The North American Repository for Archaeological Isotopes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, dataset
PubMed
39799107
PubMed Central
PMC11724993
DOI
10.1038/s41597-024-04175-2
PII: 10.1038/s41597-024-04175-2
Knihovny.cz E-zdroje
- MeSH
- archeologie * MeSH
- izotopy dusíku analýza MeSH
- izotopy kyslíku analýza MeSH
- izotopy stroncia analýza MeSH
- izotopy uhlíku analýza MeSH
- lidé MeSH
- rostliny chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Geografické názvy
- Severní Amerika MeSH
- Názvy látek
- izotopy dusíku MeSH
- izotopy kyslíku MeSH
- izotopy stroncia MeSH
- izotopy uhlíku MeSH
Here, we present the North American Repository for Archaeological Isotopes (NARIA), the largest open-access compilation of previously reported isotopic measurements (n = 28,374) from bioarchaeological samples in North America (i.e., Canada, Greenland, Mexico, and the United States of America) covering a time-frame of more than 12,000 years. This database consists of stable (δ13C, δ15N, δ18O) and radiogenic (87Sr/86Sr) isotope measurements from archaeological human, animal, and plant sources and their corresponding contextual information (e.g., location, chronology, cultural affiliation, etc.). This synthesis of isotopic measurements and other forms of data presents significant research potential for investigating past human lifeways, particularly in the realms of paleomobility, paleoenvironment, and paleodiet. Additionally, it serves to pinpoint spatial and temporal data gaps, offering valuable insights for future research directions.
ArchaeoBioCenter Ludwig Maximilians Universität München München 80539 Germany
Climate Change and History Research Initiative Princeton University Princeton NJ 08544 USA
Department of Archaeology Max Planck Institute of Geoanthropology Jena 07745 Germany
Department of Bioarchaeology Faculty of Archaeology University of Warsaw Warszawa 00 927 Poland
Department of Integrative Biology Oregon State University Corvallis OR 97331 USA
Faculty of Arts Masaryk University Brno 602 00 Czech Republic
Griffith Sciences Griffith University Nathan QLD 4111 Australia
isoTROPIC Research Group Max Planck Institute of Geoanthropology Jena 07745 Germany
School of Social Science The University of Queensland Brisbane QLD 4071 Australia
Zobrazit více v PubMed
Craig, H. The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta3, 53–92 (1953).
Craig, H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol.62, 115–149 (1954).
Park, R. & Epstein, S. Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta21, 110–126 (1960).
Sharp, Z. Principles of stable isotope geochemistry, Pearson Prentice Hall, Upper Saddle River, NJ (2007).
Vogel, J. C. & van der Merwe, N. J. Isotopic Evidence for Early Maize Cultivation in New York State. Am. Antiquity42(2), 238–242 (1977).
van der Merwe, N. J. & Vogel, J. C. 13C Content of Human Collagen as a Measure of Prehistoric Diet in Woodland North America. Nature276, 815–816 (1978). PubMed
Bender, M. M. Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon10, 468–472 (1968).
Smith, B. N. & Epstein, S. Two categories of 13C/12C ratios for higher plants. Plant Physiol.47, 380–4 (1971). PubMed PMC
O’Leary, M. Carbon isotope fractionation in plants. Phytochem.20, 553–67 (1981).
O’Leary, M. H. Carbon isotopes in photosynthesis. Biosci.38(5), 328–336 (1988).
Bender, M. M., Baerreis, D. A. & Steventon, R. L. Further light on carbon isotopes and Hopewell agriculture. Am. Antiquity46(2), 346–353 (1981).
Buikstra, J. E. & Milner, G. R. Isotopic and archaeological interpretations of diet in the Central Mississippi Valley. J. Archaeol. Sci.18, 319–329 (1991).
Hutchinson, D. L., Larsen, C. S., Schoeninger, M. J. & Norr, L. Regional variation in the pattern of maize adoption and use in Florida and Georgia. Am. Antiquity63, 397–416 (1998).
Schoeninger, M. J. & Schurr, M. R. Human subsistence at Moundville: the stable isotope data. In Archaeology of the Moundville Chiefdom (eds. Knight, V.J. & Steponaitis, V. P.) Washington, DC, Smithson. Inst. Press, 120–32 (1998).
Schwarcz, H. P., Melbye, J., Katzenberg, M. A. & Knyf, M. Stable isotopes in human skeletons of Southern Ontario: reconstructing palaeodiet. J. Archaeol. Sci.12, 187–206 (1985).
Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science216(4550), 1131–1132 (1982). PubMed
Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Marine and terrestrial protein in prehistoric diets on the British Columbia coast. Curr. Anthropol.24(3), 396–398 (1983).
Walker, P. L. & DeNiro, M. J. Stable nitrogen and carbon isotope ratios in bone collagen as indices of prehistoric dietary dependence on marine and terrestrial resources in southern California. Am. J. Phys. Anthropol.71, 51–61 (1986). PubMed
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta45, 341–51 (1981).
Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta48, 625–39 (1984).
Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta48, 1135–40 (1984).
Sealy, J. C., van der Merwe, N. J., Lee-Thorp, J. A. & Lanham, J. L. Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Geochim. Cosmochim. Acta51, 2702–17 (1987).
Brown, A. B. Bone strontium as a dietary indicator in human skeletal populations. Geol.13, 47–48 (1974).
Ericson, J. E. Strontium isotope characterization in the study of prehistoric human ecology. J. Hum. Evol.14, 503–514 (1985).
Ezzo, J. A., Johnson, C. M. & Price, T. D. Analytical perspectives on prehistoric migration: A case study from east central Arizona. J. Archaeol. Sci.24, 447–466 (1997).
Price, T. D., Manzanilla, L. & Middleton, W. D. Immigration and the ancient city of Teotihuacan in Mexico: A study using strontium isotope ratios in human bone and teeth. J. Archaeol. Sci.27, 903–913 (2000).
Ambrose, S. H. & Norr, L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, in Prehistoric human bone: archaeology at the molecular level (eds. Lambert, J. B. and Grupe, G.), 1–37, Springer-Verlag, Berlin (1993).
Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable isotopes in animal tissues: Implications for 13C analysis of diet. Oecologia57, 32–37 (1983). PubMed
van der Merwe, N. J. & Medina, E. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta53, 1091–1094 (1989).
Collins, M. J. et al. The survival of organic matter in bone: a review. Archaeometry44, 383–94 (2002).
Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry44, 319–328 (2002).
Lee-Thorp, J. A. On isotopes and old bones. Archaeometry50, 925–950 (2008).
Masters, P. M. Preferential preservation of noncollagenous protein during bone diagenesis: implications for chronometric and stable isotopic measurements. Geochim. Cosmochim. Acta51, 3209–3214 (1987).
Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J. & Hare, P. E. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochim. Cosmochim. Acta50, 1941–1949 (1986).
DeNiro, M. J. & Epstein, S. Influences of diet on the carbon isotope distribution in animals. Geochim. Cosmochim. Acta42, 495–506 (1978).
Tieszen, L. L. & Fagre, T. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues, in Prehistoric human bone—archaeology at the molecular level (eds. Lambert, J. B. and Grupe, G.), 121–55, Springer-Verlag, Berlin (1993).
Webb, E. C. et al. The influence of varying proportions of terrestrial and marine dietary protein on the stable carbon-isotope compositions of pig tissues from a controlled feeding experiment. Sci. Technol. Archaeol. Res.3, 28–44 (2017).
Rokita, E., Hermes, C., Nolting, H. F. & Ryczek, J. Substitution of calcium by strontium within selected calcium phosphates. J. Cryst. Growth130, 543–552.
Styring, A. K., Evans, J. A., Nitsch, E. K., Lee‐Thorp, J. A. & Bogaard, A. Revisiting the potential of carbonized grain to preserve biogenic 87Sr/86Sr signatures within the burial environment. Archaeometry61, 179–193 (2019).
Ambrose, S. H., Buikstra, J. & Krueger, H. W. Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone. J. Anthropol. Archaeol.22, 217–226 (2003).
Beasley, M. M., Martinez, A. M., Simons, D. D. & Bartelink, E. J. Paleodietary Analysis of a San Francisco Bay Area Shellmound: Stable Carbon and Nitrogen Isotope Analysis of Late Holocene Humans from the Ellis Landing Site (CA-CCO-295). J. Archaeol. Sci.40, 2084–2094 (2013).
Byers, D. A., Yesner, D. R., Broughton, J. M. & Coltrain, J. B. Stable isotope chemistry, population histories and late prehistoric subsistence change in the Aleutian Islands. J. Archaeol.Sci.38, 183–196 (2011).
Greenlee, D. M. Accounting for subsistence variation among maize farmers in Ohio Valley prehistory. PhD. University of Washington (2002).
Mauldin, R. P. et al. Carbon and Nitrogen Stable Isotope Analysis of Hunter-Gatherers form the Coleman site, a Late Prehistoric Cemetery in Central Texas. J. Archaeol. Sci.40, 1369–1381 (2013).
Rose, F. Intra-Community Variation in Diet during the Adoption of a new Staple Crop in the Eastern Woodlands. Am. Antiquity73(3), 413–439 (2008).
Cook, R. A. & Price, T. D. Maize, Mounds, and the Movement of People: Isotope Analysis of a Mississippian/Fort Ancient Region. J. Archaeol. Sci.61, 112–128 (2015).
Thompson, A. R., Hedman, K. M. & Slater, P. A. New Dental and Isotope Evidence of Biological Distance and Place of Origin for Mass Burial Groups at Cahokia’s Mound 72. American J. Phys. Anthropol.158, 341–357 (2015). PubMed
Dolan, S. G. et al. Understanding Turkey Management in the Mimbres Valley of Southwestern New Mexico Using Ancient Mitochondrial DNA and Stable Isotopes. Am. Antiquity88(1), 41–61 (2023).
Morris, Z., White, C., Hodgetts, L. & Longstaffe, F. Maize Provisioning of Ontario Late Woodland Turkeys: Isotopic Evidence of Seasonal, Cultural, Spatial and Temporal variation. J. Archaeol. Sci.:Reports10, 596–606 (2016).
Somerville, A. D., Nelson, B. A. & Knudson, K. J. Isotopic Investigation of pre-Hispanic Macaw Breeding in Northwest Mexico. J. Anthropol. Archaeol.29, 125–135 (2010).
Edwards, R. W. IV, Jeske, R. J. & Coltrain, J. B. Preliminary Evidence for the Efficacy of the Canine Surrogacy Approach in the Great Lakes. J. Archaeol. Sci.: Reports13, 516–525 (2017).
Guiry, E. J. & Grimes, V. Domestic Dog (Canis Familiaris) Diets among Coastal Late Archaic Groups of Northeastern North America: A Case Study for the Canine Surrogacy Approach. J. Anthropol. Archaeol.32, 732–745 (2013).
Tankersley, K. B. & Koster, J. M. Sources of Stable Isotope Variation in Archaeological Dog Remains. N. Am. Archaeol.30(4), 361–375 (2009).
West, C. F. & France, C. A. Human and Canid Dietary Relationships: Comparative Stable Isotope Analysis from the Kodiak Archipelago, Alaska. J. Ethnobiol.35(3), 519–535 (2015).
Fenner, J. N. Occasional Hunts or Mass Kills? Investigating the Origins of Archaeological Pronghorn Bonebeds in Southwest Wyoming. Am. Antiquity74(2), 323–350 (2009).
Gigleux, C., Grimes, V., Tütken, T., Knecht, R. & Britton, K. Reconstructing Caribou Seasonal Biogeography in Little Ice Age (late Holocene) Western Alaska using Intra-Tooth Strontium and Oxygen Isotope Analysis. J. Archaeol. Sci.: Reports23, 1043–1054 (2019).
Widga, C., Walker, J. D. & Stockli, L. D. Middle Holocene Bison Diet and Mobility in the Eastern Great Plains (USA) based on δ13C, δ18O, and δ87Sr/86Sr Analyses of Tooth Enamel Carbonate. Quat. Res.73(3), 449–463 (2010).
Balakrishnan, M., Yapp, C., Meltzer, D. & Theler, J. Paleoenvironment of the Folsom Archaeological Site, New Mexico, USA, approximately 10,500 14C yr. B.P. as inferred from the Stable Isotope Composition of Fossil Land Snail Shells. Quat. Res.63(1), 31–44 (2005).
Fiorentino, G., Ferrio, J. P., Bogaard, A., Araus, J. L. & Riehl, S. Stable isotopes in archaeobotanical research. Veg. Hist. Archaeobotany24, 215–227 (2015).
Makarewicz, C. A. & Sealy, J. Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: Expanding the prospects of stable isotope research in archaeology. J. Archaeol. Sci.56, 146–158 (2015).
Roberts, P. et al. Calling all archaeologists: guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Commun. Mass Spectrom.32, 361–372 (2018). PubMed PMC
Vaiglova, P., Lazar, N. A., Stroud, E. A., Loftus, E. & Makarewicz, C. A. Best practices for selecting samples, analyzing data, and publishing results in isotope archaeology. Quat. Int.650, 86–100 (2023).
Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool.92, 823e835 (2014).
Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE9, e87436 (2014). PubMed PMC
Coltrain, J. B. & Janketski, J. C. The Stable and Radio-Isotope Chemistry of Southeastern Utah Basketmaker II Burials: Dietary Analysis using the Linear Mixing Model SISUS, Age and Sex Patterning, Geolocation and Temporal Patterning. J. Archaeol. Sci.40, 4711–4730 (2013).
Eerkens, J. et al. Stable isotopes demonstrate the importance of freshwater fisheries in Late Holocene native Californian diets in the California Delta. J. Archaeol. Sci.: Reports38, 103044 (2021).
Emerson, T. E., Hedman, K. M., Simon, M. L., Fort, M. A. & Witt, K. E. Isotopic Confirmation of the Timing and Intensity of Maize Consumption in Greater Cahokia. Am. Antiquity85(2), 241–262 (2020).
Hard, R. J. & Katzenberg, A. Stable Isotope Study of Hunter-Gatherer-Fisher Diet, Mobility and Intensification on the Texas Gulf Coastal Plain. Am. Antiquity76(4), 709–751 (2011).
Newsome, S. D., Phillips, D. L., Culleton, B. J., Guilerson, T. P. & Koch, P. L. Dietary reconstruction of an early to middle Holocene human population from the central California coast: Insights from advanced stable isotope mixing models. J. Archaeol. Sci.31, 1101–1115 (2004).
Harris, A. J. et al. Dorset Pre-Inuit and Beothuk foodways in Newfoundland, ca. AD 500-1829. Plos one14(1), e0210187 (2019). PubMed PMC
Bartelink, E. J. et al. Stable Isotope Evidence of Diet Breadth Expansion and Regional Dietary Variation among Middle-to-Late Holocene Hunter-gatherers of Central California. J. Archaeol. Sci.: Reports29, 1–12 (2020).
Hart, J. P. Human and dog Bayesian dietary mixing models using bone collagen stable isotope ratios from ancestral Iroquoian sites in southern Ontario. Sci. Reports13(1), 7177 (2023). PubMed PMC
Halffman, C. M. et al. Ancient Beringian paleodiets revealed through multiproxy stable isotope analyses. Sci. Adv.6(36), p.eabc1968 (2020). PubMed PMC
Kennedy, J. R. & Guiry, E. J. Exploring Railroad Impacts on Meat Trade: An Isotopic Investigation of Meat Sourcing and Animal Husbandry at Chinese Diaspora Sites in the American West. Int. J. Histor. Archaeol.27, 393–423 (2023).
Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci.: Reports13, 609–616 (2017).
Cocozza, C., Cirelli, E., Groß, M. & Wolf-Rudiger, T. & Fernandes, Ricardo. Presenting the Compendium Isotoporum Medii Aevi, a Multi-Isotope Database for Medieval Europe. Sci Data9, 354 (2022). PubMed PMC
Ebert, C. E. et al. The Caribbean and Mesoamerica Biogeochemical Isotope Overview (CAMBIO). Sci Data11, 349 (2024). PubMed PMC
Pezo-Lanfranco, L. et al. South American Archaeological Isotopic Database, a regional-scale multi-isotope data compendium for research. Sci Data11, 336 (2024). PubMed PMC
Billings, T. N. et al. NARIA isotopic datasets, Pandora.10.48493/hnhn-7158 (2024).
Buikstra, J. E. & Ubelaker, D. H. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. Arkansas Archeological Survey (1994).
van Klinken, G. J. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. J. Archaeol. Sci.26, 687–695 (1999).
DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature317, 806–809 (1985).
Guiry, E. J. & Szpak, P. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J. Archaeol. Sci.132, 105416 (2021).
Pestle, W. J., Crowley, B. E. & Weirauch, M. T. Quantifying inter-laboratory variability in stable isotope analysis of ancient skeletal remains. PLoS one9(7), e102844 (2014). PubMed PMC
van der Plicht, J., Wijma, S., Aerts, A. T., Pertuisot, M. H. & Meijer, H. A. J. Status report: The Groningen AMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.172, 58–65 (2000).
Prasad, G. V. R., Culp, R. & Cherkinsky, A. δ13C correction to AMS data: Values derived from AMS vs IRMS values. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.455, 244–249 (2019).
Millard, A. R. Conventions for reporting radiocarbon determinations. Radiocarbon56(2), 555–559 (2014).