15184/aqy.2016.106. DOI
Tafuri MA, Goude G, Manzi G. Isotopic evidence of diet variation at the transition between classical and post-classical times in Central Italy. J. Archaeol. Sci. Rep. 2018;21:496–503.
Torino M, et al. Convento di San Francesco a Folloni: the function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 2015;3:27. doi: 10.1186/s40494-015-0056-z. DOI
Toso A, Gaspar S. Banha da Silva, R., Garcia, S. J. & Alexander, M. High status diet and health in Medieval Lisbon: a combined isotopic and osteological analysis of the Islamic population from São Jorge Castle, Portugal. Archaeol. Anthropol. Sci. 2019;11:3699–3716. doi: 10.1007/s12520-019-00822-7. DOI
Barrett JH, et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 2011;38:1516–1524. doi: 10.1016/j.jas.2011.02.017. DOI
Dreslerová D, et al. Maintaining soil productivity as the key factor in European prehistoric and Medieval farming. J. Archaeol. Sci. Rep. 2021;35:102633.
Evans J, Tatham S, Chenery SR, Chenery CA. Anglo-Saxon animal husbandry techniques revealed through isotope and chemical variations in cattle teeth. Appl. Geochem. 2007;22:1994–2005. doi: 10.1016/j.apgeochem.2007.03.059. DOI
Fisher A, Thomas R. Isotopic and zooarchaeological investigation of later medieval and post-medieval cattle husbandry at Dudley Castle, West Midlands. Environ. Archaeol. 2012;17:151–167. doi: 10.1179/1461410312Z.00000000013. DOI
Halley DJ, Rosvold J. Stable isotope analysis and variation in medieval domestic pig husbandry practices in northwest Europe: absence of evidence for a purely herbivorous diet. J. Archaeol. Sci. 2014;49:1–5. doi: 10.1016/j.jas.2014.04.006. DOI
Hamerow H, et al. An Integrated Bioarchaeological Approach to the Medieval ‘Agricultural Revolution’: A Case Study from Stafford, England, c. AD 800–1200. Eur. J. Archaeol. 2020;23:585–609. doi: 10.1017/eaa.2020.6. DOI
Hamilton J, Thomas R. Pannage, Pulses and Pigs: Isotopic and Zooarchaeological Evidence for Changing Pig Management Practices in Later Medieval England. Mediev. Archaeol. 2012;56:234–259. doi: 10.1179/0076609712Z.0000000008. DOI
Hammond C, O’Connor T. Pig diet in medieval York: carbon and nitrogen stable isotopes. Archaeol. Anthropol. Sci. 2013;5:123–127. doi: 10.1007/s12520-013-0123-x. DOI
Kovačiková, L. et al. Pig-Breeding Management in the Early Medieval Stronghold at Mikulčice (Eighth–Ninth Centuries, Czech Republic). Environ. Archaeol. 1–15, 10.1080/14614103.2020.1782583 (2020).
Lahtinen M. Isotopic Evidence for Environmental Adaptation in Medieval Iin Hamina, Northern Finland. Radiocarbon. 2017;59:1117–1131. doi: 10.1017/RDC.2017.52. DOI
Müldner G, Britton K, Ervynck A. Inferring animal husbandry strategies in coastal zones through stable isotope analysis: new evidence from the Flemish coastal plain (Belgium, 1st–15th century AD) J. Archaeol. Sci. 2014;41:322–332. doi: 10.1016/j.jas.2013.08.010. DOI
Orton DC, et al. Stable Isotope Evidence for Late Medieval (14th–15th C) Origins of the Eastern Baltic Cod (Gadus morhua) Fishery. PLoS ONE. 2011;6:e27568. doi: 10.1371/journal.pone.0027568. PubMed DOI PMC
Reitsema LJ, Kozłowski T, Makowiecki D. Human–environment interactions in medieval Poland: a perspective from the analysis of faunal stable isotope ratios. J. Archaeol. Sci. 2013;40:3636–3646. doi: 10.1016/j.jas.2013.04.015. DOI
Sirignano C, et al. Animal husbandry during Early and High Middle Ages in the Basque Country (Spain) Quat. Int. 2014;346:138–148. doi: 10.1016/j.quaint.2014.05.042. DOI
Vogel JC, Van Der Merwe NJ. Isotopic Evidence for Early Maize Cultivation in New York State. Am. Antiq. 1977;42:238–242. doi: 10.2307/278984. DOI
Van Der Merwe NJ, Vogel JC. 13C Content of human collagen as a measure of prehistoric diet in woodland North America. Nature. 1978;276:815–816. doi: 10.1038/276815a0. PubMed DOI
Leng, M. J. Isotopes in Palaeoenvironmental Research. Isotopes in Palaeoenvironmental Research (Springer, 2006).
Meier-Augenstein, W. Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis. (Wiley, 2011).
Archaeological Science: An Introduction. (Cambridge University Press, 2020).
Fiorentino G, Ferrio JP, Bogaard A, Araus JL, Riehl S. Stable isotopes in archaeobotanical research. Veg. Hist. Archaeobotany. 2015;24:215–227. doi: 10.1007/s00334-014-0492-9. DOI
Hedges REM, Stevens RE, Richards Michael. P. Bone as a stable isotope archive for local climatic information. Quat. Sci. Rev. 2004;23:959–965. doi: 10.1016/j.quascirev.2003.06.022. DOI
Lahtinen M, Arppe L, Nowell G. Source of strontium in archaeological mobility studies—marine diet contribution to the isotopic composition. Archaeol. Anthropol. Sci. 2021;13:1. doi: 10.1007/s12520-020-01240-w. DOI
Lee-Thorp JA. On Isotopes and Old Bones. Archaeometry. 2008;50:925–950. doi: 10.1111/j.1475-4754.2008.00441.x. DOI
Lightfoot E, O’Connell TC. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations. PLOS ONE. 2016;11:e0153850. doi: 10.1371/journal.pone.0153850. PubMed DOI PMC
Makarewicz, C. A. Stable isotopes in pastoralist archaeology as indicators of diet, mobility, and animal husbandry practices. in Isotopic Investigations of Pastoralism in Prehistory (eds. Ventresca Miller, A. & Makarewicz, C. A.) (Routledge, 2017).
Pederzani S, Britton K. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Sci. Rev. 2019;188:77–107. doi: 10.1016/j.earscirev.2018.11.005. DOI
Styring AK, et al. Disentangling the effect of farming practice from aridity on crop stable isotope values: A present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. Anthr. Rev. 2016;3:2–22.
Szpak, P. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5 (2014). PubMed PMC
Roberts P, et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass Spectrom. 2018;32:361–372. doi: 10.1002/rcm.8044. PubMed DOI PMC
Cubas M, et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 2020;11:2036. doi: 10.1038/s41467-020-15907-4. PubMed DOI PMC
Wilkin S, et al. Economic Diversification Supported the Growth of Mongolia’s Nomadic Empires. Sci. Rep. 2020;10:3916. doi: 10.1038/s41598-020-60194-0. PubMed DOI PMC
Wang X, et al. The Circulation of Ancient Animal Resources Across the Yellow River Basin: A Preliminary Bayesian Re-evaluation of Sr Isotope Data From the Early Neolithic to the Western Zhou Dynasty. Front. Ecol. Evol. 2021;9:16.
Leggett S, Rose A, Praet E. & Le Roux, P. Multi-tissue and multi-isotope (δ13C, δ15N, δ18O and 87/86Sr) data for early medieval human and animal palaeoecology. Ecology. 2021;102:e03349. doi: 10.1002/ecy.3349. PubMed DOI
Mallet, S. & Stansbie, D. Substance and Subsistence. in English Landscapes and Identities. Investigating Landscape Change from 1500 BC to AD 1086 (eds. Gosden, C. & Green, C.) (Oxford University Press, 2021).
Buikstra, J. E. & Ubelaker, D. H. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. (Arkansas Archeological Survey, 1994).
Cocozza C, Cirelli E, Groß M, Teegen W-R, Fernandes R, 2022. Compendium Isotoporum Medii Aevi (CIMA) Pandora. PubMed DOI PMC
Cocozza C, Fernandes R. Amalthea: A Database of Isotopic Measurements on Archaeological and Forensic Tooth Dentine Increments. J. Open Archaeol. Data. 2021;9:4. doi: 10.5334/joad.75. DOI
Etu-Sihvola H, et al. The dIANA database – Resource for isotopic paleodietary research in the Baltic Sea area. J. Archaeol. Sci. Rep. 2019;24:1003–1013.
Fernandes R, et al. The ARCHIPELAGO Archaeological Isotope Database for the Japanese Islands. J. Open Archaeol. Data. 2021;9:3. doi: 10.5334/joad.73. DOI
Scheibner, A. Prähistorische Ernährung in Vorderasien und Europa. Eine kulturgeschichtliche Synthese auf der Basis ausgewählter Quellen. Berl. Archäol. Forschungen16 (2016).
Williams AN, Ulm S, Smith M, Reid J. AustArch: a database of 14C and non-14C ages from archaeological sites in Australia: composition, compilation and review. Internet Archaeol. 2014;36:1–12.
Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 1990;17:431–451. doi: 10.1016/0305-4403(90)90007-R. DOI
DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317:806–809. doi: 10.1038/317806a0. DOI
Nehlich O, Richards MP. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 2009;1:59–75. doi: 10.1007/s12520-009-0003-6. DOI
van Klinken GJ. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. J. Archaeol. Sci. 1999;26:687–695. doi: 10.1006/jasc.1998.0385. DOI
van der Plicht J, Wijma S, Aerts AT, Pertuisot MH, Meijer HAJ. Status report: The Groningen AMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000;172:58–65. doi: 10.1016/S0168-583X(00)00284-6. DOI
Prasad GVR, Culp R, Cherkinsky A. δ13C correction to AMS data: Values derived from AMS vs IRMS values. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019;455:244–249. doi: 10.1016/j.nimb.2019.01.034. DOI
Pollard AM, Pellegrini M, Lee-Thorp JA. Technical note: Some observations on the conversion of dental enamel δ18Op values to δ18Ow to determine human mobility. Am. J. Phys. Anthropol. 2011;145:499–504. doi: 10.1002/ajpa.21524. PubMed DOI
Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun. Mass Spectrom. 2012;26:309–319. doi: 10.1002/rcm.5331. PubMed DOI
Lehn C, Rossmann A, Mayr C. Stable isotope relationships between apatite phosphate (δ18O), structural carbonate (δ18O, δ13C), and collagen (δ2H, δ13C, δ15N, δ34S) in modern human dentine. Rapid Commun. Mass Spectrom. 2020;34:e8674. doi: 10.1002/rcm.8674. PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
Chang W, Cheng J, Allaire J, Xie Y, McPherson J. Shiny: web application framework for R. R Package Version. 2017;1:2017.
Cocozza C, Fernandes R, Ughi A, Groß M, Alexander MM. Investigating infant feeding strategies at Roman Bainesse through Bayesian modelling of incremental dentine isotopic data. Int. J. Osteoarchaeol. 2021;31:429–439. doi: 10.1002/oa.2962. DOI
Sołtysiak A, Fernandes R. Much ado about nothing: assessing the impact of the 4.2 kya event on human subsistence patterns in northern Mesopotamia using stable isotope analysis. Antiquity. 2021;95:1145–1160. doi: 10.15184/aqy.2021.117. DOI
Bonafini M, Pellegrini M, Ditchfield P, Pollard AM. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 2013;40:3926–3935. doi: 10.1016/j.jas.2013.03.028. DOI
Montanari, M. Alimentazione e cultura nel Medioevo. (Laterza, 1988).
Castiglioni E, Rottoli M. Broomcorn millet, foxtail millet and sorghum in north Italian Early Medieval sites. Post-Class. Archaeol. 2013;3:131–144.
Rippon S, Wainwright A, Smart C. Farming Regions in Medieval England: The Archaeobotanical and Zooarchaeological Evidence. Mediev. Archaeol. 2014;58:195–255. doi: 10.1179/0076609714Z.00000000036. DOI
Lewit T. Pigs, presses and pastoralism: farming in the fifth to sixth centuries AD: Farming in the fifth to sixth centuries. Early Mediev. Eur. 2009;17:77–91. doi: 10.1111/j.1468-0254.2009.00245.x. DOI
MacKinnon M. Consistency and change: zooarchaeological investigation of Late Antique diets and husbandry techniques in the Mediterranean region. Antiq. Tardive. 2019;27:135–148. doi: 10.1484/J.AT.5.119548. DOI
Salvadori F. The transition from late antiquity to early Middle Ages in Italy. A zooarchaeological perspective. Quat. Int. 2019;499:35–48. doi: 10.1016/j.quaint.2018.06.040. DOI
Witcher, R. Agricultural Production in Roman Italy. in A Companion to Roman Italy (ed. Cooley, A. E.) 459–482 (Wiley, 2016).
Pearson KL. Nutrition and the Early-Medieval Diet. Speculum. 1997;72:1–32. doi: 10.2307/2865862. DOI
Salesse K, et al. IsoArcH.eu: An open-access and collaborative isotope database for bioarchaeological samples from the Graeco-Roman world and its margins. J. Archaeol. Sci. Rep. 2018;19:1050–1055.
Winklerová, D. Zooarchaeological and archaeobotanical indicators for aspects of diet in medieval Kingdom of Bohemia. In Food in the Medieval Rural Environment: Processing, Storage, Distribution of Food (eds. Klápšte, J. & Sommer, P.) 421–429 (Brepols Publishers, 2011).
Gyulai, F. The history of broomcorn millet (Panicum miliaceum L.) In the Carpathian-basin in the mirror of archaeobotanical remains II. From the roman age until the late medieval age. Columella J. Agric. Environ. Sci. 1 (2014).
Iacumin P, Galli E, Cavalli F, Cecere L. C4-consumers in southern europe: The case of friuli V.G. (NE-Italy) during early and central middle ages. Am. J. Phys. Anthropol. 2014;154:561–574. doi: 10.1002/ajpa.22553. PubMed DOI
Bynum, C. W. Holy feast and holy fast: the religious significance of food to medieval women. (Univiversity of California Press, 2000).
Garnsey, P. Food & Society Classical Antiquity. (Cambridge University Press, 2008).
James, P. Food Provisions for Ancient Rome: A Supply Chain Approach. (Routledge).
Minniti, C. L’approvvigionamento alimentare a Roma nel Medioevo: analisi dei resti faunistici provenienti dalle aree di scavo della Crypta Balbi e di Santa Cecilia. In Atti del III Convegno Nazionale di Archeozoologia (eds. Fiore, I., Malerba, G. & Chilardi, S.) 469–492 (Istituto poligrafico e Zecca dello Stato, 2005).
Fernandes R, Millard AR, Brabec M, Nadeau M-J, Grootes P. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): A Bayesian Model for Diet Reconstruction. PLoS ONE. 2014;9:e87436. doi: 10.1371/journal.pone.0087436. PubMed DOI PMC
Fernandes R, Grootes P, Nadeau M-J, Nehlich O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany) Am. J. Phys. Anthropol. 2015;158:325–340. doi: 10.1002/ajpa.22788. PubMed DOI
Nehlich O. The application of sulphur isotope analyses in archaeological research: A review. Earth-Sci. Rev. 2015;142:1–17. doi: 10.1016/j.earscirev.2014.12.002. DOI
Sayle KL, et al. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: Evidence of animal movement/husbandry practices in an early Viking community around Lake Mývatn, Iceland. Geochim. Cosmochim. Acta. 2013;120:531–544. doi: 10.1016/j.gca.2013.07.008. DOI
Alt KW, et al. Lombards on the Move – An Integrative Study of the Migration Period Cemetery at Szólád, Hungary. PLoS ONE. 2014;9:e110793. doi: 10.1371/journal.pone.0110793. PubMed DOI PMC
Brettell R, Evans J, Marzinzik S, Lamb A, Montgomery J. ‘Impious Easterners’: Can Oxygen and Strontium Isotopes Serve as Indicators of Provenance in Early Medieval European Cemetery Populations? Eur. J. Archaeol. 2012;15:117–145. doi: 10.1179/1461957112Y.0000000001. DOI
Knipper, C. et al. Mobility in Thuringia or mobile Thuringians: A strontium isotope study from early medieval Central Germany. In Population Dynamics in Prehistory and Early History (eds. Kaiser, E., Burger, J. & Schier, W.) 287–310, 10.1515/9783110266306.287 (De Gruyter, 2012).
Winter-Schuh C, Makarewicz CA. Isotopic evidence for changing human mobility patterns after the disintegration of the Western Roman Empire at the Upper Rhine. Archaeol. Anthropol. Sci. 2019;11:2937–2955. doi: 10.1007/s12520-018-0702-y. DOI
Biddle M, Kjølbye-Biddle B. Repton and the Vikings. Antiquity. 1992;66:36–51. doi: 10.1017/S0003598X00081023. DOI
Biddle, M. & Kjølbye-Biddle, B. Repton and the ‘great heathen army’, 873–4. In Vikings and the Danelaw (eds. Graham-Campbell, J., Hall, R., Jesch, J. & Parsons, D. N.) 45–96 (Oxbow, 2001).
Budd P, Millard A, Chenery C, Lucy S, Roberts C. Investigating population movement by stable isotope analysis: a report from Britain. Antiquity. 2004;78:127–141. doi: 10.1017/S0003598X0009298X. DOI
Jarman CL, Biddle M, Higham T. & Bronk Ramsey, C. The Viking Great Army in England: new dates from the Repton charnel. Antiquity. 2018;92:183–199. doi: 10.15184/aqy.2017.196. DOI
Roffey S, et al. Investigation of a Medieval Pilgrim Burial Excavated from the Leprosarium of St Mary Magdalen Winchester, UK. PLoS Negl. Trop. Dis. 2017;11:e0005186. doi: 10.1371/journal.pntd.0005186. PubMed DOI PMC