• This record comes from PubMed

The Caribbean and Mesoamerica Biogeochemical Isotope Overview (CAMBIO)

. 2024 Apr 08 ; 11 (1) : 349. [epub] 20240408

Language English Country Great Britain, England Media electronic

Document type Dataset, Journal Article

Links

PubMed 38589396
PubMed Central PMC11001905
DOI 10.1038/s41597-024-03167-6
PII: 10.1038/s41597-024-03167-6
Knihovny.cz E-resources

The Caribbean & Mesoamerica Biogeochemical Isotope Overview (CAMBIO) is an archaeological data community designed to integrate published biogeochemical data from the Caribbean, Mesoamerica, and southern Central America to address questions about dynamic interactions among humans, animals, and the environment in the region over the past 10,000 years. Here we present the CAMBIO human dataset, which consists of more than 16,000 isotopic measurements from human skeletal tissue samples (δ13C, δ15N, δ34S, δ18O, 87Sr/86Sr, 206/204Pb, 207/204Pb, 208/204Pb, 207/206Pb) from 290 archaeological sites dating between 7000 BC to modern times. The open-access dataset also includes detailed chronological, contextual, and laboratory/sample preparation information for each measurement. The collated data are deposited on the open-access CAMBIO data community via the Pandora Initiative data platform ( https://pandoradata.earth/organization/cambio ).

See more in PubMed

Cooke R. Prehistory of Native Americans on the Central American Land Bridge: Colonization, Dispersal, and Divergence. J. Archaeol. Res. 2005;13:129–187. doi: 10.1007/s10804-005-2486-4. DOI

Englehardt, J. D. & Carrasco, M. D. Interregional Interaction in Ancient Mesoamerica. (University Press of Colorado, 2019).

Hofman CL, et al. Island networks: Transformations of inter-community social relationships in the Lesser Antilles at the advent of European colonialism. J. Isl. Coast. Archaeol. 2021;16:290–316. doi: 10.1080/15564894.2020.1748770. DOI

Keegan, W. F., Hofman, C. L. & Rodríguez Ramos, R. The Oxford Handbook of Caribbean Archaeology. (Oxford University Press, 2013).

Kennett DJ, et al. South-to-north migration preceded the advent of intensive farming in the Maya region. Nat. Commun. 2022;13:1530. doi: 10.1038/s41467-022-29158-y. PubMed DOI PMC

Kistler L, et al. Archaeological Central American maize genomes suggest ancient gene flow from South America. Proc. Natl. Acad. Sci. 2020;117:33124–33129. doi: 10.1073/pnas.2015560117. PubMed DOI PMC

McCafferty, G., Amador, F. E., Salgado Gonzalez, S. & Dennett, C. Archaeology on Mesoamerica’s Southern Frontier. in The Oxford Handbook of Mesoamerican Archaeology (eds. Nichols, D. L. & Pool, C. A.) 83–105 (Oxford University Press, 2012).

Reid, B. A. The Archaeology of Caribbean and Circum-Caribbean Farmers (6000 BC - AD 1500). (Routledge, 2018).

Ranere AJ, Cooke RG. Late glacial and Early Holocene migrations, and Middle Holocene settlement on the lower isthmian land-bridge. Quat. Int. 2021;578:20–34. doi: 10.1016/j.quaint.2020.06.002. DOI

Robinson, E. & Davies, G. Routes, Interaction and Exchange in the Southern Maya Area. (Routledge, 2023).

Rodríguez Ramos, R. Isthmo-Antillean Engagements. in The Oxford Handbook of Caribbean Archaeology (eds. Keegan, W. F., Hofman, C. L. & Rodríguez Ramos, R.) 155–170 (Oxford University Press, 2013).

Laffoon, J. Paleomobility Research in Caribbean Contexts: New Perspectives from Isotope Analysis. in The Oxford Handbook of Caribbean Archaeology (eds. Keegan, W. F., Hofman, C. L. & Rodríguez Ramos, R.) 418–435 (Oxford University Press, 2013).

Pestle, W. J. Stable Isotopes Analysis of Paleodiet in the Caribbean. in The Oxford Handbook of Caribbean Archaeology (eds. Keegan, W. F., Hofman, C. L. & Rodríguez Ramos, R.) 407–417 (Oxford University Press, 2013).

Price TD, et al. Strontium Isotopes and the Study of Human Mobility in Ancient Mesoamerica. Lat. Am. Antiq. 2008;19:167–180. doi: 10.1017/S1045663500007781. DOI

Spence MW, White CD. Mesoamerican Bioarchaeology: Past and Future. Anc. Mesoam. 2009;20:233–240. doi: 10.1017/S0956536109990083. DOI

Scherer AK. Bioarchaeology and the Skeletons of the Pre-Columbian Maya. J. Archaeol. Res. 2017;25:133–184. doi: 10.1007/s10814-016-9098-3. DOI

Tiesler, V. The Routledge Handbook of Mesoamerican Bioarchaeology. (Routledge, 2022).

Tykot, R. H. Contribution of Stable Isotope Analysis to Understanding Dietary Variation among the Maya. in Archaeological Chemistry: Materials, Methods, and Meaning (ed. Jakes, K. A.) 214–230 (American Chemical Society, 2002).

Sharpe AE, et al. A preliminary multi-isotope assessment of human mobility and diet in pre-Columbian Panama. J. Archaeol. Sci. Rep. 2021;36:102876.

Willermet, C. & Cucina, A. Bioarchaeology of Pre-Columbian Mesoamerica: And Interdisciplinary Approach. (University Press of Florida, 2018).

Ebert CE, Hoggarth JA, Awe JJ, Culleton BJ, Kennett DJ. The Role of Diet in Resilience and Vulnerability to Climate Change among Early Agricultural Communities in the Maya Lowlands. Curr. Anthropol. 2019;60:589–601. doi: 10.1086/704530. DOI

Freiwald C. Excavation and Curation Strategies for Complex Burials in Tropical Environments. Adv. Archaeol. Pract. 2019;7:10–22. doi: 10.1017/aap.2018.43. DOI

Pestle WJ, Colvard M. Bone collagen preservation in the tropics: a case study from ancient Puerto Rico. J. Archaeol. Sci. 2012;39:2079–2090. doi: 10.1016/j.jas.2012.03.008. DOI

Izzo, V. S. R., Wright, L. E. & Canterbury, A. Geographic Variation in Mesoamerican Paleodiets: A Review of Recent Stable Carbon and Nitrogen Isotopic Analyses. in The Routledge Handbook of Mesoamerican Bioarchaeology (ed. Tiesler, V.) 441–465 (Routledge, 2022).

Pestle WJ. Fishing Down a Prehistoric Caribbean Marine Food Web: Isotopic Evidence from Punta Candelero, Puerto Rico. J. Isl. Coast. Archaeol. 2013;8:228–254. doi: 10.1080/15564894.2013.797943. DOI

Laffoon JE, Hoogland MLP, Davies GR, Hofman CL. A Multi-Isotope Investigation of Human and Dog Mobility and Diet in the Pre-Colonial Antilles. Environ. Archaeol. 2019;24:132–148. doi: 10.1080/14614103.2017.1322831. DOI

Laffoon JE, et al. Diverse and Dynamic Dietary Patterns in Early Colonial Cuba: New Insights from Multiple Isotope Analyses. Lat. Am. Antiq. 2020;31:103–121. doi: 10.1017/laq.2019.103. DOI

Buckley GM, et al. New Perspectives on Migration into the Tlajinga District of Teotihuacan: A Dual-Isotope Approach. Lat. Am. Antiq. 2021;32:536–556. doi: 10.1017/laq.2021.20. DOI

Casar I, Morales P, Manzanilla LR, Cienfuegos E, Otero F. Dietary differences in individuals buried in a multiethnic neighborhood in Teotihuacan: stable dental isotopes from Teopancazco. Archaeol. Anthropol. Sci. 2017;9:99–115. doi: 10.1007/s12520-016-0422-0. DOI

Nado KL, Zolotova N, Knudson KJ. Paleodietary analysis of the sacrificial victims from the Feathered Serpent Pyramid, Teotihuacan. Archaeol. Anthropol. Sci. 2017;9:117–132. doi: 10.1007/s12520-016-0416-y. DOI

Price TD, Manzanilla L, Middleton WD. Immigration and the Ancient City of Teotihuacan in Mexico: a Study Using Strontium Isotope Ratios in Human Bone and Teeth. J. Archaeol. Sci. 2000;27:903–913. doi: 10.1006/jasc.1999.0504. DOI

White CD, Spence MW, Longstaffe FJ, Stuart-Williams H, Law KR. Geographic Identities of the Sacrificial Victims from the Feathered Serpent Pyramid, Teotihuacan: Implications for the Nature of State Power. Lat. Am. Antiq. 2002;13:217–236. doi: 10.2307/971915. DOI

White CD, Price TD, Longstaffe FJ. Residential Histories of the Human Sacrifices at the Moon Pyramid, Teotihuacan: Evidence from Oxygen and Strontium Isotopes. Anc. Mesoam. 2007;18:159–172. doi: 10.1017/S0956536107000119. DOI

DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985;317:806–809. doi: 10.1038/317806a0. DOI

van Klinken GJ. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. J. Archaeol. Sci. 1999;26:687–695. doi: 10.1006/jasc.1998.0385. DOI

Marwick B, et al. Open Science in Archaeology. SAA Archaeol. Rec. 2017;17:8–14.

McKiernan EC, et al. How open science helps researchers succeed. eLife. 2016;5:e16800. doi: 10.7554/eLife.16800. PubMed DOI PMC

Cocozza C, Cirelli E, Groß M, Teegen W-R, Fernandes R. Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe. Sci. Data. 2022;9:354. doi: 10.1038/s41597-022-01462-8. PubMed DOI PMC

Fernandes, R. et al. The ARCHIPELAGO Archaeological Isotope Database for the Japanese Islands. J. Open Archaeol. Data, 10.5334/joad.73 (2021).

Goldstein, S. et al. Presenting the AfriArch Isotopic Database. J. Open Archaeol. Data, 10.5334/joad.94 (2022).

Plomp E, et al. The IsoArcH initiative: Working towards an open and collaborative isotope data culture in bioarchaeology. Data Brief. 2022;45:108595. doi: 10.1016/j.dib.2022.108595. PubMed DOI PMC

Sharpe AE, et al. Lead (Pb) Isotope Baselines for Studies of Ancient Human Migration and Trade in the Maya Region. PLOS ONE. 2016;11:e0164871. doi: 10.1371/journal.pone.0164871. PubMed DOI PMC

Witschey, W. R. T. & Brown, C. Electronic Atlas of Ancient Maya Sites. (2010).

Boldsen JL, Milner GR, Ousley SD. Paleodemography: From archaeology and skeletal age estimation to life in the past. Am. J. Biol. Anthropol. 2022;178:115–150. doi: 10.1002/ajpa.24462. PubMed DOI

Pestle WJ, Crowley BE, Weirauch MT. Quantifying Inter-Laboratory Variability in Stable Isotope Analysis of Ancient Skeletal Remains. PLoS ONE. 2014;9:e102844. doi: 10.1371/journal.pone.0102844. PubMed DOI PMC

Longin R. New Method of Collagen Extraction for Radiocarbon Dating. Nature. 1971;230:241–242. doi: 10.1038/230241a0. PubMed DOI

Guiry EJ, Szpak P, Richards MP. Effects of lipid extraction and ultrafiltration on stable carbon and nitrogen isotopic compositions of fish bone collagen. Rapid Commun. Mass Spectrom. 2016;30:1591–1600. doi: 10.1002/rcm.7590. PubMed DOI

Higham TFG, Jacobi RM, Ramsey CB. AMS Radiocarbon Dating of Ancient Bone Using Ultrafiltration. Radiocarbon. 2006;48:179–195. doi: 10.1017/S0033822200066388. DOI

Sealy J, Johnson M, Richards M, Nehlich O. Comparison of two methods of extracting bone collagen for stable carbon and nitrogen isotope analysis: comparing whole bone demineralization with gelatinization and ultrafiltration. J. Archaeol. Sci. 2014;47:64–69. doi: 10.1016/j.jas.2014.04.011. DOI

Szpak P, Krippner K, Richards MP. Effects of Sodium Hydroxide Treatment and Ultrafiltration on the Removal of Humic Contaminants from Archaeological Bone. Int. J. Osteoarchaeol. 2017;27:1070–1077. doi: 10.1002/oa.2630. DOI

Talamo S, Fewlass H, Maria R, Jaouen K. "Here we go again”: the inspection of collagen extraction protocols for 14C dating and palaeodietary analysis. STAR. Sci. Technol. Archaeol. Res. 2021;7:62–77. PubMed PMC

Kennett DJ, et al. Early isotopic evidence for maize as a staple grain in the Americas. Sci. Adv. 2020;6:eaba3245. doi: 10.1126/sciadv.aba3245. PubMed DOI PMC

Stafford TW, Hare PE, Currie L, Jull AJT, Donahue DJ. Accelerator radiocarbon dating at the molecular level. J. Archaeol. Sci. 1991;18:35–72. doi: 10.1016/0305-4403(91)90078-4. DOI

Hoggarth JA, et al. Building High-Precision AMS 14C Bayesian Models for the Formation pf Peri-Abandonment Deposits at Baking Pot, Belize. Radiocarbon. 2021;63:977–1002. doi: 10.1017/RDC.2021.30. DOI

Hoggarth JA, Culleton BJ, Awe JJ, Kennett DJ. Questioning Postclassic Continuity at Baking Pot, Belize, Using Direct AMS 14C Dating of Human Burials. Radiocarbon. 2014;56:1057–1075. doi: 10.2458/56.18100. DOI

Crowley BE, Wheatley PV. To bleach or not to bleach? Comparing treatment methods for isolating biogenic carbonate. Chem. Geol. 2014;381:234–242. doi: 10.1016/j.chemgeo.2014.05.006. DOI

Freiwald, C. Oxygen Isotope Values in the Maya Region. in Isotopic Proveniencing and Mobility: The Current State of Research (ed. Price, T. D.) 67–84 (Springer Nature, 2023).

Grimes V, Pellegrini M. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Commun. Mass Spectrom. 2013;27:375–390. doi: 10.1002/rcm.6463. PubMed DOI

Pederzani S, Britton K. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Sci. Rev. 2019;188:77–107. doi: 10.1016/j.earscirev.2018.11.005. DOI

Pellegrini M, Snoeck C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2 — Impact on carbon and oxygen isotope compositions. Chem. Geol. 2016;420:88–96. doi: 10.1016/j.chemgeo.2015.10.038. DOI

Snoeck C, Pellegrini M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1—Impact on structure and chemical composition. Chem. Geol. 2015;417:394–403. doi: 10.1016/j.chemgeo.2015.10.004. DOI

Ventresca Miller, A. et al. Sampling and Pretreatment of Tooth Enamel Carbonate for Stable Carbon and Oxygen Isotope Analysis. J. Vis. Exp. e58002, 10.3791/58002 (2018). PubMed PMC

Roberts P, et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass Spectrom. 2018;32:361–372. doi: 10.1002/rcm.8044. PubMed DOI PMC

Reimer PJ, et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI

Bronk Ramsey C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI

Heaton TJ, et al. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP) Radiocarbon. 2020;62:779–820. doi: 10.1017/RDC.2020.68. DOI

Ebert CE, 2024. CAMBIO Human Isotopic Dataset. DOI

Nehlich O, Richards MP. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol. Anthropol. Sci. 2009;1:59–75. doi: 10.1007/s12520-009-0003-6. DOI

Budd P, Montgomery J, Barreiro B, Thomas RG. Differential diagenesis of strontium in archaeological human dental tissues. Appl. Geochem. 2000;15:687–694. doi: 10.1016/S0883-2927(99)00069-4. DOI

Hedges REM. Bone diagenesis: an overview of processes. Archaeometry. 2002;44:319–328. doi: 10.1111/1475-4754.00064. DOI

Price TD, Blitz J, Burton J, Ezzo JA. Diagenesis in prehistoric bone: Problems and solutions. J. Archaeol. Sci. 1992;19:513–529. doi: 10.1016/0305-4403(92)90026-Y. DOI

Reynard B, Lécuyer C, Grandjean P. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol. 1999;155:233–241. doi: 10.1016/S0009-2541(98)00169-7. DOI

Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun. Mass Spectrom. 2012;26:309–319. doi: 10.1002/rcm.5331. PubMed DOI

Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. & Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). 86, 425–467 (2014).

Coplen TB. Normalization of oxygen and hydrogen isotope data. Chem. Geol. Isot. Geosci. Sect. 1988;72:293–297. doi: 10.1016/0168-9622(88)90042-5. DOI

Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011;25:2538–2560. doi: 10.1002/rcm.5129. PubMed DOI

Pellegrini M, Lee-Thorp JA, Donahue RE. Exploring the variation of the δ18Op and δ18Oc relationship in enamel increments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011;310:71–83. doi: 10.1016/j.palaeo.2011.02.023. DOI

Pollard AM, Pellegrini M, Lee-Thorp JA. Technical note: Some observations on the conversion of dental enamel δ18Op values to δ18Ow to determine human mobility. Am. J. Phys. Anthropol. 2011;145:499–504. doi: 10.1002/ajpa.21524. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

The palaeoenvironmental potential of bioarchaeological isotope data

. 2025 ; 6 (1) : 501. [epub] 20250701

The North American Repository for Archaeological Isotopes

. 2025 Jan 11 ; 12 (1) : 50. [epub] 20250111

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...